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1 Vector spaces

1.1 Vector spaces

If an ∈ R, (an) → a if for every ε > 0, ∃N such that |an − a| < ε whenever
n > N .
Now consider a general vector space:

Definition. Let V be a real vector space. A norm on V is a function ||·|| : V → R
satisfying:
• ||v|| ≥ 0 ∀v ∈ V , and ||v|| = 0 ⇐⇒ v = 0;
•||λv|| = |λ| · ||v||, ∀λ ∈ R and v ∈ V ;
•||v + w|| ≤ ||v||+ ||w||, ∀v,w ∈ V (triangle inequality).

Example. ||v||2 =
(∑

v2i
) 1

2 , the Euclidean norm;
||v||1 =

∑
|vi|;

||v||∞ = max {|v1|, ..., |vn|}.

Example. Let V = C [0, 1] = {f : [0, 1]→ R|f is continuous}. Then we can
have the following norms:

• ||f ||1 =
∫ 1

0
|f (x) |dx;

• ||f ||2 =
(∫ 1

0
f (x)

2
dx
) 1

2

;

• ||f ||∞ = maxx∈[0,1] |f (x) |.

Notation. If || · || is a norm on V , we say the pair (V, || · ||) is a normed space.

Definition. Suppose (V, || · ||) is a normed vector space, and (vn) is a sequence
in V . We say (vn) converges to v ∈ V if ∀ε > 0, ∃N such that ∀n > N ,
||vn − v|| < ε.
Equivalently, (vn)→ v if and only if ||vn − v|| → 0 in R.

Example. Let V = Rn, vk = (vk,1, ..., vk,n).
(a) (vk)→ v with respect to || · ||∞
⇐⇒ ||vk − v||∞ → 0
⇐⇒ max {|vk,i − vi|} → 0
⇐⇒ |vk,i − vi| → 0 for all 1 ≤ i ≤ n
⇐⇒ vk,i → vi.

So sequence converges if and only if every component converges.

(b) (vk)→ v with respect to || · ||1
⇐⇒

∑n
i=1 |vk,i − vi| → 0

⇐⇒ |vk,i − vi| → 0 for all 1 ≤ i ≤ n
⇐⇒ vk,i → vi.

Note the two different norms in (a) and (b) give the same notion of convergence.

We set a convention that, when talking about convergence in Rn without men-
tioning a norm, then it’s with respect to || · ||1 (or || · ||∞ or || · ||2) (these all give
the same notion of convergence).
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Example. Let V = C [0, 1],

fn (x) =

 1− nx x ∈
[
0, 1

n

)
0 x ∈

[
1
n , 1
]

So

||fn||1 =

∫ 1

0

|fn (x) |dx =
1

2n
→ 0

as n→∞. So (fn)→ 0 with respect to || · ||1.

On the other hand, ||fn||∞ = 1 6→ 0, so (fn) 6→ 0 with respect to || · ||∞. Here
the two different norms give two different notions of convergence.

1.2 Continuity

Let (V, || · ||) be a normed vector space.

Recall: If vn ∈ V and v ∈ V , the sequence (vn) → v if for every ε > 0, there
exists n such that ||vn − v|| < ε when n > N .

Definition. Suppose V and W are normed spaces, and f : V →W . We say f
is continuous if the sequence (f (vn))→ f (v) in W whenever (vn)→ v in V .

Example. (1)f : V → Rn, f (v) = (f1 (v) , ..., fn (v)). Then f is continuous if
and only if f1, ..., fn are all continuous.
(2) pi : Rn → R by pi (v) = vi. Then pi is continuous.
(3) V = C [0, 1], x ∈ [0, 1], px : C [0, 1] → R by px (f) = f (x) (linear map).
Then px is continuous with respect to the uniform norm on C [0, 1]:

(fn)→ f wrt || · ||∞
⇐⇒ max

y∈[0,1]
|fn (x)− f (x) | → 0

=⇒ |fn (x)− f (x) | → 0

=⇒ (fn (x))→ f (x)

However, px is not continuous with respect to || · ||1 on C [0, 1]. See examples in
M&T.

So linear maps may not be continuous.
(4) If f : V1 → V2 and g : V2 → V3 are continuous, so is g ◦ f : V1 → V3.
(5) || · || : V → R is continuous.

Lemma. If v,w ∈ V , then ||w − v|| ≥ |||w|| − ||v|||.

Proof. Since ||v||+ ||w − v|| ≥ ||w||,
||w − v|| ≥ ||w|| − ||v||.
Similarly, ||w − v|| = ||v −w|| ≥ ||v|| − ||w||. So ||w − v|| ≥ |||w|| − ||v|||.
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Now we can prove the 5th example above:

Proof. Let f (v) = ||v||. Then if (vn) → v, (||vn − v||) → 0. But ||vn − v|| ≥
|||vn|| − ||v||| = |f (vn)− f (v) | ≥ 0.
So by squeeze rule, (|f (vn)− f (v) |)→ 0, i.e. f (vn)→ f (v).

