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0 Introduction

—Lecture 1—

Lecturer: Thomas Bloom (tb634@cam.ac.uk, www.thomasbloom.org/ant.html)

Printed notes will be updated, but 1-2 weeks behind.

Example classes: weeks 3,5,7, tuesdays 330-5pm; prop-in sessions weeks 2,4,6,8.
Rooms to be confirmed later.

What is analytic number theory? It’s the study of numbers (regular integers,
discrete) using analysis (real/complex, continuous) and some other quantitative
questions.

For example, for the famous function π(x), the number of primes no greater
than x, we know π(x) ∼ x

log x .

Throughout this course, by numbers we’ll mean natural numbers excluding 0.

We can also ask how many twin primes there are, i.e. how many p such that
p, p + 2 are both prime. This is not known yet (not even the finiteness); but
from 2014, Zhang, Maynard, Polymath showed that there are infinitely many
primes at most 246 apart, which is not that far from 2. The current guess is
that the number is around x

(log x)2 .

Another question we may ask: how many primes are there ≡ a (mod q), (a, q) =
1. We know by Dirichlet’s theorem that there are infinitely many.
A natural guess of the count is 1

φ(q)
x

log x , where φ(x) is the Euler Totient function.

This is known to hold for small q.

In this course we’ll talk about:
(1) Elementary techniques (real analysis);
(2) Sieve methods;
(3) Riemann zeta function/prime number theory (complex analysis);
(4) Primes in arithmetic progressions.
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1 Elementary techniques

Review of asymptotic notation:
• f(x) = O(g(x)) if there is c > 0 s.t. |f(x)| ≤ c|g(x)| for all large enough x;
• f ≪ g is the same thing as f = O(g). This also defines what f ≫ g means in
the natural way;

• f ∼ g if limx→∞
f(x)
g(x) = 1 (i.e. f = (1 + o(1))g);

• f = o(g) if limx→∞
f(x)
g(x) = 0.

1.1 Arithmetic functions

Arithmetic functions are just functions f : N → C; in other words, relabelling
natural numbers with some complex numbers.
An important operation for multiplicative number theory (fg = f(n)g(n)) is
multiplicative convolution,

f ∗ g(n) =
󰁛

ab=n

f(a)g(b)

Examples: 1(n) ≡ 1∀n (caution: 1 is not the identity function, and 1 ∗ f ∕= f).
Möbius function:

µ(n) =

󰀝
(−1)k if n = p1...pk
0 if n is divisible by a square

Liouville function: λ(n) = (−1)k if n = p1...pk (primes not necessarily distinct),
Divisor function: τ(n) = number of d s.t. d|n =

󰁓
ab=n 1 = 1 ∗ 1. This is

sometimes also known as d(n).

An arithmetic function is multiplicative if f(nm) = f(n)f(m) when (n,m) = 1.
In particular, a multiplicative function is determined by its values on prime
powers.

Fact. If f, g are multiplicative, then so is f ∗ g.
All the function we’ve seen so far (µ,λ, τ, 1) are multiplicative.

Non-example: log n is definitely not multiplicative.

Fact. (Möbius inversion)
1 ∗ f = g ⇐⇒ µ ∗ g = f . That is,

󰁛

a|n

f(d) = g(n)∀n ⇐⇒
󰁛

d|n

g(d)µ(n/d) = f(n)∀n

e.g.
󰁛

d|n

µ(d) =

󰀝
1 n = 1
0 else

= 1 ∗ µ
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is multiplicative: it’s enough to check identity for primes powers.
If n = pk then {d|n} = {1, p, ..., pk}. So LHS=1 − 1 + 0 + 0 + ... = 0, unless
k = 0 when LHS = µ(1) = 1.

Our goal is to study primes. The first guess might be to work with

1p(n) =

󰀝
1 n prime
0 else

(e.g. π(x) =
󰁓

1≤n≤x 1p(n)). Instead, we work with von Mangoldt funcion

∧(n) =
󰀝

log p n is a prime power
0 else

(e.g. in a few lectures we’ll look at ψ(x) =
󰁓

1≤n≤x ∧(n)).

Lemma. (1)
1 ∗ ∧ = log, and by Möbius inversion, µ ∗ log = ∧.
Note that it’s easy to realize that ∧ is not multiplicative, else log will be.

Proof. 1 ∗ ∧(n) =
󰁓

d|n ∧(d). So if n = pk1
1 ...pkr

r , then above

=

r󰁛

i=1

ki󰁛

j=1

∧(pji )

=

r󰁛

i=1

ki󰁛

j=1

log(pi)

=

r󰁛

i=1

ki log(pi)

= log n

Note that the above tells us

∧(n) =
󰁛

d|n

µ(d) log(n/d)

= log n
󰁛

d|n

µ(d)−
󰁛

d|n

µ(d) log d

= −
󰁛

d|n

µ(d) log d

by the famous fact that
󰁓

d|n µ(d) = 0 unless n = 1; but when n = 1, log n = 0.
Now we can try to evaluate

−
󰁛

1≤n≤x

∧(n) =
󰁛

1≤n≤x

󰁛

d|n

µ(d) log d

= −
󰁛

d≤x

µ(d) log d(
󰁛

1≤n≤x,d|n

1) (reverse order of summation)
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But 󰁛

1≤n≤x,d|n

1 = ⌊x/d⌋ = x/d+O(1)

So we know the original sum is equal to

−x
󰁛

d≤x

µ(d)
log d

d
+O(

󰁛

d≤x

µ(d) log d)

—Lecutre 2—

Lecturer’s favourite book: Multiplicative Number Theory.

Room for example classes: MR14 (Tues 330-5pm, week 357).

1.2 Summation

Given an arithmetic function f , we can ask for estimates of
󰁓

1≤n≤x f(n).
We say that f has average order g if

󰁓
1≤n≤x f(n) ∼ xg(x) (in some sense, the

average size of f is g).

For example, if f ≡ 1, then
󰁓

1≤n≤x f(n) = ⌊x⌋ = x+O(1) ∼ x. So the average
order of 1 is 1 (makes a lot of sense).
A slightly less trivial example is the identity function f(n) = n: we have󰁓

1≤n≤x n ∼ x2

2 , so the average order of n is n/2.

Lemma. (1, Partial summation)
If (an) is a sequence of complex numbers, and f is s.t. f ′ is continuous. Then󰁓

1≤n≤x anf(n) = A(x)f(x)−
󰁕 x

1
A(t)f ′(t)dt, where A(x) =

󰁓
1≤n≤x an.

We can see that this is a discrete version of integration by parts.

Proof. Suppose x = N is an integer. Note that an = A(n)−A(n− 1). So

󰁛

1≤n≤N

anf(n) =
󰁛

1≤n≤N

f(n)(A(n)−A(n− 1))

= A(N)f(N)−
N−1󰁛

n=1

A(n)(f(n+ 1)− f(n)) using A(0) = 0

Now f(n+ 1)− f(n) =
󰁕 n+1

n
f ′(t)dt. So

󰁛

1≤n≤N

anf(n) = A(N)f(N)−
N−1󰁛

n=1

A(n)

󰁝 n+1

n

f ′(t)dt

= A(N)f(N)−
󰁝 N

1

A(t)f ′(t)dt
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To be complete, we should also consider the case where x is not an integer. But
if N = ⌊x⌋,

A(x)f(x) = A(N)f(x)

= A(N)

󰀕
f(N) +

󰁝 x

N

f ′(t)dt

󰀖

Lemma. (2)

󰁛

1≤n≤x

1

n
= log x+ γ +O

󰀕
1

x

󰀖

where γ is some constant.

Proof. Apply partial summation with f(x) = 1
x and an ≡ 1, so A(x) = ⌊x⌋.

Then, writing ⌊t⌋ = t− {t},

󰁛

1≤n≤x

1

n
=

⌊x⌋
x

+

󰁝 x

1

⌊t⌋
t2

dt

= 1 +O

󰀕
1

x

󰀖
+

󰁝 x

1

1

t
dt−

󰁝 x

1

{t}
t2

dt

= 1 +O

󰀕
1

x

󰀖
+ log x−

󰁝 ∞

1

{t}
t2

dt+

󰁝 ∞

x

{t}
t2

dt

= γ +O

󰀕
1

x

󰀖
+ log x+O

󰀕
1

x

󰀖

= log x+ γ +O

󰀕
1

x

󰀖

where at the penultimate step we bound the error term by

󰁝 ∞

x

{t}
t2

dt ≤
󰁝 ∞

x

1

t2
dt

≤ 1

x

and we actually know γ = 1−
󰁕∞
1

{t}
t2 dt.

This γ is called Euler’s constant (Euler-Mascheroni).
We know very little about this constant: we only know γ = 0.577..., and we
don’t even know if γ is irrational.

Lemma. (3)

󰁛

1≤n≤x

log n = x log x− x+O(log x)
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Proof. Use partial summation again, with f(x) = log x and an = 1, so A(x) =
⌊x⌋:

󰁛

1≤n≤x

log n = ⌊x⌋ log x−
󰁝 x

1

⌊t⌋
t
dt

= x log x+O(log x)−
󰁝 x

1

1dt+O(

󰁝 x

1

1

t
dt)

= x log x− x+O(log x)

1.3 Dinsar function

Recall that τ(n) = 1 ∗ 1(n) =
󰁓

d|n 1.

Theorem. (4)

󰁛

1≤n≤x

τ(n) = x log x+ (2γ − 1)x+O(x1/2)

So average order of τ is log x.

Proof. Note that we won’t apply partial summation here: PS allows to get󰁓
anf(n) from knowledge of

󰁓
an; but τ(n) here is not differentiable, so PS is

not going to apply.

󰁛

1≤n≤x

τ(n) =
󰁛

1≤n≤x

󰁛

d|n

1

=
󰁛

1≤d≤x

󰁛

1≤n≤x,d|n

1

=
󰁛

1≤d≤x

⌊x
d
⌋

=
󰁛

1≤d≤x

x

d
+O(x)

= x
󰁛

1≤d≤x

1

d
+O(x)

= x log x+ γx+O(x)

where we applied lemma 2 at the last step. This is all correct, but the error
term is larger than what we wanted. However, we have indeed prove that the
average order of τ(x) is log x.
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To reduce error term, we use (Dirichlet’s) hyperbola trick:

󰁛

1≤n≤x

τ(n) =
󰁛

1≤n≤x

󰁛

ab=n

1

=
󰁛

ab≤x

1

=
󰁛

a≤x

󰁛

b≤ x
a

1

Note that now we’re just counting number of integer points below the hyperbola
xy = n (relabelling variables).
When summing over ab ≤ x, we can sum over a, b ≤ x1/2 separately, then
subtract the repetition off. Then

󰁛

1≤n≤x

τ(n) =
󰁛

a≤x1/2

󰁛

b≤ x
a

1 +
󰁛

b≤x1/2

󰁛

a≤ x
b

1−
󰁛

a,b≤x1/2

1

= 2
󰁛

a≤x1/2

⌊x
a
⌋ − ⌊x1/2⌋2

= 2
󰁛

a≤x1/2

x

a
+O(x1/2)− x+O(x1/2)

by noting that ⌊x1/2⌋2 = (x1/2 +O(1))2. Now the above equals

= 2x log x1/2 + 2γx− x+O(x1/2)

= x log x+ (2γ − 1)x+O(x1/2)

Improving this O(x1/2) error term is a famous and hard problem. We should
probably get O(x1/4+ε), but this is open. The best known result is O(x0.3149...).

Note that this does not mean that τ(n) ≪ log n. The average order is small
doesn’t say about the individual values being small.

We’ll state the theorem we’re proving and prove it in the next lecture:

Theorem. (5)

τ(n) ≤ nO( 1
log log n )

In particular, τ(n) ≪ε n
ε ∀ε > 0.

—Lecture 3—

Proof. τ is multiplicative, so it’s enough to calculate at prime powers.
Now, τ(pk) = k + 1. So if n = pk1

1 ...pkr
r , thjen τ(n) =

󰁔r
i=1(ki + 1).

Let ε be chosen later, and consider τ(n)
nε =

󰁔r
i=1

ki+1

p
kiε

i

. Note as p → ∞, k+1
pkε → 0.

In particular, if p ≥ 21/ε, then k+1
pkε ≤ k+1

2k
≤ 1. What about for small p? We
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can’t do better than p ≥ 2, but that’s enough.
In this case, k+1

pkε ≤ k+1
2kε ≤ 1

ε (as x + 1
2 ≤ 2x =⇒ εk + ε ≤ 2kε∀x ≥ 0), for

ε ≤ 1/2.
So

τ(n)

nε
≤

r󰁜

i=1,i<21/ε

ki + 1

pkiε
≤ (1/ε)21/ε

Now choose optimal ε:
(trick!) if you want to choose x to minimise f(x) + g(x), choose x s.t. f(x) =
g(x).

So here, τ(n) ≤ nεε−21/ε = exp(ε log n+ 21/ε log 1/ε).
Choose ε s.t. log n ≈ 21/ε, i.e. ε = 1

log logn . So

τ(n) ≤ n1/ log logn(log log n)2
log log n

= n1/ log logne(logn)log 2 log log logn

≤ nO( 1
log log n )

1.4 Estimates for the Primes

Recall π(x) is the number of primes≤ x =
󰁓

1≤n≤x 1p(n), and ψ(x) =
󰁓

1≤n≤x Λ(n).
The prime number theorem states that π(x) ∼ x

log x , or equivalently ψ(x) ∼ x

(justified later).
It was 1850 before the correct magnitude of π(x) was proved. Chebyshev showed
that π(x) ≍ x/ log x, where f ≍ g means g ≪ f ≪ g.

Theorem. (6, Chebyshev)
ψ(x) ≍ x.
We’ll show below that (log 2)x ≤ ψ(x) ≤ (log 4)x (remember that the default
base for log is e, so log 2 < 1 while log 4 > 1).

Proof. First we’ll prove the lower bound. Recall 1 ∗Λ = log, i.e.
󰁓

ab=n Λ(a) =
log n. The (genuine) trick is to find a sum Σ s.t. ε ≤ 1(?). We’ll use the identity
⌊x⌋ ≤ 2⌊x

2 ⌋ + 1∀x ≥ 0. Why? Say x
2 = n + θ, θ ∈ [0, 1) Then ⌊x

2 ⌋ = n, and
x = 2n+ 2θ, and so ⌊x⌋ = 2n, or at most 2n+ 1.
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So

ψ(x) ≥
󰁛

n≤x

Λ(n)(⌊x
n
⌋ − 2⌊ x

2n
⌋)

=
󰁛

n≤x

Λ(n)
󰁛

m≤x/n

1− 2
󰁛

n≤x

Λ(n)
󰁛

m≤ x
2n

1

=
󰁛

nm≤x

Λ(n)− 2
󰁛

nm≤x/2

Λ(n), write d = nm,

=
󰁛

d≤x

1 ∗ Λ(d)− 2
󰁛

d≤x/2

1 ∗ Λ(d)

=
󰁛

d≤x

log d− 2
󰁛

d≤x/2

log d

= x log x− x+O(log x)− 2(
x

2
log

x

2
− x

2
+O(log x))

= (log 2)x+O(log x) ≫ x

For the upper bound, note that ⌊x⌋ = 2⌊x/2⌋+ 1 for x ∈ (1, 2), so
󰁛

x/2<n<x

Λ(n) =
󰁛

x/2<n<x

Λ(n)(⌊x/n⌋−2⌊x/2n⌋) ≤
󰁛

1≤n≤x

Λ(n)(⌊x/n⌋−2⌊x/2n⌋)

so ψ(x)− ψ(x/2) ≤ (log 2)x+O(log x).
So ψ(x) = (ψ(x)−ψ(x/2))+(ψ(x/2)−ψ(x/4))+ ... ≤ log 2(x+x/2+x/4+ ...) =
(2 log 2)x (note only log x error terms at most).

Lemma. (7)

󰁛

p≤x,p primes

log p

p
= log x+O(1)

Proof. Recall that log = 1 ∗ Λ. So
󰁛

n≤x

log n =
󰁛

ab≤x

Λ(a)

=
󰁛

a≤x

Λ(a)
󰁛

b≤x/a

1

=
󰁛

a≤x

Λ(a)⌊x/a⌋

= x
󰁛

a≤x

Λ(a)

a
+O(ψ(x))

= x
󰁛

a≤x

Λ(a)

a
+O(x)

But
󰁓

n≤x log n = x log x− x+O(log x). So

󰁛

n≤x

Λ(n)

n
= log x− 1 +O(

log x

x
) +O(1) + log x+O(1)
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It remains to note that

󰁛

p≤x

∞󰁛

n=2

log p

pn
=

󰁛

p≤x

log p

∞󰁛

k=2

1

pk

=
󰁛

p≤x

log p

p2 − p

≤
∞󰁛

p=2

1

p3/2
= O(1)

So
󰁓

n≤x
Λ(n)
n =

󰁓
p≤x

log p
p +O(1).

—Lecture 4—

Drop-in: Tuesday 4pm-5pm.

Lemma. (8)

π(x) = ψ(x)
log x +O( x

(log x)2 ).

In particular, π(x) ≍ x
log x and prime number theorem: π(x) ∼ x

log x is equivalent

to ψ(x) ∼ x.
So from now on, we’ll call this the prime number theorem instead.

Proof. The idea is to use partial summation:

θ(x) :=
󰁛

p≤x

log p = π(x) log x−
󰁝 x

1

π(t)

t
dt

but this doesn’t work immediately, since ψ(x) =
󰁓

n≤x Λ(n) =
󰁓

pk≤x log p.
However, we have

ψ(x)− θ(x) =

∞󰁛

k=2

󰁛

pk≤x

log p

=

∞󰁛

k=2

θ(x1/k)

≤
∞󰁛

k=2

ψ(x1/k)

=

log x󰁛

k=2

ψ(x1/k)

as the larger terms are all zero. Then the above

≪
log x󰁛

k=2

x1/k

≪ x1/2 log x
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(Obviously we could do better, but that’s less important). Now ψ(x) = π(x) log x+

O(x1/2 log x)−
󰁕 x

1
π(t)
t dt. Note that we have π(t) ≪ t

log t , so we can bound the
above by

ψ(x) = π(x) log x+O(x1/2 log x) +O(

󰁝 x

1

1

log t
dt)

= π(x) log x+O(
x

log x
)

(For π(t) ≪ t
log t , note that from π(t) ≤ t, ψ(x) = π(x) log x + O(x1/2 log x) +

O(x). So π(x) log x = O(x)).

Lemma. (9)󰁓
p≤x

1
p = log log x+ b+O( 1

log x ), where b is some constant.

Proof. We use partial summation. Let A(x) =
󰁓

p≤x
log p
p = log x + R(x) (so

R(x) ≪ 1 (by lemma 7)). Then

󰁛

2≤p≤x

1

p
=

A(x)

log x
−
󰁝 x

2

A(t)

t(log t)2
dt

= 1 +O(
1

log x
) +

󰁝 x

2

1

t log t
dt+

󰁝 x

2

R(t)

t(log t)2
dt

Note
󰁕∞
2

R(t)
t(log t)2 dt exists, say = c. Then

󰁛

2≤p≤x

1

p
= 1 + c+O(

1

log x
) + log log x− log log 2 +O(

󰁝 ∞

x

1

t(log t)2
dt)

= log log x+ b+O(
1

log x
)

Theorem. (10, Chebyshev)
If π(x) ∼ c x

log x , then c = 1.
Note that this is weaker than PNT itself: this only says that if that relation
exists, then we must have c = 1.
(Also, if π(x) ∼ x

log x−A(x) , then A ∼ 1)

Proof. Use partial summation on
󰁓

p≤x
1
p :

󰁛

p≤x

1

p
=

π(x)

x
−
󰁝 x

1

π(t)

t2
dt

If π(x) = (c+ o(1)) x
log x , then

=
c

log x
+ o(

1

log x
) + (c+ o(1))

󰁝 x

1

1

t log t
dt

= O(
1

log x
) + (c+ o(1)) log log x

But
󰁓

p≤x
1
p = (1 + o(1)) log x. Hence c = 1.
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Lemma. (11)󰁔
p≤x(1− 1

p )
−1 = c log x+O(1), where c is some constant.

Proof.

log(
󰁜

p≤x

(1− 1

p
)−1) = −

󰁛

p≤x

(1− 1

p
)

=
󰁛

p≤x

󰁛

k

1

kpk

=
󰁛

p≤x

1

p
+

󰁛

k≥2

󰁛

p≤x

1

kpk

= log log x+ c′ +O(
1

log x
)

where we used the expansion log(1− t) = −
󰁓

k
tk

k .
Now note that ex = 1 +O(x) for |x| ≤ 1. So

󰁜

p≤x

(1− 1

p
)−1 = c log xeO( 1

log x )

= c log x(1 +O(
1

log x
))

= c log x+O(1)

It turns out that c = eγ ≈ 1.78..., where γ is the Euler constant that we’ve seen
previously.

So why is PNT hard, given that we’ve proved so many results? From proba-
bilistic heuristic, we have the ’probability’ that p|n is 1

p .
What is the probability that n is prime then? n is prime iff n has no prime
divisors ≤ n1/2. Our guess is that the events ’divisible by p’ are independent,
so the probability that n is prime should be something like

󰁔
p≤n1/2(1 − 1

p ) ≈
1

c logn1/2 = 2
c

1
logn . So

π(x) =
󰁛

n≤x

1n prime ≈
2

c

󰁛

n≤x

1

log n
≈ 2

c

x

log x
≈ 2e−γ x

log x

if the above guesses are correct; but from theorem 10 we know that the constant
should be 1 instead of 2e−γ ≈ 1.122....
What have gone wrong? It turns out that the error terms accumulated are too
overwhelming that they’ve actually contributed to the main term. So PNT is
not something like we find the main term and prove that the error terms are
negligible.
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Recall that 1 ∗ Λ = log, so µ ∗ log = Λ. So

ψ(x) =
󰁛

n≤x

Λ(n)

=
󰁛

ab≤x

µ(a) log b

=
󰁛

a≤x

µ(a)(
󰁛

b≤ x
a

log b)

Recall that

󰁛

m≤x

logm = x log x− x+O(log x),

󰁛

m≤x

τ(m) = x log x+ (2γ − 1)x+O(x1/2)

so their main terms agree.
So

ψ(x) =
󰁛

a≤x

µ(a)

󰀳

󰁃
󰁛

b≤ x
a

τ(b) + 2γ
x

a
+O

󰀕
x1/2

a1/2

󰀖󰀴

󰁄

=
󰁛

ab≤x

µ(a)τ(b)

=
󰁛

abc≤x

µ(a)

=
󰁛

b≤x

󰁛

ac≤x/b

µ(a)

=
󰁛

b≤x

󰁛

d≤x/b

µ ∗ 1(d)

= ⌊x⌋ = x+O(1)

since we know the last term is 0 unless d is 1.

The error term:

−2γ
󰁛

a≤x

µ(a)
x

a
= O(x

󰁛

a≤x

µ(a)

a
)

so we need to show that
󰁓

a≤x
µ(a)
a = o(1). However, this is still the same as

PNT, so we haven’t gained anything.

—Lecture 5—



1 ELEMENTARY TECHNIQUES 17

1.5 Selberg’s identity, and an elementary proof of the
PNT

Recall that PNT is
ψ(x) =

󰁛

n≤x

Λ(n) = x+ o(x)

Let (Selberg’s function)

Λ2(n) = µ ∗ (log2)(n) =
󰁛

ab=n

µ(a)(log b)2

(Recall Λ = µ ∗ log).

The idea is to prove a ’PNT for Λ2’ with elementary methods.

Lemma. (12)
(1) Λ2(n) = Λ(n) log n+ Λ ∗ Λ(n);
(2) 0 ≤ Λ2(n) ≤ (log n)2;
(3) If Λ2(n) ∕= 0, then n has at most 2 distinct prime factors.

Proof. For (1), we use Möbius inverison, so it is enough to show that

󰁛

d|n

(Λ(d) log d+ Λ ∗ Λ(d)) = (log n)2

=
󰁛

d|n

Λ(d) log d+
󰁛

ab|n

Λ(a)Λ(b) as 1 ∗ Λ = log

=
󰁛

d|n

Λ(d) log d+
󰁛

a|n

Λ(a)

󰀳

󰁃
󰁛

b|na

Λ(b))

󰀴

󰁄

󰁿 󰁾󰁽 󰂀
=log(n

d )

=
󰁛

d|n

Λ(d) log d+
󰁛

d|n

Λ(d) log(
n

d
)

= log n
󰁛

d|n

Λ(d) = (log n)2

For (2), Λ2(n) ≥ 0 since both terms on RHS in (1) are≥ 0, and since
󰁓

d|n Λ2(d) =

(log n)2, Λ2(n) ≤ (log n)2.
For (3), note that if n is divisible by 3 distinct primes, then Λ(n) = 0, and
Λ ∗ Λ(n) =

󰁓
ab=n Λ(a)Λ(b) = 0 since at least one of a or b has ≥ 2 distinct

prime divisors.

Theorem. (13, Selberg)

󰁛

n≤x

Λ2(n) = 2x log x+O(x)
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Proof.

󰁛

n≤x

Λ2(n) =
󰁛

n≤x

µ ∗ (log)2(n)

=
󰁛

ab≤x

µ(a)(log b)2

=
󰁛

a≤x

µ(a)

󰀳

󰁃
󰁛

b≤ x
a

(log b)2

󰀴

󰁄

By PS,

󰁛

m≤x

(logm)2 = x(log x)2 − 2x log x+ 2x+O((log x)2)

By PS, (let A(t) =
󰁓

n≤t τ(n) = t log t+ ct+O(t1/2))

󰁛

m≤x

τ(m)

m
=

A(x)

x
+

󰁝 x

1

A(t)

t2
dt

= log x+ c+O(x−1/2) +

󰁝 x

1

log t

t
dt+ c

󰁝 x

1

1

t
dt+O(

󰁝 x

1

1

t3/2
dt)

=
(log x)2

2
+ c1 log x+ c2 +O(x−1/2)

So

x(log x)2

2
=

󰁛

m≤x

τ(m)
x

m
+ c′1

󰁛

m≤x

τ(m) + c′2x+O(x1/2)

So
󰁛

n≤x

(logm)2 = 2
󰁛

m≤x

τ(m)
x

m
+ c3

󰁛

m≤x

τ(m) + c4x+O(x1/2)

So

󰁛

n≤x

Λ2(n) = 2
󰁛

a≤x

µ(a)
󰁛

b≤ x
a

τ(b)x

ab
+ c5

󰁛

a≤x

µ(a)
󰁛

b≤ x
a

τ(b) + c6
󰁛

a≤x

µ(a)
x

a
+O(

󰁛

a≤x

x1/2

a1/2
)

First, note that x1/2
󰁓

a≤x
1

a1/2 = O(x) (by PS or just comparing with the
integral. Secondly,

x
󰁛

a≤x

µ(a)

a
=

󰁛

a≤x

µ(a)⌊x
a
⌋+O(x)

=
󰁛

a≤x

µ(a)
󰁛

b≤ x
a

1 +O(x)

=
󰁛

d≤x

µ ∗ 1(d) +O(x)

= O(x)
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since the sum is either 1 (when d = 1) or 0 (otherwise).
Thirdly,1

󰁛

a≤x

µ(a)
󰁛

b≤x

τ(b) =
󰁛

a≤x

µ(a)
󰁛

b≤ x
a

󰁛

cd=b

1

=
󰁛

a≤x

µ(a)
󰁛

cd≤ x
a

1

=
󰁛

acd≤x

µ(a)

=
󰁛

d≤x

󰁛

ac≤ x
d

µ(a)

=
󰁛

d≤x

󰁛

e≤ x
d

µ ∗ 1(e)

=
󰁛

d≤x

1 = O(x)

So

󰁛

n≤x

Λ2(n) = 2
󰁛

a≤x

µ(a)
󰁛

b≤ x
a

τ(b)x

ab
+O(x)

= 2x
󰁛

d≤x

1

d
µ ∗ τ(d) +O(x)

Recall that τ = 1 ∗ 1, so µ ∗ τ = µ ∗ 1 ∗ 1 = 1. So the above

= 2x
󰁛

d≤x

1

d
+O(x)

= 2x log x+O(x)

(Non-examinable from now, but lecturer still recommends us to think about it)
A 14-point plan to prove PNT from Selberg’s identity:

Let r(x) = ψ(x)
x − 1, so PNT is equivalent to limx→∞ |r(x)| = 0.

1) Selberg’s identity =⇒

r(x) log x = −
󰁛

n≤x

Λ(n)

n
r(

x

n
) +O(1)

2) Considering 1) with x replaced x
m , summing over m, show

|r(x)|(log x)2 ≤
󰁛

n≤x

Λ2(n)

n
|r(x

n
)|+O(log x)

1Jaspal noticed that this can be obtained much more easily by µ ∗ τ = 1 from Möbius
inversion.
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3)

󰁛

n≤x

Λ2(n) = 2

󰁝 ⌊x⌋

1

log tdt+O(x)

4-6) (Let’s skip some of the steps)

󰁛

n≤x

Λ2(n)

n
|r(x

n
)| = 2

󰁝 x

1

|r(x/t)|
t log t

dt+O(log x)

7) Let V (u) = r(eu). Show that

u2|V (u)| ≤ 2

󰁝 u

0

󰁝 v

0

|V (t)|dtdv +O(u)

8) Show

lim sup |r(x)| ≤ lim sup
1

u

󰁝 u

0

|V (t)|dt = β

9-14) (!) If α > 0, then can show from 7) that β < α, contradiction; so α = 0,
and PNT.
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2 Sieve Methods

—Lecture 6—

Hand in by Monday if you want some questions (q2 and q3) to be marked.

Everyone knows how Sieve of Eratosthenes works (some demonstration by lec-
turer). Our interest is in using the sieve to count things. If we apply Sieve of
Eratosthenes to the interval [1, 20], then we get an equality between two ways
of counting how many numbers are left:

π(20) + 1− π(
√
20) = 20− ⌊20/2⌋ − ⌊20/3⌋+ ⌊20/6⌋

where both sides evaluate to 7.

2.1 Setup

We’ll have the following:
• Finite set A ⊂ N (the set to be sifted);
• Set of primes p (the set of primes we sift out by), usually all primes;
• Sifting limit z (sift all primes in P less than z)
• sifting function

S(A,P ; z) =
󰁛

n∈A

1(n,
󰁔

p∈P,p<z p)=1

Let
󰁔

p∈P,p<z p = P (z). Our goal is to estimate S(A,P ; z).

• For d, let

Ad = {n ∈ A : d|n}

• We write |Ad| = f(d)
d X+Rd (most textbooks use ω in place of f here, our use

here is to avoid confusion), where f is multiplicative (f(mn) = f(m)f(n)∀(m,n) =
1), and 0 ≤ f(d)∀d.
• Note that |A| = f(1)

1 X +R1 = X +R1;
• Rd is an ’error’ term;
• We choose f so that f(p) = 0 if p ∕∈ P by convention (so in that case
Rp = |Ap|).
• Let Wp(z) =

󰁔
p<z,p∈P (1−

f(p)
p ).

Example. 1) Take A = (x, x + y] ∩ N, P the set of all primes. So |Ad| =
⌊x+y

d ⌋ − ⌊x
d ⌋ =

y
d +O(1).

Here f(d) ≡ 1, and Rd = O(1).
So S(A,P ; z) = |{x < n ≤ x+ y : p|n =⇒ p ≥ z}|.
e.g. if z ≈ (x+ y)1/2, then

S(A,P ; z) = π(x+ y)− π(x) +O((x+ y)1/2)
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2) A = {1 ≤ n ≤ y : n ≡ a (mod q)}, Ad = {1 ≤ m ≤ x
d : dm ≡ a (mod q)}.

This congruence only has solutions if (d, q)|a. So
|Ad| = (d,q)

dq y +O((d, q)) if (d, q)|a, and = O((d, q)) otherwise.

So here X = y/q, and f(d) = d(d, q) if (d, q)|a, and 0 otherwise.