Proposition. f : V →W is continuous if and only if for every v ∈ V and ε > 0,
there exists δ > 0 such that

||f (w)− f (v) ||W < ε

whenever ||w − v||V < δ.

Proof. Suppose the ε− δ condition hold. We’ll show that f is continuous, i.e. if
(vn)→ v, then (f (vn))→ f (v).
Given (vn)→ v and ε > 0, pick δ > 0 such that ||f (w)− f (v) || < ε whenever
||w− v|| < δ. Since (vn)→ v, there exists N such that ||vn − v|| < δ whenever
n > N , i.e. ||f (vn) − f (v) || < ε when n > N . So (f (vn)) → f (v). So f is
continuous.
If the ε− δ condition does not hold, then there exists v ∈ V and ε > 0 such that
for every n > 0, there exists vn with

||v − vn|| <
1

n

but
||f (v)− f (vn) || > ε

(Otherwise, take δ = 1
n and we get a contradiction). Then (vn) → v, but

(f (vn)) 6→ f (v). So f is not continuous.

1.2.1 Addendum

Suppose V,W are normed spaces and Uα is an open subset of V for all α ∈ A.
Let U = ∪α∈AUα.

Proposition. Suppose f : U → W and f is continuous on all Uα. Then f
is continuous on U . It’s important that Uα’s are all open. For example, any
f : V →W is continuous on {v}, but may not be continuous on ∪v∈V {v} = V .

Proof. Must show that given v ∈ U and ε > 0, ∃δ > 0 s.t.

f (Bδ (v) ∩ U) ⊂ Bε (f (v))

v ∈ ∪α∈AUα, so v ∈ Uα0
for some α0 ∈ A. f is continuous on Uα0

, so ∃δ1 > 0
s.t.

f (Bδ1 (v) ∩ Uα0) ⊂ Bε (f (v))

Uα0
is open, so ∃δ2 > 0 s.t. Bδ2 (v) ⊂ Uα0

.
Let δ = min (δ1, δ2). Then Bδ (v) ⊂ Bδ1 (v) and Bδ (v) ⊂ Bδ2 (v) ⊂ Uα0

.
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So Bδ (v) ⊂ Bδ1 (v) ∩ Uα0
.

Thus

f (Bδ (v) ∩ U) = f (Bδ (v)) ⊂ f (Bδ1 (v) ∩ Uα0) ⊂ Bε (f (v))

1.3 Open and Closed Subsets

Definition. If v ∈ V and r > 0,

Br (v) = {w ∈ V |||v −w|| < r}

is the open ball of radius r centered at v,

Br (v) = {w ∈ V |||v −w|| ≤ r}

is the closed ball of radius r centered at v.

Now we can get an alternative definition of continuous:
• f is continuous if and only if for every v ∈ V and ε > 0, there exists δ > 0
such that f (Bδ (v)) ⊂ Bε (f (v)).

Definition. U ⊂ V is an open subset of V if for every u ∈ U , there exists ε > 0
such that Bε (u) ⊂ U .

Proposition. If f : V →W is continuous and U ⊂W is open, then f−1 (U) is
open in V .

Proof. Suppose v ∈ f−1 (U), i.e. f (v) ∈ U .
U is open, so there exists ε > 0 such that Bε (f (v)) ⊂ U .
f is continuous, so ∃δ > 0 such that f (Bδ (v)) ⊂ Bε (f (v)) ⊂ U , i.e. Bδ (v) ⊂
f−1 (U) so f−1 (U) is open.
The converse is also true(see M&T).

Definition. (Open subsets) Recall U ⊂ V is open in V if for every u ∈ U ,
∃ε > 0 s.t. Bε (u) ⊂ U .

Proposition. If f : V →W is continuous and U ⊂W is open, then f−1 (U) is
open in V .

Example. Given v ∈ V , define

fv : V → R
fv (w) = ||v −w||

Then fv is continuous, so

Br (v) = f−1v ((−r, r))

is open in V , i.e. open balls are open.
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Definition. (Closed subsets) Recall if C ⊂ V , V − C = {v ∈ V |v 6∈ C} is the
complement of C. C ⊂ V is closed if V − C is an open subset of V .

Corollary. If f : V →W is continuous and C is closed in W , then f−1 (C) is
closed in V .

Example. Let
C = {(x, f (x)) |x ∈ R}

where f : R→ R is continuous. Then C is closed in R2.

Proof. Let F : R2 → R by F (x, y) = f (x)− y which is continuous.
Then C = F−1 ({0}) is closed, since {0} is closed in R.

Example.
Br (v) = f−1v ([0, r])

is closed in any normed space V .

Example. Q ⊂ R is neither open nor closed.

Example. V ⊂ V , φ ⊂ V are both open and closed.

Proposition. C is closed in V if and only if for every sequence (vn)→ v ∈ V
which satisfies vn ∈ C for all n, we have v ∈ C as well.

Proof. Suppose C is closed in V , and (vn)→ v with v 6∈ C.
Now V − C is open, and v ∈ V − C. So ∃ε > 0 s.t. Bε (v) ⊂ V − C.
Since (vn) → v, there exists N s.t. vn ∈ Bε (v) ⊂ V − C for all n > N . So
vn 6∈ C. Contradiction.

Conversely, suppose that C is not closed. Then V − C is not open. So there
exists u ∈ V −C such that for every ε > 0, Bε (v) 6⊂ V −C, i.e. Bε (v)∩C 6= φ.
Now pick vn s.t. vn ∈ B1/n (v) ∩ C. Then ||vn − v|| < 1

n → 0, so (vn)→ v for
all vn ∈ C, but v 6∈ C. Contradiction.

1.4 Lipschitz equivalence

We’ve seen in the first lecture that || · ||1,|| · ||2,|| · ||∞ all induce the same notion
of convergence on Rn. So f : Rn → V is continuous with respect to || · || if and
only if it’s continuous with respect to || · ||∞.

Proposition. Suppose || · ||,|| · ||′ are two norms on V . The map id : (V, || · ||)→
(V, || · ||′) by id (v) = v is continuous if and only if there exists some constants
C > 0 such that

||v||′ ≤ C||v||

for all v ∈ V .
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Proof. Suppose ||v||′ ≤ C||v|| for all v ∈ V .
If (vn)→ v with respect to || · ||, then (||v − vn||)→ 0. But then

0 ≤ ||v − vn||′ ≤ C||v − vn||

By the squeeze law, ||v − vn||′ → 0 as well. So (vn)→ v with respect to || · ||′.
This means id : (V, || · ||)→ (V, || · ||′) is continuous.

Conversely, suppose id : (V, || · ||)→ (V, || · ||′) is continuous. Then there exists
δ > 0 s.t. Bδ (0, || · ||) ⊂ B1 (0, || · ||′).
For any v ∈ V,v 6= 0, there exists k s.t. ||kv|| = δ

2 . So kv ∈ Bδ (0, || · ||), so
kv ∈ B1 (0, || · ||′), i.e. ||kv||′ < 1 = 2

δ ||kv||. Divide by |k| we get

||v||′ ≤ 2

δ
||v||

for all v 6= 0. So we can take C = 2
δ . The case v = 0 is trivial.

Definition. If || · || and || · ||′ are two norms on V , we say they are Lipschitz
equivalent if there exists C > 0 s.t.

1

C
||v|| ≤ ||v||′ ≤ C||v||

for all v ∈ V , or say there exists C1, C2 such that

||v|| ≤ C1||v||′

and
||v||′ ≤ C2||v||

That is also equivalent to

id : (V, || · ||)→ (V, || · ||′)

and
id : (V, || · ||′)→ (V, || · ||)

being both continuous.

Corollary. If || · || and || · ||′ are Lipschitz equivalent, then:
(a) (vn)→ v with respect to || · || if and only if (vn)→ v with respect to || · ||′.
(b) f : V → W is continuous with respect to || · || if and only if f : V → W is
continuous with respect to || · ||′.
(c) g : W → V is continuous with respect to || · || if and only if g : W → V is
continuous with respect to || · ||′.

Example. ||v||∞ ≤ ||v||2 ≤ ||v||1 ≤ n||v||∞ for all v ∈ Rn. So || · ||∞, || · ||2,
|| · ||1 are all Lipschitz equivalent.

Problem. Can we find a norm on Rn that is not Lipschitz equivalent to these?
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2 Uniform Convergence

2.1 Notions of Convergence

Let A ⊂ R, f, fn : A→ R.

We’ve known the definition of continuous and boundedness from Analysis I. Now
define C (A) to be the set of continuous functions f : A→ R, and B (A) to be
the set of bounded functions F : A→ R. Both of these are vector spaces.

We have C [0, 1] ⊂ B [0, 1] by maximum value theorem, while C (0, 1) 6⊂ B (0, 1)
(take f (x) = 1

x ).

Definition. If f, fn : A→ R, we say (fn)→ f pointwise if (fn (x))→ f (x) for
every x ∈ A.

Definition. The uniform norm || · ||∞ on B (A) is given by

||f ||∞ = sup
x∈A
|f (x)|

If f, fn : A→ R, we say (fn)→ f uniformly if ||f − fn||∞ → 0.