3) How about twin primes, i.e. p, p+ 2 both primes? We have
A = {n(n+ 2) : 1 ≤ n ≤ x} (so if p|n(n+ 2) ⇐⇒ n ≡ 0,−2 (mod p));
P is all primes except 2;
|Ap| = 2x

p + O(1) (so f(p) = 2). So f(d) = 2ω(d) for f to be completely

multiplicative, where ω(d) denote the number of primes divisors of d.
S(A,P ;x1/2) = |{1 ≤ p ≤ x : p, p+ 2 both prime}+O(x1/2). Denote the main
term as π2(x), then as mentioned in the first lecture we expect π2(x) ≈ x

(log x)2 .

We will prove the upper bound using sieves.

Theorem. (1, Sieve of Eratosthenes Legendre)
S(A,P ; z) = XWp(z) +O(

󰁓
d|p(z) Rd).

Proof.

S(A,P ; z) =
󰁛

n∈A

1(n,p(z))=1

=
󰁛

n∈A

󰁛

d|(n,p(z))

µ(d)

=
󰁛

n∈A

󰁛

d|n,d|p(z)

µ(d)

=
󰁛

d|p(z)

µ(d)
󰁛

n∈A

1d|n

=
󰁛

d|p(z)

µ(d)|Ad|

= X
󰁛

d|p(z)

µ(d)f(d)

d
+

󰁛

d|p(z)

µ(d)Rd

= X
󰁜

p∈P,p<z

󰀕
1− f(p)

p

󰀖
+O(

󰁛

d|p(z)

|Rd|)

Corollary. π(x+ y)− π(x) ≪ y
log log y .

Proof. In example 1, f ≡ 1, and |Rd| ≪ 1, and X = y. So

Wp(z) =
󰁜

p≤z

󰀕
1− 1

p

󰀖
≪ (log z)−1

and
󰁛

d|p(z)

|Rd| ≪
󰁛

d|p(z)

1 ≤ 2z

So π(x+ y)− π(x) ≪ y
log z + 2z ≪ y

log log y if we choose z = log y.
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—Lecture 7—

For the previous corollary: take A = {x < n <≤ x + y}, p = all primes,
z = log y. Then y

log log y ≫ S(A,P ; z) = |{x < n ≤ x+ y : p|n =⇒ p ≥ log y} ≥
π(x+ y)− π(x) +O(log y).

2.2 Selberg’s Sieve

Sieve of E-L: S(A;P, z) ≤ XW +O(
󰁓

d|P (z) |Rd|).
The problem is that we have to consider 2z many divisors of P (z), so we get 2z

many error terms, which forces us to only take z = log y.

• We can do a different sieve, and only consider those divisors of P (t) which are
small, say ≤ D.
The key part of E-L was 1(n,P (z)) = 1 =

󰁓
d|(n,P (z)) µ(d).

For an upper bound, it’s enough to use any function F , s.t.

F (n) ≥
󰀝

1 n = 1
0 else

Selberg’s observation was that if (λi) is any sequence of reals with λ1 = 1, then
F (n) = (

󰁓
d|n λd)

2 works: F (1) = (
󰁓

d|1 λd)
2 = λ2

1 = 1.

Assumption: 0 < f(p) < p if p ∈ P (remember that |Ap| = f(p)
p X +Rp).

This lets us define a new multiplicative(?) function g s.t.

g(p) =

󰀕
1− f(p)

p

󰀖−1

− 1 =
f(p)

p− f(p)

Theorem. (3, Selberg’s Sieve)

∀tS(A,P ; z) ≤ X

G(t, z)
+

󰁛

d|P (z),d<t2

3ω(d)|Rd|

where G(t, z) =
󰁓

d|P (z),d<t g(d).

Recall W =
󰁔

p∈P,p≤z(1−
f(p)
p ), so expected size of S(A,P ; z) is XW .

Note thas, as t → ∞,

G(t, z) =
󰁛

d|P (z)

g(d)

=
󰁜

p<z

(1 + g(p))

=
󰁜

p<z

(1− f(p)

p
)−1

≈ 1

W
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Corollary. (4)
∀x, y,

π(x+ y)− π(x) ≪ y

log y

Proof. As before, A = {x < n ≤ x+ y}, f(p) ≡ 1, Rd = O(1), X = y.
Now apply Selberg’s sieve instead. Main term:

G(z, z) =
󰁛

d|P (z),d<z

󰁜

p|d

(p− 1)−1

=
󰁛

d=p1...pr<z

󰁜 ∞󰁛

k≥1

1

pki

≥
󰁛

d<z

1

d

≫ log z

But on the other hand, the second last line also equals

=
󰁛

i

∞󰁛

k≥1,p1...pr<z

1

pk1
1 ...pkr

r

=
󰁛

n, square free part of n <z

1

n

(g(p) = 1
p−1 = 1

ϕ(p) , so g(d) = 1
ϕ(d) ). So our main term is ≪ y

log z .

Note that 3ω(d) ≤ τ3(d) ≪ε dε. so error term is ≪ε tε
󰁓

d<t2 1 ≪ t2+ε =
z2+ε(t = z). So

S(A,P ; z) ≪ y

log z
+ z2+ε ≪ y

log y

(choose z = y1/3).

Proof. (of Selberg’s Sieve)
Let (λi) be a sequence of reals, with λ1 = 1, to be chosen later. Then

S(A,P ; z) =
󰁛

n∈A

1(n,P (z))=1

≤
󰁛

n∈A

(
󰁛

d|(n,P (z))

λd)
2

=
󰁛

d,e|P (z)

λdλe

󰁛

n∈A

1d|n,e|n

=
󰁛

d,e|P (z)

λdλe|A[d,e]|

= X
󰁛

d,e|P (z)

λdλe
f([d, e])

[d, e]
+

󰁛

d,e|P (z)

λdλeR[d,e]
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We’ll choose λd s.t. |λd| ≤ 1, and λd = 0 if d ≥ t. Then
󰀏󰀏󰀏󰀏󰀏󰀏

󰁛

d,e|P (z)

λdλeR[d,e]

󰀏󰀏󰀏󰀏󰀏󰀏
≤

󰁛

d,e<t,d,e|P (z)

|R[d,e]|

≤
󰁛

n|P (z),n<t2

|Rn|
󰁛

d,e

1[d,e]=n

and since
󰁓

d,e 1[d,e]=n = 3ω(n) (think of n = p1...pr where d = p1...pk and
e = pj ...pr for k ≥ j; so basically for each pi we have 3 choices: it’s in d, in e,
or in both) (n square-free).

Let V =
󰁓

d,e|P (z) λdλe
f([d,e])
[d,e] . Write [d, e] = abc where d = ab, e = bc, and

(a, b) = (b, c) = (a, c) = 1 (this is possible because n is square-free).

—Lecture 8 missing—

—Lecture 9—

Example class today, 330-5pm, mr14.

To finish the proof that π2(x) ≪ x
(log x)2 , we need to show G(z, z) ≫ (log z)2,

where G(z, z) =
󰁓

d|P (z),d<z g(d) and g(2) = 0 and g(p) = 2
p−2 .

First note that g(p) ≥ 2
p−1 . So if d is odd and square free, then g(d) ≥ 2ω(d)

ϕ(d)

(note that the numerator is equal to τ(d) for square-free integers).
Now write

G(z, z) =
󰁛

d<z,d odd, square free

2ω(d)

ϕ(d)

≫
󰁛

d<z,d square free

2ω(d)

ϕ(d)

(the even terms added in are only at most twice of the original sum, so it doesn’t
change the order). Now the above

=
󰁛

d<z,dsquare free,d=p1...pr

2ω(d)
r󰁜

i=1

(1/pi + 1/p2i + ...)

=
󰁛

d<z,d=em2,e square free

2ω(d)/d

≥
󰁛

d<z

2ω(d)

d

by partial summation, it’s enough to show that
󰁓

d<z 2
ω(d) ≫ z log z, because

then above ≫ (log z)2 as required (check).

Recall that, to show
󰁓

d<z τ(d) ≫ z log z, we used that τ = 1 ∗ 1. So similarly

we want to write 2ω(n) =
󰁓

d|n µ(d)f(n/d) where f is multiplicative.

Let’s do some calculation: for n = 1 we need µ(1)f(1) = 1, so f(1) = 1. For
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n = p a prime, 2 = f(p)− f(1) = f(p)− 1, so f(p) = 3.
For n = p2 a prime, 2 = f(p2)− f(p), so f(p2) = 5...

Ok this probably doesn’t work. Let’s try something more general, say write it
as

󰁓
d|n f(d)g(n/d), where f is multiplicative. Then

• n = 1: f(1) = g(1) = 1;
• n = p: f(p) + g(p) = 2;
• n = p2: g(p2) + f(p2) + f(p)g(p) = 2.

Say let’s try f = τ . So g(p) = 0, g(p2) = −1, g(pk) = 0 ∀k ≥ 3.

So therefore

g(n) =

󰀝
0 n not a square
µ(d) n = d2

and 2ω(n) =
󰁓

d|n τ(d)g(n/d).

So (remember
󰁓

b≤x τ(b) = x log x+ (2γ − 1)x+O(
√
x))

󰁛

d<z

2ω(d) =
󰁛

a<z

g(a)
󰁛

b≤z/a

τ(b)

=
󰁛

a<z

g(a)z/a log(z/a) + c
󰁛

a<z

g(a)z/a+O(z1/2
󰁛

a<z

1/a1/2)

󰁿 󰁾󰁽 󰂀
≪z

=
󰁛

d<z1/2

µ(d)z/d2 log z − 2
󰁛

d<z1/2

µ(d)z/d2 log d

󰁿 󰁾󰁽 󰂀
≪z

󰁓
d<z1/2

log d/d2≪z

+O(z)

Note
󰁓

d<z1/2
µ(d)
d2 = c+O(

󰁓
d>z1/2 1/d2) = c+O(1/z1/2). So

󰁛

d<z

2ω(d) = cz log z +O(z) ≫ z log z

It remains to show that c > 0. Either:
(1) Note LHS can’t be O(z);
(2) calculate the first couple of terms in the series;
(3) Note that c = 6/π2(= 1

ζ(2) ) > 0.

2.3 Combinatorial Sieve

Selberg is just an upper bound sieve (where we considered

(
󰁛

d|n

λd)
2 ≥

󰀝
1 n = 1
0 else

with λi = 1). Now consider some inclusion-exclusion principle:

S(A,P ; z) = |A|−
󰁛

p

|Ap|+
󰁛

p,q

|Ap,q|− ...

The idea of combinatorial sieve is to truncate the sieve process.
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Lemma. (Buchstab Formula)
S(A,P ; z) = |A|−

󰁓
p|P (z) S(Ap, P ; p).

Proof. First notice that |A| = S(A,P ; z) +
󰁓

p|P (z) S(Ap, P ; p): the first term

is the number of n ∈ A s.t. p|n, p ∈ P =⇒ p ≥ z by definition (denote this set
by S1); the summand of second term is the number of n ∈ A s.t. n = mp, and
q|n, q ∈ P =⇒ q > p (denote this set by Sp for each p).
Now note that every element n ∈ A is either in S1, or has some prime divisors
from P (z). If p is the least such prime divisor, then n ∈ Sp. So this is a partition
of A.

Similarly we could prove

W (z) = 1−
󰁛

p|P (z)

f(p)

p
W (p)

as W (z) =
󰁔

p|P (z)(1−
f(p)
p ).

Corollary. For any r ≥ 1,

S(A,P ; z) =
󰁛

d|P (z),ω(d)<r

µ(d)|Ad|+ (−1)r
󰁛

d|P (z),ω(d)=r

S(Ad, P ; l(d))

where l(d) is the least prime divisor of d.

Proof. Induction on r. r = 1 is just Buchstab formula. For the inductive step,
use

S(Ad, P ; l(d)) = |Ad|−
󰁛

p∈P,p<l(d)

S(Adp, P ; p)

and

(−1)r
󰁛

d|P (z),ω(d)=r

(|Ad|−
󰁛

p∈P,p<l(d)

S(Apd, P ; p))

=
󰁛

d|p(z),ω(d)=r

µ(d)|Ad|+ (−1)r+1
󰁛

e|P (z),ω(e)=r+1

S(Ae, P ; l(e))

In particular, note that if r is even, then

S(A,P ; z) ≥
󰁛

d|P (z),ω(d)<r

µ(d)|Ad|

Similarly, if r is odd we get a similar bound in the ≤ direction.

Theorem. (Brun’s Pure Sieve)
For r ≥ 6 log 1

W (z) , then

S(A,P ; z) = XW (z) +O(2−rX +
󰁛

d|P (z),d≤zr

|Rd|)
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(Compare this to Eratostehen’s sieve:

S(A,P ; z) = XW (z) +O(
󰁛

d|P (z)

|Rd|)

)

—Lecture 10—

Proof. Recall that from the iterating Buchstab Formula, we have that, for any
r ≥ 1,

S(A,P ;x) =
󰁛

d|P (z),ω(d)<r

µ(d)|Ad|+ (−1)r
󰁛

d|P (z),ω(d)=r

S(Ad, P ; l(d))

= X
󰁛

d|P (z),ω(d)<r

µ(d)
f(d)

d
+

󰁛

d|P (z),ω(d)<r

µ(d)Rd + (−1)r
󰁛

...

by trivial bound 0 ≤ S(Ad, P ; l(d)) ≤ |Ad| = X f(d)
d +Rd. So above

S(A,P ; z) = X
󰁛

d|P (z),ω(d)<r

µ(d)
f(d)

d
+O(

󰁛

d|P (z),ω(d)<r

|Rd|+
󰁛

d|P (z),ω(d)=r

|Ad|)

By Buchstab again, applied to W (z), we have

W (z) =
󰁛

d|P (z),ω(d)<r

µ(d)
f(d)

d
+ (−1)r

󰁛

d|P (z),ω(d)=r

µ(d)
f(d)

d
W (l(d))

So

S(A,P ; z) = XW (z) +O

󰀳

󰁃
󰁛

d|P (z),ω(d)<r

|Rd|+
󰁛

d|P (z),ω(d)=r

|Ad|+X
󰁛

d|P (z),ω(d)=r

f(d)

d

󰀴

󰁄

where we just use a crude bound that W (l(d)) < 1.
Error term:

= X
󰁛

d|P (z),ω(d)=r

f(d)

d
+

󰁛

d|P (z),ω(d)≤r

|Rd|

≤
󰁛

d|P (z),d≤z′

|Rd|

because d|P (z) =
󰁔

p∈P,p<z P . It remains to show that

󰁛

d|P (z),ω(d)=r

f(d)

d
≪ 2−r
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Note that

󰁛

d|P (x),ω(d)=r

f(d)

d
=

󰁛

p1...pr,p∈P,pi<z

f(p1)...f(pr)

p1...pr
≤

(
󰁓

p|P (z)
f(p)
p )r

r!

and we use r′ ≥ rr

er to then get

≤ (
e
󰁓

p|P (z)
f(p)
p

r
)r (†)

Now

󰁛

p|P (z)

f(p)

p
≤

󰁛

p|P (z)

− log(1− f(p)

p
) = − logW (z)

So if r ≥ 2e| logW (z)|, then (†) is at most

(
e| logW (z)|

r
)r ≤ 2−r

and we’re done (2e < 6).

Note that we could easily improve this by being more careful at the constants,
but those are less important; we just want to have the purest form of the com-
binatorial sieve.

Recall Selberg’s Sieve shows π2(x) ≪ x
(log x)2 , and now combinatorial sieve gives

both upper and lower bound, so we might think it would give a lower bound for
π2(x). However, in the twin prime sieve setting, recall that W (z) ≍ 1

(log z)2 , so

in Brun’s sieve we need to take r ≫ 2 log log z.
If r = C log log z for C large enough, then 2−rX ≪ X

(log z)100 (safe enough); the

main term is ≫ x
(log z)2 ; |Rd| ≪ 2ω(d) = do(1), so

󰁛

d|P (z),d≤2r

|Rd| ≪ 2r+o(1) = z2 log log z + o(1).

For this to be o( x
(log z)2 ), we need to choose z ≈ exp((log x)1/4). We seem to

have success, but in the end when we try to relate S(A,P ; z) and π2(x), we have
LHS is {1 ≤ n ≤ x : p|n(n + 2) then p ≫ (?)z = exp((log x)1/4)} (p ≫ x1/2),
but when we try to get a lower bound it is impossible to remove the extra stuff
we have here.

Corollary. For any z ≤ exp(o(( log x
log log x )

1/2)),

|{1 ≤ n ≤ x : p|n =⇒ p ≥ z}| ∼ e−γ x

log z

Remark. 1) In particular: z = (log x)A is allowed for any A, but z = xc for
any c > 0 is not allowed.
2) In particular, we can’t count primes like this (z = x1/2). Recall heuristic from
before says if this asymptotic were correct for primes, then π(x) ∼ 2e−r x

log x

(contradicts PNT: 2e−γ = 1.12...).
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Proof. Again, use A = {1 ≤ n ≤ x}, so f(d) = 1 and |Rd| ≪ 1. Then
W (z) =

󰁔
p<z(1− 1

p ) ∼ e−γ log z. So

S(A,P ; z) = |{1 ≤ n ≤ x : p|n =⇒ p > z}|

= e−γ x

log z
+ o(

x

log z
) +O(2−rx+

󰁛

d|P (z),d<2r

|Rd|)

If r ≥ 6| logW (z)|, so r ≥ 100 log log z is certainly fine: we have in that caes

2−rx ≤ (log z)−(log 2)100x = o(
x

log z
)

and, choosing r = ⌈100 log log z⌉
󰁛

d|P (z),d≤2r

|Rd| ≪
󰁛

d≤zr

1 ≪ zr ≤ 2500(log z) log log z

(this course is very forgiving on constants). It remains to note that if log z =

o(( log x
log log x )) =

(log x)
(log log x)F (x), then

log z log log z = o(
log x

log log x
· log log x)

= o(log x)

So 2500(log log z) log z ≤ x1/10 = o( x
log z ) if x is large enough.

—Lecture 11—
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3 The Riemann ζ Function

Lecture notes is again up to date again!

Let’s start with some gentle introduction.

In this chapter, and as a tradition in this area, write s = σ + it for a complex
number s (instead of z).

If n ∈ N, ns = elogn by definition, which is entire. It’s also equal to nσ · eit logn.

The Riemann ζ function is defined for σ > 1:

ζ(s) :=

∞󰁛

n=1

1

ns

3.1 Dirichlet series

For any arithmetic f : N → C, we have a Dirichlet series

Lf (s) =

∞󰁛

n=1

f(n)

ns

We have to be careful here because there are certainly choices of f that make
Lf (s) not converge anywhere (e.g. f = n!).

Lemma. (1)
For any f , there is an abscissa of convergence σc s.t.
(1) σ < σc =⇒ Lf (s) diverges;
(2) σ > σc =⇒ Lf (s) converges uniformly in some neighbourhood of s. In
particular, Lf (s) is holomorphic at s.

Proof. It is enough to show if Lf (s) converges at s0 and σ > σ0, then there’s
a neighbourhood of s on which Lf converges uniformly (then we could take
σc = inf{σ : Lf (s) converges}). Note that it’s entirely possible that σc = ∞ or
σc = 0.
Let R(u) =

󰁓
n>u f(n)n

−s0 . By partial summation,

󰁛

M<n≤N

f(n)n−s = R(M)Ms0−s −R(N)Ns0−s + (s0 − s)

󰁝 N

M

R(u)us0 − s− 1du

If |R(u)| ≤ ε for all u ≥ M , then

󰀏󰀏󰀏󰀏󰀏󰀏

󰁛

M≤n≤N

f(n)n−s

󰀏󰀏󰀏󰀏󰀏󰀏
≤ 2ε+ ε|s0 − s|

󰁝 n

M

uσ0−σ−1du

≤ (2 +
|s0 − s|
|σ0 − σ| )ε
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Note that there is a neighbourhood of s in which |s−σ0|M
|σ−σ0| ≪ 1. So

󰁓 f(n)
n3

converges uniformly here.

Lemma. (2, see Part IB complex analysis for the general case)

If
󰁓 f(n)

ns =
󰁓 g(n)

ns for all s in some half-plane σ > σ0 ∈ R, then f(n) = g(n)∀n.

Proof. It’s enough to consider
󰁓 f(n)

ns ≡ 0∀σ > σ0.

Suppose ∃nf(n) ∕= 0. Let N be the least such f(N) ∕= 0. Since
󰁓

n≥N
f(n)
nσ = 0,

f(N) = −Nσ
󰁛

n≥N

f(n)

nσ

So |f(n)| ≪ nσ; and so the series
󰁓

n>N
f(n)

nσ+1+ε is absolutely convergent.

So since f(n)
nσ → 0 as σ → ∞, RHS also → 0. So f(N) = 0.

Lemma. (3)
If Lf (s) and Lg(s) are absolutely convergent at s, then

Lf∗g(s) =

∞󰁛

n=1

f ∗ g(n)
ns

is also absolutely convergent at s, and is equal to Lf (s)Lg(s).

Proof.

󰀣 ∞󰁛

n=1

f(n)

ns

󰀤󰀣 ∞󰁛

m=1

g(m)

ms

󰀤
=

∞󰁛

n,m=1

f(n)g(m)

(nm)s

=

∞󰁛

k=1

1

ks

󰀳

󰁃
󰁛

n,m,nm=k

f(n)g(m)

󰀴

󰁄

(why is the last one abs. convergent?)

Lemma. (4, Euler product)
If f is multiplicative, and Lf (s) is absolutely convergent at s, then we have a
very nice alternative form of the Dirichlet series:

Lf (s) =
󰁜

p

󰀕
1 +

f(p)

ps
+

f(p2)

p2s
+ ...

󰀖

Proof. The informal proof is to just multiply out RHS, and by fundamental
theorem of arithmetic we know every term in the product appears exactly once
in LHS. But obviously we have to care about the issue of convergence here.
Let y be arbitrary, consider the truncated product

󰁜

p<y

󰀕
1 +

f(p)

ps
+ ...

󰀖
=

󰁛

n,p|n =⇒ p<y

f(n)

ns
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So use the usual technique in analysis of bounding errors,
󰀏󰀏󰀏󰀏󰀏
󰁜

p<y

󰀕
1 +

f(p)

ps
+ ...

󰀖
−

∞󰁛

n=1

f(n)

ns

󰀏󰀏󰀏󰀏󰀏 ≤
󰁛

n,p|n =⇒ p<y

|f(n)|
nσ

≤
󰁛

n,∃p|n(p≥y)

|f(n)|
nσ

→ 0

as y → ∞.

For σ > 1, ζ(s) =
󰁓∞

n=1
1
ns defines a holomorphic function and converges

absolutely for σ > 1. Note that it definitely can’t converge for σ = 1 as we
get the harmonic series when s = 1. So in this case we get a function that
absolutely converges whenever it converges.2

Note that ζ ′(s) =
󰁓

1
ns )

′ = −
󰁓 logn

ns . Since 1 is completely multiplicative,

1 +
1

ps
+

1

p2s
+ ... = (1− p−s)−1

So

ζ(s) =
󰁜

p

󰀕
1

1− p−s

󰀖

So

1

ζ(s)
=

󰁜

p

(1− 1

ps
)

=
󰁛

n

µ(n)

ns

log ζ(s) = −
󰁛

p

log(1− 1

ps
)

=
󰁛

p

󰁛

k

1

kpks

=
󰁛 Λ(n)

log n

1

ns

Finally if we take the derivative, we’ll get

ζ ′(s)

ζ(s)
= −

󰁛 Λ(n)

ns

We have some interesting results from this point: for example, consider

ζ ′(s)

ζ(s)
× ζ(s) = ζ ′(s)

2Never ever use this Dirichlet series when s is not in that half plane – else we’ll discover
that the sum of all natural numbers is − 1

12
.
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which corresponds to Λ ∗ 1 = log.

Similarly we have Möbius inversion: if f ∗ 1 = g, then Lf × ζ = Lg, so Lf =
1
ζ × Lg, i.e. f = µ ∗ g.

—Lecture 12—

2nd es in online, as well as typed solution to the first one!

Before we start the lecture I want to properly answer a question last time. Last
time we had

1

ζ(s)
=

∞󰁛

n=1

µ(n)

ns

remember in chapter one we mentioned that PNT is equivalent to proving that󰁓 µ(n)
n = 0. So it might be tempting to use the above and claim that LHS → 0

as s → 1, therefore RHS → 0. The reason that this doesn’t work is that it’s not
obvious that RHS converges at all; we only know that if RHS converges, then
it converges to 0. But the hard part is to show that RHS does converge.

For σ > 1, ζ(s) =
󰁓

n
1
ns .

Lemma. For σ > 1,

ζ(s) = 1 +
1

s− 1
− s

󰁝 ∞

1

{t}
ts+1

dt

Proof. by partial summation,

󰁛

1≤n≤x

1

ns
=

⌊x⌋
xs

+ s

󰁝 x

1

⌊t⌋
ts+1

dt

=
⌊x⌋
xs

+ s

󰁝 x

1

1

ts
dt− s

󰁝 x

1

{t}
ts+1

dt

=
⌊x⌋
xs

+
s

s− 1

󰀅
t−s+1

󰀆x
1
− s

󰁝 x

1

{t}
ts+1

dt

Limit as x → ∞,

= 0 +
s

s− 1
− s

󰁝 ∞

1

{t}
ts+1

dt

The integral converges absolutely for σ > 0, so this gives

ζ(s) =
1

s− 1
+ F (s)

where F (s) is holomorphic in σ > 0.
We define

ζ(s) = 1 +
1

s− 1
− s

󰁝 ∞

1

{t}
ts+1

dt
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(for σ > 0). Note that ζ(s) is meromorphic in σ > 0, with only a simple pole
at s = 1.

Corollary. For 0 < σ < 1,

1

σ − 1
< ζ(σ) <

σ

σ − 1

In particular, ζ(σ) < 0 for 0 < σ < 1 (in particular, not zero).

Proof.

ζ(σ) = 1 +
1

σ − 1
− σ

󰁝 ∞

1

{t}
tσ+1

dt

Now

0 <

󰁝 ∞

1

{t}
tσ+1

dt <
1

σ

so done.

Corollary. For 0 < δ ≤ σ ≤ 2, |t| ≤ 1, ζ(s) = 1
s−1 +Oδ(1) uniformly.

Proof.

ζ(s)− 1

s− 1
= 1− s

󰁝 ∞

1

{t}
ts+1

dt

= O(1) +O

󰀕󰁝 ∞

1

1

tσ+1
dt

󰀖

= O(1) +Oδ(1)

Lemma. ζ(s) ∕= 0 for σ > 1.

Proof. For σ > 1, ζ(s) =
󰁔

p(1− 1
ps )

−1, and the infinite product converges, and

no factors are zero. (so???)
(lecturer has some careful definition of convergence of infinite product, by taking
logarithm and converting it to an infinite sum first then take exponent, so the
result can’t be zero – check).

It then becomes interesting if ζ(s) has any zeroes in σ > 0. We have a famous
conjecture:

Conjecture. If ζ(s) = 0 and σ > 0, then σ = 1
2 .
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3.2 Prime Number Theorem

Let α(s) =
󰁓 an

ns . Partial summation lets us write α(s) in terms of A(x) =󰁓
n≤x an.

If σ > max(0,σc)(complex part of σ?) then α(s) = s
󰁕∞
1

A(t)
ts+1 dt (this is called

the Mellin transform).

What about the converse? Note that if α(s) = ζ′(s)
ζ(s) , then an = Λ(n) so A(x) =󰁓

n≤x Λ(n) = ψ(x).

Converse – Perran’s formula:

A(x) =
1

2πi

󰁝 σ+i∞

σ−i∞
α(s)

xs

s
ds

for σ > max(0,σc).

Note that

ψ(x) =
1

2πi

󰁝 σ+i∞

σ−i∞
−ζ ′(s)

ζ(s)

xs

s
ds

for σ > 1. We could try a contour to the left going past the line σ = 1,and we
know there’s a pole at s = 1 with residue x, so by residue theorem (see part
IB Complex Method) it gives our main term for PNT (recall PNT is ψ(x) =
x + o(x)), but the problem is that there might be other poles, which would
be especially bad if they are on the line σ = 1 as that cancels our main term.
That’s why we say PNT is equivalent to no zeros of ζ(s) on σ = 1.

Lemma. ((Pre)-Perran’s Formula)
If σ > 0, y ∕= 1, then

1

2πi

󰁝 σ+iT

σ−iT

ys

s
ds =

󰀝
1 y > 1
0 y < 1

+O

󰀕
yσ

T | log y|

󰀖

—Lecture 13—

Proof. Use the contour c (see diagram) for y > 1.
Since ys/s has a single pole at s = 0Z with residue 1, so by the residue theorem,
1

2πi

󰁕
c
ys/sds = 1.

Now we bound
󰁝

P1

ys

s
ds =

󰁝 σ

−∞

yu+iT

u+ iT
du ≪ 1

T

󰁝 σ

−∞
yudu =

yσ

T log y

Similarly,
󰁕
P2

≪ yσ

T log y , sot
󰁕
c
=

󰁕 σ+iT

σ−iT
+O( yσ

T log y ).
For y < 1, use the same argument with the contour being the rectangle going
right. There are no poles inside this region, so the main term is 0, and the error
term can be bounded similarly.
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Theorem. (Perran’s formula)
Suppose α(s) =

󰁓 an

ns is absolutely convergent for all σ > σa.
If σ0 > max(0,σa), and x is not an integer, then

󰁛

n<x

an =
1

2πi

󰁝 σ0+iT

σ0−iT

α(s)
xs

s
ds+O(

2σ0x

T

󰁛

x
2<n<2x

|an|
|x− n| +

xσ0

T

∞󰁛

n=1

|an|
nσ0

)

Proof. Since σ0 > 0, we can write

1n<x =
1

2πi

󰁝 σ0+iT

σ0−iT

(x/n)s

s
ds+O(

(x/n)σ0

T | log(x/n)| )

Now

󰁛

n<x

an =
1

2πi

󰁛

n

an
ns

󰁝 σ0+iT

σ0−iT

xs

s
ds+O(

xσ0

T

󰁛

n

|an|
nσ0 | log( xn )|

)

=
1

2πi

󰁝 σ0+iT

σ0−iT

xs

s

󰁛

n

an
ns

ds+O(...)

=
1

2πi

󰁝 σ0+iT

σ0−iT

α(s)
xs

s
ds+O(...)

For the error term:
(1) Contribution from n ≤ x

2 or n ≥ 2x, where | log( xn )| ≫ 1 is ≪ xσ0

T

󰁓
n

|an|
nσ0

.
(2) Contribution from x

2 < n < 2x, we write

| log(x
n
)| = | log(1 + n− x

x
)|

and | log(1 + δ)| ≍ |δ| uniformly for − 1
2 ≤ δ ≤ 1. So

xσ0

T

󰁛

x
2<n<2x

|an|
nσ0 | log(x/n)| ≪

xσ
0

T

󰁛

x
2<n<2x

|an|x
nσ0 |x− n|

≪ 2σ0

T

󰁛

x/2<n<2x

|an|x
|x− n|

We’ll now prove a strong form of the PNT, assuming the following results which
we’ll prove in the future:

(1) ∃c > 0 s.t. if σ > 1 − c
log(|t|+4) and |t| ≥ 7

8 , then ζ(s) ∕= 0, and ζ′

ζ (s) ≪
log(|t|+ 4) (the +4 is just to make sure the denominator is not negative);
(2) ζ(s) ∕= 0 for 8

9 ≤ σ ≤ 1 and |t| ≤ 7
8 ;

(3) ζ′

ζ (s) = −1
s−1 + O(1) for 1 − c

log(|t|+4) < σ ≤ 2 and |t| ≤ 7
8 . Let’s draw a

picture of what we’re assuming here: (diagram)
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Theorem. (PNT)
There exists c > 0 s.t.

ψ(x) = x+O(
x

exp(c
√
log x)

)

In particular, ψ(x) ∼ x.

Proof. Assume that x = N + 1
2 for some N (for convenience). By Perran’s

formula, for any 1 < σ0 ≤ 2,

ψ(x) =
󰁛

n≤x

Λ(n)

=
1

2πi

󰁝 σ0+iT

σ0−iT

−ζ ′

ζ
(s)

xs

s
ds+O(

x

T

󰁛

x/2<n2x

Λ(n)

|x− n|
󰁿 󰁾󰁽 󰂀

=R1

+
xσ0

T

󰁛 Λ(n)

nσ0󰁿 󰁾󰁽 󰂀
=R2

)

In the error term,

R1 ≪ log x
x

T

󰁛

x
2<n≤2x

1

|x− n|

≪ log x
x

T

󰁛

1≤m≤4x

1

m

≪ x

T
(log x)2

and using point 3),

R2 ≪ xσ0

T

1

|σ0 − 1|

≪ x

T
log x

if σ0 = 1 + 1
log x .

Let c be the contour (see diagram), where we used σ1 = 1− c
log T < 1. Then

1

2πi

󰁝

c

−ζ ′(s)

ζ(s)

xs

s
ds = x

by residue theorem, (1) and (2) (ensuring that there are no other poles).
Now we need to bound the error terms:

󰁝 σ1+iT

σ0+iT

−ζ ′(s)

ζ(s)

xs

s
ds ≪ log T

󰁝 σ1

σ0

xu

T
du

≪ log T

T
xσ1(σ1 − σ0)

≪ x

T
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For the left part,

󰁝 σ1+iT

σ1−iT

−ζ ′(s)

ζ(s)

xs

s
ds ≪ (log T )|

󰁝 σ1±i

σ1±iT

xu

u
du|+ (

󰁝 σ1+i

σ1−i

xσ1
1

|σ1 − 1| )

≪ xσ1 log T +
xσ1

1− σ1

≪ xσ1(log T )

So

ψ(x) = x+O(
x

T
(log x)2 + x1− c

log T (log T ))

= x+O(
x

exp(c
√
log x)

)

if we choose T = exp(c
√
log x).

(some insight on why we choose this bound: we want x
T ≈ x1− c

log T , i.e. log T ≈
log x
log T . Therefore log T ≈

√
log x).

—Lecture 14—

3.3 Zero-free region

Firstly, near s = 1, things are easy because of the pole.

Theorem. If σ > 1+t2

2 , then ζ(s) ∕= 0. (a region enclosed by a parabola opened
to the right, see diagram) In particular, ζ(s) ∕= 0 if 8

9 ≤ σ ≤ 1, |t| ≤ 7
8 .

Also, ζ(s) = 1
s−1 + O(1), and − ζ′

ζ (s) =
1

s−1 + O(1) uniformly in 8/9 ≤ σ ≤ 2

and |t| ≤ 7/8.

Proof. Recall that ζ(s) = s
s−1 + s

󰁕∞
1

{u}
us+1 du, so

|ζ(s)− s

s− 1
| ≤ |s|

󰁝 ∞

1

1

uσ+1
du

≤ |s|
σ

so if σ > |s− 1|, ζ(s) ∕= 0, i.e. if σ < 1+t2

2 ; and in particular 1+(7/8)2

2 < 8/9.
Also,

|ζ(s)− 1

s− 1
| ≤ 1 + |s|

󰁝 ∞

1

1

uσ+1
du = O(1)

So same holds for − ζ′

ζ .

The main reason we could obtain the above is that the pole at 1 is convenient:
it dominates everything around it, so that’s the only thing we care.
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For |t| large, we need a different idea. How do we show that there aren’t zeros
on σ = 1?
Suppose there is a zero, of order m, at 1 + it. Then (by expanding it at 1 + it)

ζ ′

ζ
(1 + δ + it) ∼ m

δ

So

󰁛 Λ(n)

n1+δ+it
∼ −1

δ

But

|LHS| ≤
󰁛 Λ(n)

n1+δ
= −ζ ′

ζ
(1 + δ)

󰁛 1

δ

So

󰁛

p

log p

p1+δ
eit log p ∼ −

󰁛 log p

p1+δ

So

cos(t log p) ≈ −1

for almost all primes p. So pit ≈ −1 for almost every prime; so p2it ≈ 1. So
there must be a pole at 1 + 2it; contradiction.

Let’s now forget about number theory and look at some purely complex analyt-
ical results:

Lemma. (Borel-Caratheodery Lemma)
Suppose f is holomorphic on |z| ≤ R and f(0) = 0.
If ℜf(z) ≤ M for all |z| ≤ R for any r < R,

sup
|z|≤r

(|f(z)|, |f ′(z)|) ≪r,R M

Proof. Let g(z) = f(z)
z(2M−f(z)) . This is holomorphic in |z| ≤ R (note that 2M −

f(z) ∕= 0, and the zero at z = 0 is cancelled by our assumption f(z) = 0).
If |z| = R, then |2M − f(z)| ≥ |f(z), and so

|g(z)| ≤ |f(z)|
R|f(z)| ≤

1

R

So for all |z| ≤ rMR, by maximum modulus,

|g(z)| = |f(z)|
|z||2M − f(z)| ≤

1

R

So

R|f(z)| ≤ r|2M − f(z)| ≤ 2Mr + r|f(z)|
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so

|f(z)| ≤ 2Mr

R− r
≪ M

This proves the claim for f . For f ′(z), we use Cauchy’s formula,

f ′(z) =
1

πi

󰁝

|w|=r′

f(w)

(z − w)2
dw (r < r′ < R)

So f ′(z) ≪ M as well.

Lemma. If f is holomorphic on a domain including |z| ≤ 1, |f(z)| ≤ M in this
disc, and f(0) ∕= 0. If 0 < r < R < 1, then for |z| ≤ r,

f ′

f
(z) =

K󰁛

k=1

1

z − zk
+Or,k(log

M

|f(0)| )

where zk ranges over all zeros of f in |z| ≤ R.

Proof. Suppose that f(0) = 1 (WLOG). Say first there are no zeros; consider
h(z) = log f(z). Now ℜh(z) = log |f(z)| ≤ logM , so by Borel-Caratheodery
lemma,

|h′(z)| = |f
′

f
(z)| ≪ logM

so done.
In general, we define an auxiliary function g, with no zeros,

g(z) = f(z)

K󰁜

k=1

R2 − zz̄k
(z − zk)R

The kth factor has a pole at z = zk, and on |z| = R, has modulus 1.
So on |z| ≤ R, |g(z)| ≤ M , in particular,

|g(0)| =
K󰁜

k=1

R

|zk|
≤ M (∗)

Now let h(z) = log g(z)
g(0) , which is well-defined now. We know ℜh(z) = log |g(z)|−

log |g(0)| ≤ logM for |z| ≤ R. By B-C lemma,

|h′(z)| =

󰀏󰀏󰀏󰀏󰀏
f ′

f
(z)−

K󰁛

k=1

1

z − zk
+

K󰁛

k=1

1

z −R2/z̄k

󰀏󰀏󰀏󰀏󰀏

So

f ′

f
(z) =

K󰁛

k=1

1

z − zk
−

K󰁛

k=1

1

z −R2/z̄k
+O(logM)

and if |z| ≤ r,

|z −R2/z̄k| ≥
|R2|
|zk|

− |z| ≥ R− r ≫ 1

and K ≪ logM (coming from (*)?).
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Corollary. If |t| ≥ 7/8 and 5/6 ≤ σ ≤ 2, then

ζ ′

ζ
(s) =

󰁛

ρ

1

s− ρ
+O(log |t|)

where the sum of ρ is over all zeros in |ρ− (3/2 + it)| ≤ 5/6.

—Lecture 15—

Example Class today at 330-5pm in MR14!

(a diagram drawn for the corollary last time)

Theorem. There is c > 0 s.t. ζ(s) ∕= 0 if σ ≥ 1− c
log t .

Proof. Assume ζ(ρ) = 0, ρ = σ+ it. Let δ > 0 be chosen later. Use the previous
corollary,

ζ ′

ζ
(1 + δ + it) =

1

1 + δ + it− ρ
+

󰁛

ρ′ ∕=ρ

1

1 + δ + it− ρ′
+O(log t)3

ℜζ ′

ζ
(1 + δ + it) = ℜ 1

1 + δ + it− ρ
+ ℜ

󰁛

ρ′ ∕=ρ

1

1 + δ + it− ρ′
+O(log t)

=
1

1 + δ − σ
+O(log t) + ...

Since ℜρ′ ≤ 1, ℜ 1
1+δ+it−ρ′ > 0. So

ℜζ ′

ζ
(1 + δ + it) >

1

1 + δ − σ
+O(log t)

Similarly we know

ℜζ ′

ζ
(1 + δ + 2it) > O(log t)

Also,

ζ ′

ζ
(1 + δ) =

−1

δ
+O(1)

The next step is basically magic (that’s why it took so many years for this
zero-free region to be proven):

ℜ
󰀕
−3

ζ ′

ζ
(1 + δ)− 4

ζ ′

ζ
(1 + δ + it)− ζ ′

ζ
(1 + δ + 2it)

󰀖

<
3

δ
+O(1)− 4

1 + δ − σ
+O(log t)

So intuitively if we make σ → 1 and δ → 0, the above is negative. However,
above is also equal to a dirichlet series,

= ℜ
󰀣
3
󰁛

n

Λ(n)

n1+δ
+ 4

󰁛

n

Λ(n)

n1+δ+it
+
󰁛

n

Λ(n)

n1+δ+2it

󰀤

=
󰁛

n

Λ(n)

n1+δ
(3 + 4 cos(t log n) + cos(2t log n))
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Note that 3 + 4 cos θ + cos(2θ) = 2(1 + cos θ)2 ≥ 0. So each term in the above
sum is non-negative.
Now we only need to properly choose δ so that the above is really negative (to
obtain a contradiction): we need

3

δ
>

4

1 + δ − σ
+O(log t)

so choose δ = c/ log t for large enough c, so

4

1 + δ − σ
<

10

8
=⇒ σ ≥ 1− c

log t

The best known to date is σ ≥ 1− c(log log t)1/3

(log t)2/3
, but it’s still going to 0 as t → ∞.

Lemma. If σ > 1− c
2 log t , and |t| ≥ 7

8 , then

ζ ′

ζ
(s)| ≪ log t

Proof. Let s1 = 1 + 1
log t + it = σ1 + it. Here

󰀏󰀏󰀏󰀏
ζ ′

ζ
(s1)

󰀏󰀏󰀏󰀏 ≪
∞󰁛

n=1

Λ(n)

nσ1
≪ 1

σ1 − 1
≪ log t

We have

ζ ′

ζ
(s1) =

󰁛

ρ

1

s1 − ρ
+O(log t)

therefore, if we take real part everywhere, then

ℜ
󰁛

ρ

1

s1 − ρ
≪ log t

Now if s = σ + it, where σ > 1− c
2 log t (where c is the same as in the zero-free

region theorem above), then

ζ ′

ζ
(s)− ζ ′

ζ
(s1) =

󰁛

ρ

(
1

s− ρ
− 1

s1 − ρ
) +O(log t)

Note that we’re implicitly using the zero-free region, because otherwise s might
be one of the ρ so our sum won’t make sense.
Also, |s− ρ| ≍ |s1 − ρ|, so

󰀏󰀏󰀏󰀏
1

s− ρ
− 1

s1 − ρ

󰀏󰀏󰀏󰀏 ≪
1

|s1 − ρ|2 log t ≪ ℜ 1

s1 − ρ
(as ℜ(1

z
) =

ℜz
|z|2 )

so
󰁛

ρ

| 1

s− ρ
− 1

s1 − ρ
| ≪ ℜ

󰁛

ρ

1

s1 − ρ
≪ log t
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This concludes our components of proof of PNT.

Assuming RH, we can show (using the same contour idea, but we now have a
much larger zero-free region)

ψ(x) = x+O(x1/2(log x)2)

This will be an exercise in sheet 3.

Using partial summation, we can deduce that

π(x) = Li(x) +Oε(x
1/2 + ε)

where Li(x) is the logarithmic integral function,

Li(x) =

󰁝 x

2

1

log t
dt

=
x

log x
+O(

x

(log x)2
)

so

π(x) =
x

log x
+ E(x)

then E(x) ≫ x
(log x)2 .

3.4 Error terms

In this section, we’ll show that, ’often’,

|ψ(x)− x| ≫ x1/2

Actually we will show that

ψ(x) = x+ Ω±(x
1/2)

i.e.

lim sup
x→∞

(
ψ(x)− x

x1/2
) ≥ c > 0

and

lim inf
x→∞

(
ψ(x)− x

x1/2
) ≤ −c < 0

—Lecture 16—

Let’s remind you that our goal is to show that ψ(x) = x+ Ω±(x
1/2).

For contradiction, suppose that ψ(x) − x ≤ cx1/2 for all large x. So cx1/2 −
ψ(x) + x ≥ 0 – take Mellin transform of this.
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Lemma. (Landau)
Let A(x) be integrable and bounded on any finite interval, and A(x) ≥ 0 for all
x ≥ X. Let

σc = inf{σ :

󰁝 ∞

x

A(x)x−σdx < ∞}

Then if

F (s) =

󰁝 ∞

1

A(x)x−sdx

then F is analytic for ℜs > σc but not at s = σc.

Proof. Divide integral into [1, X] and (X,∞), correspondingly partition of F =
F1+F2. F1 is entire (it’s a finite integral of an integrable function). If ℜs > σc,
the integral converges absolutely, so F2 is analytic for ℜs > σc.
By contradiction, suppose F2 is analytic at s = σc.
Write F2 as a Taylor series around σc + 1,

F2(s) =

∞󰁛

k=0

ck(s− σc − 1)k

where

ck =
F

(k)
2 (σc + 1)

k!
=

1

k!

󰁝 ∞

x

A(x)(− log x)kx−σc−1

This power series has a radius of convergence, which must be 1 + δ for some
δ > 0.
Evaluate the series at δ = σc − δ

2 ,

F2(s) =

∞󰁛

k=0

(1− σc − s)k

k!

󰁝 ∞

x

A(x)(log x)kx−1−σcdx

At s = σc − δ
2 , we can interchange integral and summation, so

F2(σc −
δ

2
) =

󰁝 ∞

x

A(x)x−1−σc exp((1 + σc − s) log x)dx

=

󰁝 ∞

x

A(x)x−sdx

so
󰁕∞
x

converges at σc − δ
2 , contradicting the definition of σc.

Theorem. (Landau)
If σ0 is the supremum of the real parts of {ρ : ζ(ρ) = 0}, then
(1) For any σ < σ0, ψ(x)− x = Ω±(x

σ);
(2) If there is a zero ρ with σ = σ0, then ψ(x)− x = Ω±(x

σ0).

Corollary. Assuming there’s a zero with σ = 1
2 , ψ(x)− x = Ω±(x

1/2).

Corollary. RH is equivalent to ψ(x) = x+O(x1/2+o(1)).
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Proof. Let c > 0 be chosen later, and suppose that ψ(x)−x ≤ cxσ for all x ≥ X
(for contradiction). Consider (σ ≤ σ0)

F (s) =

󰁝 ∞

1

(cxσ − ψ(x) + x)x−s−1dx

Recall, by partial summation, that

ζ ′

ζ
(s) = −s

󰁝 ∞

1

ψ(x)x−s−1dx

and
󰁝 ∞

1

x−sdx =
1

s− 1

both for ℜs > 1. So F (s) = c
s−σ + ζ′(s)

sζ(s) +
1

s−1 (ℜs > 1).

This has a pole at s = σ; it doesn’t have a pole at s = 1 because the contribution
from the second and last term cancel each other out, and is analytic for ℜs > σ.
So by Landau’s lemma, in fact this integral converges for all s with ℜs > σ.
This proves (1) because if σ < σ0, then there is a zero of ζ with σ < ℜρ ≤ σ0,
and at ρ, F has a singularity (ρ ∕∈ R).
Suppose there is ρ = σ0 + it0. Repeat the above argument with σ = σ0, but
consider instead

G(s) = F (s) +
eiθF (s+ it0) + e−iθF (s− it0)

2

where θ ∈ R is chosen later; G(s) is still analytic for ℜs > σ, and has a pole
at s = σ0. From F (s), we have residue c; from F (s + it0), we have residue m

ρ

where M is the order of ρ; from F (s− it0), we have residue m
ρ̄ .

So G(s) has a pole at s = σ) with residue

c+
eiθm

2ρ
+

e−iθm

2ρ̄
= c− m

|ρ|
where we choose θ s.t.

eiθ

ρ
= − 1

|ρ|
Now if we choose c < m

|ρ| , then this residue is negative.

So as s → σ0 from the right, along R, G(s) → −∞.
But for ℜs > σ0,

ℜ(s) =
󰁝 ∞

1

(cxσ0 − ψ(x) + x)x−s−1

󰀳

󰁅󰁅󰁃1 +
eiθx−it0

2
+

eiθxit0

2󰁿 󰁾󰁽 󰂀
=1+cos(θ−t0 log x)≥0

󰀴

󰁆󰁆󰁄 dx

So

G(s) = G1(s)󰁿 󰁾󰁽 󰂀󰁕 x
1
, entire

+ G2(s)󰁿 󰁾󰁽 󰂀󰁕 ∞
x

(≥0),s∈R,ℜs>σ0

cannot go to −∞. Contradiction.
This proves ψ(x)− x = Ω+(x

σ). Ω− is the same (multiply by −1).
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3.5 Functional equation

—Lecture 17—

The lecture on next Tuesday and Thursday will be given by Jack Throne instead.

Recall that for σ > 0, ζ(s) = 1 + 1
s−1 − s

󰁕∞
1

{t}
ts+1 dt.

We’ll try to extend it to other parts of the complex plane.

Let f(t) = 1
2 − {t}. Then

ζ(s) =
1

s− 1
+

1

2
+ s

󰁝 ∞

1

f(t)

ts+1
dt

But this integral now converges when σ > −1: let

F (x) =

󰁝 x

0

f(t)dt

So we know using integration by part,

󰁝 Y

X

f(t)

ts+1
dt =

󰀗
F (t)

ts+1

󰀘Y

X

+ (s+ 1)

󰁝 Y

X

F (t)

ts+2
dt

And note that F (t) is bounded (consider what f(t) looks like). Therefore,󰁕∞
1

f(t)
ts+1 dt converges when σ > −1.

We can now start calculating values of ζ; for example,

ζ(0) = −1

2

?
= 1 + 1 + 1 + ...

We can surely continue doing integration by part in this way to define ζ for
σ > −2, σ > −3, etc., but there’s a better way.

Note that for −1 < σ < 0,

s

󰁝 1

0

f(t)

ts+1
=

s

2

󰁝 1

0

1

ts+1
dt− s

󰁝 1

0

1

ts
dt =

1

2
+

1

s− 1

so for −1 < σ < 0, we actually know

ζ(s) = s

󰁝 ∞

0

f(t)

ts+1
dt

as a nice single integral.

By Fourier analysis (you can take this for granted if you haven’t learnt anything
on that; see part IB Methods), as f is periodic, f(t) has a Fourier series

f(t) =

∞󰁛

n=1

sin(2nπt)

nπ
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which converges for all t ∕∈ Z. So where −1 < σ < 0,

ζ(s) = s

󰁝 ∞

0

1

ts+1

∞󰁛

n=1

sin(2nπt)

nπ
dt

= s

∞󰁛

n=1

1

nπ

󰁝 ∞

0

sin(2nπt)

ts+1
dt (assume we can swap

󰁝
and

󰁛
for now)

= s

∞󰁛

n=1

(2nπ)s

nπ

󰁝 ∞

0

sin y

ys+1
dy where y = 2nπt

The integral is now independent from n, so we can deal with it separately.
Here the series

∞󰁛

n=1

(2nπ)s

nπ
= 2sπs−1ζ(1− s)

and
󰁝 ∞

0

sin(y)

ys+1
dy =

1

2i

󰀕󰁝 ∞

0

eiy

ys+1
dy −

󰁝 ∞

0

e−iy

ys+1
dy

󰀖

apply substitution u = iy and u = −iy separately in the two integrals,

= − sin(
sπ

2
)Γ(−s)

where

Γ(s) =

󰁝 ∞

0

ts−1e−tdt

is the gamma function, which converges for σ > 0.
Let’s study the gamma function for a while: use integration by part,

Γ(s+ 1) =

󰁝 ∞

0

tse−tdt

=
󰀅
−tse−t

󰀆∞
0

+ s

󰁝 ∞

0

ts−1e−tdt

= sΓ(s)

In particular, since Γ(1) =
󰁕∞
0

e−tdt = 1, we know Γ(n) = (n− 1)! for n ∈ Z.

So we see that gamma function is a very natural analytic extension to factorial.

Also note that Γ(s+ 1) = sΓ(s) allows us to extend Γ(s) to the complex plane,
with poles at s = 0,−1,−2, ....

For the zeta function, this means for −1 < σ < 0,

ζ(s) = s2sπs−1ζ(1− s)(− sin(
sπ

2
)Γ(−s))

= 2sπs−1 sin(
πs

2
)Γ(1− s)ζ(1− s)

RHS is defined for all σ < 0, so we just define ζ(s) by above for σ < 0. This
gives an analytic continuation of ζ(s) to C.
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Theorem. (Functional equation)
For all s ∈ C,

ζ(s) = 2sπs−1 sin(
πs

2
)Γ(1− s)ζ(1− s)

Note that we know there’s pole at s = 1. How does that fit into this equation?
We can try to evaluate ζ(1) by the above formula:

ζ(1) = 2× 1× 1× Γ(0)× ζ(0)

but apparently Γ has a pole at 0, so we haven’t broken anything.

Are there any other poles? We have

ζ(s) = (entire) · Γ(1− s)ζ(1− s)󰁿 󰁾󰁽 󰂀
entire for σ<0

So ζ(s) has no pole for σ < 0. This means that ζ(s) is analytic everywhere in
C except for a simple pole at s = 1.

We can also try to evaluate things like

ζ(2) = 4× π × 0× Γ(−1)ζ(−1)

We know ζ(2) = π2

6 , while Γ has a pole at −1; but that is cancelled by the 0 in
RHS.
We can try the other way:

ζ(−1) =
1

2
× 1

π2
× 1× Γ(2)ζ(2)

=
−1

2π2
× π2

6

= − 1

12

?
= 1 + 2 + 3 + 4 + ...

So if you really want to assign a value to this series like a physicists, then this
is the value (but don’t do it).

What about zeros of ζ?

0 = ζ(s) = ( ∕= 0) · sin(πs
2
)Γ(1− s)ζ(1− s)

if σ < 0, ζ(1− s) ∕= 0, and Γ(1− s) ∕= 0. So the only possibility is that sin(πs2 )
vanishes, and we know it does at s = −2n for n ∈ N. So in σ < 0, ζ(s) has
zeros exactly at −2,−4,−6, ....

In σ ≥ 1, ζ(s) has no zeros. So we also know by the functional equation that it
has no zeros at σ = 0.

So except for the trivial zeros, ζ(s) only has zeros in 0 < σ < 1.

If 0 < σ < 1, apply the functional equation:

0 = ζ(s) = ( ∕= 0) · Γ(1− s)ζ(1− s)
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But Γ never vanishes in that region. So the zeros of ζ are symmetric about the
point s = 1. But also ζ(s̄) = ¯ζ(s), so we get four zeros if σ ∕= 1

2 , i.e. wild zeros
have to come in fours. In contrast, if there’s a zero on σ = 1

2 then there are
only one counterpart (reflection against the real axis). So this is probably why
Riemann orignally proposed his hypothesis.

Theorem. RH is equivalent to ψ(x) = x+O(x1/2+o(1)).

Proof. =⇒ is just by contour integration.
For ⇐, σ0 = sup{ℜρ : ζ(ρ) = 0}, then ψ(x) = x+ Ω±(x

σ)∀σ < σ0.
So if RH fails, there must be 0 < σ < 1 s.t. σ ∕= 1

2 . Therefore by our previous

symmetry property, σ0 > 1
2 . So ψ(x) = x + Ω±(x

σ′
) where 1

2 < σ′ < σ;
contradiction.
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4 Primes in arithmetic progressions

—Lecture 18—

As you probably know, Thomas Bloom is away for a week, so I’ll be lecturing
this course for today and Thursday. I’ll be starting a new chapter today on
primes in arithmetic progressions, where in the end we’ll prove the Dirichlet
theorem (every arithmetic progression contains infinitely many primes), which
you probably already know.

4.1 Dirichlet characters and L-functions

Fix q ∈ N. ADirichlet character of modulus q is a homomorphism χ : (Z/qZ)∗ →
C∗. We know (Z/qZ)∗ is a finite abelian group of order φ(q), so the set of Dirich-
let characters modulus q form a finite abelian group of the same order by the
obvious definition of multiplication.

We can also think of the Dirichlet character χ as defining a function χ : Z → C,
given by the formula

χ(a) =

󰀝
χ(a mod q) (a, q) = 1
0 (a, q) > 1

Note this χ is periodic with period q, and is also totally multiplicative.
If χ is the trivial homomorphism on (Z/qZ)∗, we call it the principal (Dirichlet)
character of modulus q, usually denoted as χ0.

We’ll first justify why this function is called a character : in fact, it is just a one
dimensional character of the group (Z/qZ)∗ (see part II Representation Theory).

Lemma. (1) Let χ be a Dirichlet character of modulus q. Then

󰁛

a∈(Z/qZ)∗
χ(a) =

󰁛

1≤a≤q

χ(a) =

󰀝
φ(q) χ = χ0

0 χ ∕= χ0

(2) Let a ∈ (Z/qZ)∗. Then
󰁛

χ

χ(a) =

󰀝
φ(q) a ≡ 1 (mod q)
0 a ∕≡ 1 (mod q)

Proof. We treat (2): If a ≡ 1 (mod q), then χ(a) = 1 for all χ. So
󰁓

χ χ(a) =󰁓
χ 1 = φ(q).

If a ∕≡ 1 (mod q), then there exists ψ : (Z/qZ)∗ → C∗ such that ψ(a) ∕= 1. The
map χ → χψ is a permutation of the set of Dirichlet characters mod q, hence

󰁛

χ

χ(a) =
󰁛

χ

(χψ)(a) = ψ(a)
󰁛

χ

χ(a)

ψ(a) ∕= 1, so we must have
󰁓

χ χ(a) = 0.
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Let 1x≡a (mod q) : Z → C be defined by

1(x) =

󰀝
1 x ≡ a (mod q)
0 else

where a ∈ Z, (a, q) = 1.
Then the above lemma (2) says4

1x≡a (mod q)(x) =
1

φ(q)

󰁛

χ

χ(a)−1χ(x)

It follows that

󰁛

p≤x,p≡a (mod q)

1 =
󰁛

p≤x

1x≡a (mod q)(p)

=
1

φ(q)

󰁛

p≤x

󰁛

χ

χ(a)−1χ(p)

Estimating this is closely related to estimating, for example,

1

φ(q)

󰁛

n≤x

󰁛

χ

χ(a)−1χ(n)Λ(n) =
󰁛

χ

χ(a)−1

φ(q)

󰁛

n≤x

χ(n)Λ(n)

So the strategy to prove Dirichlet’s theorem is to consider the contribution of
each character χ separately.

We’ll do this using the Dirichlet L-functions

L(s,χ) =
󰁛

n≥1

χ(n)n−s

This series converges absolutely in the region σ > 1 (as χ(n) must be some roots
of unity), and therefore defines an analytic function there.

Lemma. If χ ∕= χ0, then
󰁓

n≥1 χ(n)n
−s converges in σ > 0.

Proof. Use partial summation with the obvious choice an = χ(n), A(x) =󰁓
n≤x χ(n), f(t) = t−s,

󰁛

n≤x

χ(n)n−s = A(x)x−s −
󰁝 x

t=1

A(t)f ′(t)dt

Now lemma says
󰁓

1≤n≤q χ(n) = 0, as χ ∕= χ0. Hence A(n) is periodic, and

|A(x)| ≤ φ(q) for all x. So |A(x)x−s| ≤ φ(q)x−σ and the integral is absolutely
convergent.

4The summand in RHS is χ(x/a) as χ is a homomorphism, then compare with the lemma
above.
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Consequence: L(s,χ) is analytic in the same region σ > 0, and in particular
does not have a pole at s = 1.
Since χ(n) is multiplicative, we have an Euler product identity:

L(s,χ) =
󰁜

p

(1− χ(p)p−s)−1

which is valid in the region σ > 1.
Consequence 1: when χ = χ0, L(s,χ0) = ζ(s)

󰁔
p|q(1 − p−s). Hence L(s,χ0)

has a meromorphic continuation to all s ∈ C and a simple pole at s = 1.
Consequence 2: In the region σ > 1, and for any χ, we have a formula for the
logarithmic derivative of L(s,χ) in the same way as for ζ(s).

This gives an identity

−L′

L
(s,χ) =

󰁛

n≥1

χ(n)Λ(n)n−s

—Lecture 19—

Last time we fixed q ∈ N and introduced the Dirichlet L function: for any
Dirichlet character χ : (Z/qZ)∗ → C∗,

L(s,χ) =
󰁛

n≥1

χ(n)n−s

where we abuse the notation to extend χ to a function N → C.
We observed that this was absolutely convergent for σ > 1. We also observed
that when χ ∕= χ0 (the trivial character), L(s,χ) is convergent in σ > 0.
We also had a formula for the log derivative:

logL(s,χ) =
󰁛

p

󰁛

k≥1

χ(p)kp−ks/k

hence

L′(s,χ)

L(s,χ)
=

󰁛

p

󰁛

k≥1

χ(p)k(− log p)p−ks

= −
󰁛

n≥1

χ(n)Λ(n)n−s

which is valid in σ > 1.

Fix a ∈ N, (a, q) = 1. We combine this with the identity valid for any natural
number n:

1n≡a (mod q)(n) =
1

φ(q)

󰁛

χ

χ(a)−1χ(n)

We get

󰁛

n≥1

1n≡a (mod q)(n)Λ(n)n
−s = − 1

φ(q)

󰁛

χ

χ(a)−1L
′(s,χ)

L(s,χ)

which is valid in σ > 1.
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4.2 Dirichlet’s theorem

Theorem. Let a ∈ N, (a, q) = 1. There are infinitely many primes p s.t.

p ≡ a (mod q)

How are we going to prove it? We have L(s,χ0) = ζ(s)
󰁔

p|q(1− p−s), so as we

saw last time, L(s,χ0) has a simple pole at s = 1. Hence

󰁛

n≥1

1n≡a (mod q)(n)Λ(n)n
−s =

1

φ(q)

1

s− 1
+O(1) +

󰁛

χ ∕=χ0

χ(a)−1L
′(s,χ)

L(s,χ)

Let’s assume that we understand that the last term is bounded. Then RHS
(and so LHS) is divergent at s = 1. But if there are finitely many primes p ≡ a
(mod q), LHS would be bounded as s → 1. So to show Dirichlet’s theorem it’s

enough to show that ∀χ ∕= χ0,
L′(s,χ)
L(s,χ) is bounded, or analytic at s = 1 since we

know it’s meromorphic.

This is equivalent to showing that if χ ∕= χ0, then L(1,χ) ∕= 0.

Theorem. If χ ∕= χ0, then L(1,χ) ∕= 0.

Proof.

󰁜

χ

L(s,χ) = exp(
󰁛

χ

logL(s,χ))

= exp(
󰁛

χ

󰁛

p

󰁛

k≥1

χ(p)kp−ks/k)

= exp(
󰁛

χ

󰁛

n≥1

χ(n)
n−sΛ(n)

log n
)

= exp

󰀳

󰁃
󰁛

n≥1

󰀥
n−sΛ(n)

log n

󰁛

χ

χ(n)

󰀦󰀴

󰁄

We know by a previous lemma that

χ(n) =

󰀝
0 (q, n) > 1 or (q, n) = 1, n ∕≡ 1 (mod q)
φ(q) n ≡ 1 (mod q)

Hence

󰁜

χ

L(s,χ) = exp

󰀳

󰁃
󰁛

n≥1,n≡1 (mod q)

n−sΛ(n)

log n
φ(q)

󰀴

󰁄

valid in σ > 1. The exponent is a non-negative real number for s > 1 real.

So for s ∈ (1,∞),
󰁔

χ L(s,χ) ∈ [1,∞).

Note that L(s,χ0) has a simple pole at s = 1. If there are at least two dinstinct
characters ψ,ψ′ of modulus q such that L(1,ψ) = L(1,ψ′) = 0, then

󰁔
χ L(s,χ)
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would be analytic in a neighbourhood of s = 1, and vanish at s = 1; but this is
impossible, so there’s at most one character ψ s.t. L(1,ψ) = 0.
Note: for any χ, L(1, χ̄) = L(1,χ). So if L(1,χ) = 0, then L(1, χ̄) = 0.
Hence if L(1,χ) = 0, then χ = χ̄. In other words (as |χ must have modulus 1),
χ takes values in {±1} (we call such characters quadratic as then χ2 = 1).
Suppose for contradiction that there exists a non-principal but quadratic char-
acter ψ : (Z/qZ)∗ → {±1} s.t. L(1,ψ) = 0.
We consider the product L(s,ψ)ζ(s). This function is analytic in σ > 0.
In σ > 1, we have the expression

L(s,ψ)ζ(s) = (
󰁛

n≥1

ψ(n)n−s)(
󰁛

n≥1

n−s) =
󰁛

n≥1

r(n)n−s

where r(n) =
󰁓

d|n ψ(d). First of all, r is multiplicative; also r(n) ≥ 0: we need
to only prove it for prime powers:

r(pk) = ψ(1) + ψ(p) + ...+ ψ(pk) =

󰀻
󰀿

󰀽

k + 1 ψ(p) = 1
1 ψ(p) = 0 or ψ(p) = −1, k is even
0 ψ(p) = −1, k is odd

We also know r(n2) ≥ 1 by the same argument.

We now use Landau’s lemma:

Lemma. Let f(s) =
󰁓

n≥1 ann
−s where an are non-negative real numbers.

Suppose given σ0 s.t. f(s) is convergent, therefore absolutely convergent in
σ > σ0. Suppose as well that f(s) admits an analytic continuation to the disc
{|s− σ0| < ε}. Then f(s) is convergent in the region σ > σ0 − ε.

Let f(s) = L(ψ, s)ζ(s) =
󰁓

n≥1 r(n)n
−s, valid in σ > 1. Then we can use

Landau’s lemma, together with the fact that f(s) is analytic in σ > 0 to conclude
that f(s) is convergent in σ > 0.
But this can’t be true:

f(1/2) =
󰁛

n≥1

r(n)n−1/2 ≥
󰁛

n≥1

r(n2)/n ≥
󰁛

n≥1

1/n = ∞

This is impossible. So L(1,ψ) ∕= 0.

4.3 Zero-free region

—Lecture 20 missed, but lecturer wasn’t able to make it anyway—

—So still Lecture 20—

Example class today at 330pm MR14!

We’ve proved that there are infinitely many primes ≡ apmodq where (a, q) = 1
(Dirichlet’s theorem). We did this using

−L′

L
(s,χ) =

∞󰁛

n=1

Λ(n)χ(n)

ns
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We’d like to prove some sort of PNT for such primes. To do this, we’ll use
Perran’s formula in a similar fashion that we did to ζ function.

We need information about the zeros of L(s,χ). We saw last week that L(1,χ) ∕=
0.

Similarities to zero-free region for ζ(s), but important difference: ζ(s) has a
pole at s = 1, but L(s,χ) has no poles for σ > 0 if χ ∕= χ0. For zeta we had

ζ(s) = 1 +
1

s− 1
− s

󰁝 {t}
ts+1

dt

so we can show ζ(σ) ∕= 0 when 0 < ζ < 1. But this is a problem for L-function.

Let τ = |t|+ 4 (basically for us to always be able to write log τ).

Recall the following lemma:

Lemma. If f(z) is analytic on a region containing |z| ≤ 1 and f(0) ∕= 0, and
|f(z)| ≤ M (bounded) for |z| ≤ 1. Then for 0 < r < R < 1, for |z| ≤ r, we have

f ′

f
(z) =

󰁛 1

z − zk
+O(log

M

|f(0)| )

where zk is the zeros of f inside the disk |zk| ≤ R.

We can use this to get a nice formula for L-function:

Lemma. If χ ∕= χ0 and 5
6 ≤ σ ≤ 2, then

L′

L
(s,χ) =

󰁛

ρ

1

s− ρ
+O(log qτ)

over ρ all the zeros with |ρ− (3/2 + it)| ≤ 5/6.

Proof. This basically follows from the previous lemma by setting f(z) = L(z +
3/2 + it,χ), R = 5/6, r = 2/3. Note that

|f(0)| = |L(3/2 + it,χ)|

=
󰁜

p

|1− χ(p)

p3/2+it
|

≥
󰁜

p

(1− 1

p3/2
)−1 ≫ 1

By partial summation, if F (t) =
󰁓

1≤n≤t χ(n), for σ > 0,

L(s,χ) = s

󰁝 ∞

1

F (t)

ts+1
dt

so

|L(s,χ)| ≪ |s|q
󰁝 ∞

1

1

tσ+1
dt ≪ qτ
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Theorem. Let χ be a character. There is an absolute constant c > 0 s.t.

L(s,χ) ∕= 0

if σ > 1− c
log(qτ) .

It would be very nice if we could prove this, but unfortunately we couldn’t
do that for general characters. We can only prove this for χ a non-quadratic
character (χ(n) ∈ R ∀n and χ ∕= χ0).

Proof. If χ = χ0, since L(s,χ0) = ζ(s)
󰁔

p|q(1−p−s), in this region σ > 0, zeros

of L(s,χ0) are the same as ζ(s), so done (in fact we proved a better result for
ζ).
Let ρ = σ + it s.t. L(ρ,χ) = 0. The idea is to compare (δ → 0+)

L′

L
(1 + δ + it,χ),

L′

L
(1 + δ + 2it,χ2),

L′

L
(1 + δ,χ0)

Use the same trick as in ζ function, consider

ℜ(−3
L′

L
(1 + δ,χ0)− 4

L′

L
(1 + δ + it,χ)− L′

L
(1 + δ + 2it,χ2))

=

∞󰁛

n=1,(n,q)=1

Λ(n)

n1+δ
ℜ(3 + 4χ(n)n−it + χ(n)2n−2it)

and we’ll again use the fact that ∀θ 3+4 cos θ+cos(2θ) ≥ 0, i.e. ℜ(3+4eiθ+ei2θ).

By the lemma,

−ℜL′

L
(1 + δ,χ0) =

1

δ
+O(log q),

−ℜL′

L
(1 + δ + it,χ) ≤ − 1

1 + δ − σ
+O(log qτ),

−ℜL′

L
(1 + δ + 2it,χ2) ≪ log(qτ)

(since χ2 ∕= χ0 by assumption that it’s not a quadratic character, so there’s no
pole at 1). Now we can combine this and get

3

δ
− 4

1 + δ − τ
+O(log τ) ≥ 0

contradiction if we choose δ ≈ c′

log qτ and σ ≥ 1− c
log qτ .

Theorem. If χ is a quadratic character, ∃c > 0 s.t.

L(s,χ) ∕= 0 if σ > 1− c

log qτ
and t ∕= 0

So we have a zero-free region provided that we’re not on the real line.

But we cannot rule out a zero ρ of L(s,χ) with ρ ∈ R close to 1 (this is still
open). We had a weaker result:
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Theorem. Let χ be a quadratic character. There is an absolute constant c > 0
s.t. L(s,χ) has at most one zero ρ ∈ (0, 1) s.t. ρ ≥ 1− c

log q .

These zeros are called the exceptional zeros, if they exist (but hopefully they
don’t).

To prove the above two theorems, first we need a lemma for L(s,χ0).

Lemma. If 5/6 ≤ σ ≤ 2, then

−L′

L
(s,χ0) =

1

s− 1
−
󰁛

ρ

1

s− ρ
+O(log qτ)

over zeros ρ with |ρ− (3/2 + it)| ≤ 5/6.

Proof. This essentially follows from the same formula for ζ function:

−ζ ′

ζ
(s) = −

󰁛

ρ

1

s− ρ
+O(log τ) +

1

s− 1

since
(a) for σ > 0, zeros of ζ are zeros of L(s,χ0) (so we’re summing up the same
set of ρ);
(b) by the Euler product,

L′

L
(s,χ0) =

χ′

χ
(s) +

󰁛

p|q

log p

ps − 1
≪ ω(q) ≪ log q

There are only 3 minutes left, so I’ll just quickly sketch a proof and do them
properly next time.
First theorem: for t large, same as previous proof (χ2 = χ0, but no pole).
For t small, 0 < |t| ≪ 1

log qτ , instead of comparing χ0, χ, χ
2 we compare ρ and

ρ̄.
Second theorem: we can no longer do either of the above, but we allowed one
zero, so if there are more than one then we’ll compare two such real zeros (we’ll
explain what we mean by compare exactly on the next lecture).

—Lecture 21—

Now we’re going to prove properly the two theorems above quadratic characters
we stated before:

Theorem. Let χ be a quadratic character. Then there is an absolute constant
c > 0 s.t.

L(s,χ) ∕= 0 if σ > 1− c

log qτ
and t ∕= 0

Proof. As before, let ρ = σ + it be a zero of L(s,χ). Let δ > 0 which we’re
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going to choose later. By above lemma 1 (on page 56),

− L′

L
(1 + δ + it,χ) = −

󰁛

ρ′

1

1 + δ + it− ρ′
+O(log qτ)

=⇒ −ℜL′

L
(1 + δ + it,χ) ≤ − 1

1 + δ + it− ρ
+O(log qτ) = − 1

1 + δ − σ
+O(log qτ)

and

−ℜL′

L
(1 + δ,χ0) ≤

1

δ
+O(log qτ)

the problem now is that χ0 is the principal character, so we’re in the case of
lemma 2 (on page 58) instead. First suppose τ ≥ C(1− σ):

−ℜL′

L
(1 + δ + 2it,χ2) = −ℜL′

L
(1 + δ + 2it,χ0)

≤ ℜ 1

δ + 2it
+O(log qτ)

≤ δ

δ2 + 4t2
+O(log qτ)

As before,

ℜ(−3
L′

L
(1 + δ,χ0)− 4

L′

L
(1 + δ + it,λ)− L′

L
(1 + δ + 2it,χ2)) ≥ 0

But on the other hand, it also

≤ 3

δ
− 4

1 + δ − σ
+

δ

δ2 + 4t2
+O(log qτ)

If σ = 1, we get a contradiction as δ → 0 (we assumed t ∕= 0). Otherwise, if we
choose δ = c(1− σ), then the above gives

0 ≤ 3

c(1− σ)
− 4

(c+ 1)(1− σ)
+

c′

1− σ
+O(log qτ)

We can choose c, C, hence c′, s.t. the above ≤ − c′′

1−σ + O(log qτ) and so σ ≤
1− c′′′

log qτ .
For small τ , we need a different argument. In particular we’re not going to use
this mysterious 3 − 4 + ... argument. In fact there’s a simpler argument that

will work: since L(ρ,χ) = 0, also L(ρ̄,χ) = 0 (L(s,χ) = s
󰁕∞
1

󰁓
1≤n≤t χ(n)

ts+1 dt). It
follows that

−ℜL′

L
(1 + δ + it,χ) ≤ −ℜ 1

1 + δ − ρ
−ℜ 1

1 + δ − ρ̄
+O(log qτ)

(assuming that |t| ≤ c(1− σ), in particular |t| ≤ c′ for some small constant).
RHS is

−2(1 + δ − σ)

(1 + δ − σ)2 + t2
+O(log qτ)
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As before,

−L′

L
(1 + δ,χ0) ≤

1

δ
+O(log qτ)

Now

(−ℜL′

L
(1 + δ,χ0)−ℜL′

L
(1 + δ + it,χ))

=

∞󰁛

n=1,(n,q)=1

Λ(n)

n1+δ
(1 + ℜ(χ(n)nit

󰁿 󰁾󰁽 󰂀
|z|=1

)) ≥ 0

so

1

δ
− 2(1 + δ − σ)

(1 + δ − σ)2 + t2
+O(log qτ) ≥ 0

Now we’re in good shape: if we choose δ = c(1 − σ), then LHS is ≤ − c′

(1−σ) +

O(log qτ). So σ ≤ 1− c′′

log qτ .

Theorem. Let χ be a quadratic character. There is c > 0 s.t. there is at most
one real zero ρ ∈ (0, 1) of L(s,χ) s.t.

ρ ≥ 1− c

log q

Proof. Suppose ρ0 < ρ1 ≤ 1 are zeros of L(s,χ). Then for σ ∈ (0, 1), by the
same argument

−ℜL′

L
(σ,χ) ≤ −ℜ 1

σ − ρ0
−ℜ 1

σ − ρ1
+O(log q)

for σ ≥ 1− 1
1000000 , say.

So

1

σ − 1
− 2

σ − ρ0
+O(log q) ≥ (−ℜL′

L
(σ,χ0)−ℜL′

L
(σ,χ)) ≥ 0

Hence ρ0 ≤ 1− c
log q .

Now we have the zero-free region for L function, with about the same strength
as for ζ function, so we can prove an analogue of PNT (which we’ll do in next
lecture). We’ll first introduce a lemma:

Lemma. If χ ∕= χ0, and σ ≥ 1− c
log qτ (for some absolute c > 0, then if either

χ has no exceptional zero, or χ has exceptional zero at β, but |s − β| ≥ 1
log q ,

then

L′

L
(s,χ) ≪ log qτ
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Proof. If σ > 1, note

|L
′

L
(s,χ)| ≤

∞󰁛

n=1,(n,q)=1

Λ(n)

nσ
≪ 1

σ − 1

In particular, if s = σ+ it and s1 = 1+ 1
log qτ + it, |L

′

L (s,χ)| ≪ log qτ . By lemma
1,

L′

L
(s,χ) =

󰁛

ρ

1

s− ρ
+O(log qτ)

for all zeros ρ, |s− ρ| ≍ |s1ρ|. So

|L
′

L
(s,χ)− L′

L
(s1,χ)| ≪ |

󰁛

ρ

1

s− ρ
− 1

s1 − ρ
|+O(log qτ)

≪ ℜ
󰁛

ρ

1

s1 − ρ
+O(log qτ) ≪ log qτ

4.4 Prime Number Theorem for Arithmetic Progressions

Recall that

󰁛

1≤n≤x,n≡a (mod q)

Λ(n) =
1

ϕ(q)

󰁛

χ

χ(a)
󰁛

1≤n≤x

Λ(n)χ(n)

=
1

ϕ(q)

󰁛

χ

χ(a)ψ(x,χ)

Theorem. If q ≤ exp(O(
√
log x)), then (1)

ψ(x,χ0) = x+O(x exp(−c
󰁳
log x))

(2) If χ ∕= χ0, χ has no exceptional zero, then ψ(x,χ) = O(x exp(−c
√
log x));

(3) If x ∕= x0, and we have an exceptional zero at β, then ψ(x,χ) = −xβ

β +

O(x exp(−c
√
log x)).

We’ll prove this on Saturday.

—Lecture 22—

addition to section 4.3:

Theorem. If χ1,χ2 are distinct quadratic characters modulo q, then L(s,χ1)L(s,χ2)
has at most one real zero β, 1− c

log q < β < 1 (sometimes called the exceptional

character of q).
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Proof. Say βi is a real zero of L(s,χi) (i = 1, 2). WLOG suppose 5/6 ≤ β1 ≤
β2 < 1 (if they are less than 5/6 then we’re good anyway. Fix δ > 0, we have
the following:
(1) −ℜL′

L (1 + δ,χi) ≤ − 1
1=δ−βi

+O(log q) (i = 1, 2);

(2) −ℜL′

L (1+δ,χ1χ2) ≤ O(log q) (the product is not principal because χ1 ∕= χ2;

(3) − ζ′

ζ (1+ δ) ≤ 1
δ +O(1) (− ζ′

ζ (s) =
1

s−1 +O(1)) (we could also just stick with

−ℜL′

L (1 + δ,χ0)).

Therefore, consider the following Dirichlet series with non-negative coefficients,

−ζ ′

ζ
(1 + δ)− L′

L
(1 + δ,χ1)−

L′

L
(1 + δ,χ2)−

L′

L
(1 + δ,χ1χ2) ≤

1

δ
− 2

1 + δ − β1
+O(log q)

so choose δ = c(1− β1), and therefore β1 ≤ 1− c
log q .

Back to section 4.4 where we stated a theorem last time:

Let ψ(x,χ) =
󰁓

n≤x Λ(n)χ(n).

Theorem. Let q ≤ exp(O(
√
log x)). Then

ψ(x,χ0) = x+O(x exp(−c
󰁳
log x))

If χ ∕= χ0, we get a cancellation ψ(x,χ) = O(x exp(−c
√
log x)) unless χ has an

exceptional zero.
If χ has an exceptional zero at β, then in fact we get another main term:

ψ(x,χ) = −xβ

β
+O(x exp(−c

󰁳
log x))

Recall that

1n≡a (mod q) =
1

ϕ(q)

󰁛

χ

χ(a)χ(n)

we get an expression

ψ(x; q, a) =
󰁛

n≤x,n≡a (mod q)

Λ(n)

=
1

ϕ(q)

󰁛

χ

χ(a)ψ(x,χ)

Corollary. If (a, q) = 1, then (q ≤ exp(O(
√
log x)))

ψ(x; q, a) =
x

ϕ(q)
+O(x exp(−c

󰁳
log x)) (no exceptional zero)

If q has an exceptional zero at β and χ1, then

ψ(x; q, a) =
x

ϕ(q)
− χ1(a)

ϕ(q)

xβ

β
+O(x exp(−c

󰁳
log x))
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Proof. (of theorem)
By Perran’s formula (σ0 > 1, T ≥ 1),

ψ(x,χ) = − 1

2πi

󰁝 σ0+iT

σ0−iT

L′

L
(s,χ)

xs

s
ds+O

󰀳

󰁃 x

T

󰁛

x
2<n<2x

Λ(n)

|x− n| +
xσ0

T

∞󰁛

n=1

Λ(n)

nσ0

󰀴

󰁄

By the same argument as for ζ(s), error term is ≪ x(log x)2

T (σ0 = 1 + 1
log x ).

Take C to be a rectangular contour with corners at σ0 ± iT,σ1 ± iT , we get
(integrand omitted)

ψ(x,χ) =
1

2πi

󰁝

C

+O(

󰁝

σ1±iT

+

󰁝 σ1+iT

σ0+iT

+

󰁝 σ1−iT

σ0−iT

+
x(log x)2

T
)

Error terms we bound in the same way as for ζ(s), so in total,

ψ(x,χ) = − 1

2πi

󰁝

C

L′

L
(s,χ)

xs

s
ds+O

󰀳

󰁅󰁅󰁃
x(log x)2

T
+ xσ1

󰁿 󰁾󰁽 󰂀
≪exp(−c

√
log x),T=exp(O(

√
log x))

󰀴

󰁆󰁆󰁄

and we choose σ1 = 1− c
log qT so xσ1 ≪ x exp(−c

√
log x) if q ≪ T ≈ exp(O(

√
log x)).

How about the main term? If χ = χ0, take σ1 as above, so no zeros of L(s,χ0),

so L′

L has just a simple pole at s = 1, so 1
2πi

󰁕
C
= x;

If χ ∕= χ0, there’s no exceptional zero, no zeros of L(s,χ) with σ ≥ σ1, so no

poles of L′

L (s,χ) so
󰁕
C
= 0.

If χ has an exceptional zero at β, then inside C, L′

L has a pole at β. So L′

L (s,χ)x
s

s

has residue xβ

β at this pole, so

1

2πi

󰁝

C

L′

L
(s,χ)

xs

s
ds =

xβ

β

4.5 Siegel-Walfisz Theorem

Theorem. (1, S-W)
∀A > 0, if q ≤ (log x)A, and (a, q) = 1, then

ψ(x; q, a) =
x

ϕ(q)
+OA(x exp(−c

󰁳
log x))

Some people might call this the PNT for AP because this has not many if and
then restrictions (comparing to what we’ve proved in the previous section) and
it has the right main term and error term.

This follows from
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Theorem. (2)
If q ≤ (log x)A and x is large enough (depending on A), then

ψ(x,χ) = OA(exp(−c
󰁳
log x))

∀χ ∕= χ0.

This in turn follows from the following theorem,

Theorem. (3)
∀ε > 0, ∃C(ε) s.t. if χ is a quadratic character modulo q, and β is a real zero,
then

β < 1− cεq
−ε

Proof. Omitted.5

The constant Cε here is ineffective: the proof gives no way to calculate Cε but
just the existence of it (unlike most of the other proofs in this course, where if
you really want to calculate the constant you can follow the proof and calculate
each step).

Proof that theorem 3 =⇒ theorem 2: if there exists an exceptional zero, then

ψ(x,χ) = O(
xβ

β
+ x exp(−c

󰁳
log x))

= xO(exp(−Cεq
ε log x) + exp(−C

󰁳
log x))

since q ≤ (log x)A, this is O(exp−C ′
ε

√
log x)) choosing ε = 1

3A , say.

—Lecture 23—

Drop-in session today at 4-5pm! There’ll be one more drop-in session and one
more example class next term, probably in week 1. The final sheet will probably
be online today. The lecture notes will probably be updated by the end of the
week.

Recall that we’ve stated the Siegel-Walfisz theorem last lecture, and nearly
proved it. We’ll first state a corollary:

Corollary.

π(x, q, a) = #primes p ≤ x, p ≡ a (mod q)

=
li(x)

ϕ(q)
+O(x exp(−c

󰁳
log x))

where li(x) =
󰁕 x

2
1

log tdt, if (a, q) = 1 and if q ≤ (log x)A (unconditionally), or if

q ≤ exp(O(
√
log x)) (if q has no exceptional zero).

(we could achieve q ≤ x1/2−o(1) assuming GRH – i.e. the zeros of Dirichlet L
function also has real parts 1/2).

5It’s originally intended to be included, but it uses no tool that we’ve not seen, and you
can just sit down and read it if you want.
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Proof. Let F (x) =
󰁓

p≤x,p≡a (mod q) log p = ψ(x; q, a) +O(x1/2), and so

π(x; q, a) =
󰁛

p≤x,p≡a (mod q)

1

=
F (x)

log x
+

󰁝 x

2

F (t)

t(log t)2
dt

=
1

ϕ(q)
(

x

log x
+

󰁝 x

2

1

(log t)2
dt) +O(x exp(−c

󰁳
log x))

Note that this is a trick that we’ve used many times in the course: altering the
weight in a weighted sum by doing partial summation.

The final things I want to talk about in this course are two applications of
Siegel-Walfisz theorem:
(1) For fixed (a, q) = 1, how large is the smallest prime ≡ a (mod q)? We call
this prime pa,q.

Corollary. ∀ε > 0, pa,q ≪ε exp(q
ε).

Proof. Let x < pa,q. Then ψ(x; q, a) = 0 (there’re no primes at all for counting).
So somehow the error term has to cancel out the main term. So if q ≤ (log x)A,
then

x

ϕ(q)
= OA(x exp(−c

󰁳
log x))

so

exp(c
󰁳
log x) = OA(q)

so log x ≤ (log q)2 + OA(1). But this contradicts our previous assumption that
q ≤ (log x)A. i.e. for any A, if q is large enough, q ≤ (log pa,q)

A.

Similarly,

Corollary. If q has no exceptional zero, then pa,q ≤ qO(log q). Proof is the same.

We have a reasonable conjecture:

Conjecture.

pa,q ≤ q1+o(1)

If we assume GRH we can prove pa,q ≤ q2+o(1). So even GRH doesn’t get us
what we think is true.

Theorem. (Linnik)
There exists a constant L s.t. pa,q ≪ qL.
The point that this is an unconditional result: it doesn’t matter if RH fails, or
if q has any exceptional zeros.

https://en.m.wikipedia.org/wiki/Linnik%27s_theorem
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Theorem. (Walfisz)
For any n, write r(n) as the number of ways as n as a prime and a square-free
number. Then r(n) ∼ cnli(n), where

cn = (
󰁜

p|n

(1 +
1

p2 − p− 1
))(

󰁜

p

(1− 1

p(p− 1)
))

The first product obviously depends on n. The second product evaluates to
around 0.3739....
Let’s finish off by just proving this:

Proof. Note that the indication function of being square-free,

1□−free(m) =
󰁛

d2|m

µ(d)

which is easily checked since both sides are multiplicative, so it’s enough to
check for prime powers. So

r(n) =
󰁛

p<n

1□−free(n− p)

=
󰁛

p<n

󰁛

d2|(n−p)

µ(d)

=
󰁛

d<
√
n

µ(d)
󰁛

p<n,p=n (mod d2)

1

But this is exactly a prime counting sum. So use what we’ve proved before, the
above is equal to

󰁛

d<
√
n

µ(d)π(n− 1; d2, n)

Now there are several cases:
if (n, d) > 1, then π(n − 1; d2, n) = O(1). So in total this contributes O(n1/2)
to r(n).

if (n, d) = 1, and d ≤ (log n)A, π(n−1; d2, n) = li(n)
ϕ(d2) +O(n exp(−c

√
log n)). So

󰁛

d<(logn)A

µ(d)π(n− 1; d2, n) = li(n)
󰁛

d<(logn)A,(d,n)=1

µ(d)

ϕ(d2)
+O(n exp(−c

󰁳
log n))

Now note that ϕ(d2) = dϕ(d). So

󰁛

(d,n)=1

µ(d)

dϕ(d)
=

󰁜

p∤n

(1− 1

p(p− 1)
) = cn

Since

󰁛

d>(logn)A,(d,n)=1

µ(d)

dϕ(d)
≤

󰁛

d>(logn)A

1

d3/2

≪ 1

(log n)A/2
= o(1)
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as n → ∞.
For d > (log n)A, use π(x; q, a) ≪ 1 + x

q because there are at most that many
integers there. So

󰁛

n1/2>d>(logn)A,(d,n)=1

µ(d)π(n− 1; d2, n) ≪
󰁛

(logn)A<d<n1/2

(1 +
n

d2
)

≪ n1/2 + n
󰁛

d>(logn)A

1

d2
≪ n

(log n)A

That is,

r(n) = cnli(n) +O(n1/2 +
li(n)

(log n)A/2
+

n

(log n)A
+ n exp(−c

󰁳
log n))

= (1 + o(1))cnli(n)

because li(n) = (1 + o(1) n
logn ).

That’s the end of the official course. On Thursday we’ll still have another
lecture, where we’ll introduce some aspect of analytic number theory that we
didn’t talk about.
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5 Example Class 1

We’ll go through questions 2,3,5,1,4,6 (in that order).

5.1 Question 2

(a)

󰁛

n≤x

ω(n) =
󰁛

n≤x

󰁛

p|n

1

=
󰁛

p≤x

󰁛

p|n≤x

1

=
󰁛

p≤x

⌊x
p
⌋

= x log log x+O(x)

using
󰁓

p≤x
1
p = log log x + O(1), and [x] = x + O(1) and number of p ≤ x is

O(x).

Try to avoid writing things likeO(1)
󰁓

p≤x 1. Sample replacement of it:
󰁓

p≤x O(1) =
O(

󰁓
p≤x 1).

(b) In general whenever you seem a sum like this, the first instinct should be to
expand it. So we have

󰁛

n≤x

|ω(n)− log log x|2 ≪ x log log x

=
󰁛

n≤x

ω(n)2 − 2 log log x
󰁛

n≤x

ω(n) + ⌊x⌋(log log x)2

So it’s enough to show that

󰁛

n≤x

ω(n)2 ≤ x(log log x)2 +O(x log log x)

We write LHS as

󰁛

p,q≤x

󰁛

n≤x

1p|n1q|n =
󰁛

p=q

⌊x/p⌋+
󰁛

p ∕=q

⌊ x

pq
⌋

=
󰁛

p,q

⌊ x

pq
⌋+O(x log log x)

≤ x
󰁛

p,q

1

pq
+O(...)

≤ x(
󰁛

p

1

p
)2 +O(...)
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(c) It’s enough to show that
󰁓

n≤x | log log x− log log n|2 ≪ x log log x by noting
that the sum is actually a metric. We could certainly expand it, but it’s more
work than what we need. The reason we are expanding above is because we
have a mixture of something arithmetic and something analytic, so we can’t do
anything to it without expanding the square.

Note that if x1/2 ≤ n ≤ x, then | log log x − log log n| = O(1). So the original
sum

=
󰁛

n≤x1/2

󰁿 󰁾󰁽 󰂀
O(x1/2(log log x)2

...+
󰁛

x1/2≤n≤x󰁿 󰁾󰁽 󰂀
O(x)

...

Now let r(x) be the number of n ≤ x s.t. |ω(n) − log log n| > (log log x)3/4.
Then r(x)(log log x)3/2 ≪ x log log x, so r(x) ≪ x

(log log x)1/2
= o(x). (??)

For ’almost all’ n, τ(n) ≥ 2ω(n), and ≤ 2Ω(n) where Ω(n) counts all prime
divisors rather than just the distinct ones.

5.2 Question 3

(a) Following lecture, we want something like

󰁛

n≤x

1

n
= γ + log x− {x}

x
+

󰁝 ∞

x

{t}
t
dt

= 1− {x}
+

log x−
󰁝 x

1

{t}
t2

dt

? = γ + log x− {x}
x

+
1

2x
+O(

1

x2
)

So it’s enough to show that
󰀏󰀏󰀏󰀏
󰁝 ∞

x

{t}
t2

dt−
󰁝 ∞

x

1/2

t2
dt

󰀏󰀏󰀏󰀏 ≪
1

x2

Note that for t ∈ [n, n+ 1),
󰀏󰀏󰀏󰀏
1

t2
− 1

n2

󰀏󰀏󰀏󰀏 ≪
1

n3

So
󰁝 n+1

n

{t}
t2

dt =
1

n2

󰁝 n+1

n

{t}dt+O(
1

n3
)

=
1

2n2
+O(

1

n3
)

=
1

2

󰁝 n+1

n

1

t2
dt+O(

1

n3
)

=
1

2

󰁝 n+1

n

(
1

t2
+O(1/t3))dt
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So
󰁝 ∞

x

{t}
t2

dt =
1

2

󰁝 ∞

x

1

t2
dt+O(

1

x2
)

(b) (1) Using part (a) we get

∆(x) = x1/2 − 2
󰁛

a≤x1/2

{x/a}+O(1)

(2)
󰁝 x

0

∆(t)dt ≪ x

We get 2
3x

3/2 from the first term after integration, so we want the second term
to have a main tern that cancels this out.

5.3 Question 5

(a)

γ = −
󰁝 ∞

0

e−t log tdt

= lim
N→∞

(

N󰁛

n=1

1

n
− logN)

We write

1

n
=

󰁝

I

fn(t)dt =

󰁝 1

0

tn−1dt

Now

N󰁛

n=1

1

n
=

󰁝 1

0

(1 + t+ ...+ tN−1)dt

=

󰁝 1

0

1− tN

1− t
dt

=

󰁝 N

1

1− (1− v
N )N

v
dv

So

γ = lim
n→∞

(−
󰁝 N

1

(1− v/N)N

v
dv)

= −
󰁝 ∞

1

e−v

v
dv +

󰁝 1

0

1− e−t

t
dt

=

󰁝 ∞

1

e−t log tdt+

󰁝 1

0

e−t log tdt
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(c) ∀δ > 0,

󰁛

p

1

p1+δ
+ log δ − c+ γ = δ

󰁝 ∞

2

E(t)

t1+δ
dt− δ

󰁝 2

1

log log t+ c

t1+δ
dt

as δ → 0,

󰁛

p

1

p1+δ
+ log δ → c− γ

We have E(t) ≪ 1
log t , and δ

󰁕∞
2

1
(log t)t1+δ dt ≪ δ1/2.

(e) Note that this will show

󰁜

p≤x

(1− 1/p) ∼ eγ log x

Let

F (δ) =
󰁛

p

(log(1− 1

p1+δ
) +

1

p1+δ
)

converges uniformly. So F (0) = limδ→0 F (δ).
Now

󰁛

p

log(1− 1

p1+δ
= log ζ(1 + δ) → − log δ

as δ → 0 (we haven’t done zeta function, but let’s use it anyway) (log ζ(1+ δ)+
log δ) → 0 as δ → 0).

5.4 Question 1

We want to use induction and hyperbola method as well.
Note that τn = 1 ∗ τn−1. Write

󰁛

n≤x

τk(n) =
󰁛

ab≤x

τk−1(b)

=
󰁛

a≤x1/k

󰁛

b≤x/a

τk−1(b) +
󰁛

b≤x1−1/k

τk−1(b)⌊x/b⌋ − (
󰁛

b≤x1−1/k

τk−1(b))⌊x1/k⌋

= ...

Unfortunately we have no time for more, but feel free to ask now or later.

typed solution is online)