Equivalently, if (fn) → f pointwise, then for every x ∈ A and ε > 0, ∃N s.t.
|fn (x)− f (x)| < ε whenever n > N .
If (fn)→ f uniformly, given ε, we need to find some N that works for all x ∈ A.

Example. Let A = R, fn (x) = x+ 1
n , f (x) = x. Then (fn)→ f pointwise and

uniformly.

Example. Let A = R, gn (x) =
(
x+ 1

n

)2
, g (x) = x2. Then g (n)→ g pointwise,

but gn − g = 2x
n + 1

n2 is not even bounded. So (gn) does not converge to g
uniformly. Nevertheless, (gn) → g uniformly on [a, b] for any a, b ∈ R) (since
convergence and uniform convergence is the same on compact sets).

Example. If (fn) → f uniformly, then (fn) → f pointwise (Immediate from
definition).

Theorem. Suppose fn ∈ C (A) and (fn)→ f uniformly on A. Then f ∈ C (A).

Proof. Given x ∈ A and ε > 0, we need to find δ > 0 s.t.

|f (x)− f (y)| < ε

whenever |x− y| < δ and y ∈ A.
Since (fn)→ f uniformly, ∃N s.t.

|fn (y)− f (y)| < ε

4

whenever n ≥ N and y ∈ A.
Since fN is continuous, ∃δ > 0 s.t.

|fN (x)− fN (y)| < ε

2
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whenever |x− y| < δ and y ∈ A. Then for |x− y| < δ and y ∈ A,

|f (x)− f (y)| ≤ |f (x)− fN (x)|+ |fN (x)− fN (y)|+ |fN (y)− f (y)|

<
ε

4
+
ε

2
+
ε

4
= ε

which is what we wanted to prove.

Corollary. C [a, b] is a closed subset of B [a, b] with respect to || · ||∞.

Proof. Recall that C is closed if c ∈ C whenever (cn)→ c and cn ∈ C.

Example. Let A = [0, 1], fn (x) = xn, f (x) =

{
0 x ∈ [0, 1)
1 x = 1

.

Then (fn)→ f pointwise but not uniformly, since fn ∈ C [0, 1], but f 6∈ C [0, 1].

Example. Let fn (x) = (1− x)xn. Then (fn)→ 0 pointwise. In fact (fn)→ 0
uniformly.

Proof. Given ε > 0, we must find N s.t. |fn (x) | < ε for all x ∈ [0, 1] whenever
n > N .

We know 1− ε < 1, so (1− ε)n → 0. Pick N s.t. (1− ε)n < ε whenever n > N .
Then for n > N ,

|(1− x)xn| < 1 · (1− ε)n < ε

for x ∈ [0, 1− ε], and
|(1− x)xn| < ε · 1n = ε

for x ∈ (1− ε, 1].

Everything so far in this chapter works for f : A→W , where A ⊂ V and V , W
are both normed spaces. (exercise)

Recall that if f, fn ∈ C [a, b] with a, b ∈ R, then (fn)→ f in L1 (with respect to
|| · ||1) if

||fn − f ||1 =

∫ b

a

|fn (x)− f (x)| → 0

Lemma. If (fn)→ f uniformly on [a, b] and fn ∈ C [a, b], then (fn)→ f in L1

on [a, b].

Proof. (fn)→ f uniformly implies that f ∈ C [a, b].
Given ε > 0, pick N s.t.

|fn (x)− f (x)| < ε

(b− a)

for n > N and x ∈ [a, b]. Then

||fn − f ||1 =

∫ b

a

|fn (x)− f (x)| dx <
∫ b

a

ε

b− a
dx = ε

So (fn)→ f in L1.



2 UNIFORM CONVERGENCE 12

Example. Let A = [0, 1],

fn (x) =

 nx x ∈
[
0, 1

n

]
2− nx x ∈

[
1
n ,

2
n

]
0 x ∈

[
2
n , 1
]

Then (fn)→ 0 pointwise, and in L1, but not uniformly.

Example. Let A = [0, 1],

fn (x) =

 n2x x ∈
[
0, 1

n

]
2n− n2x x ∈

[
1
n ,

2
n

]
0 x ∈

[
2
n , 1
]

Then (fn)→ f pointwise, but not in L1, nor uniformly.

We woud like to say that a sequence of bounded integrable functions on [0, 1]
that converges pointwise converges in L1. But for this to be true, we need a
better definition of

∫
(in measure and probability).

2.2 Power series

Recall some facts about series of complex numbers from Analysis I, for
∑∞
i=0 ci,

ci ∈ C:
1)
∑∞
i=0 ci = c means (

∑n
i=0 ci)→ c;

2)
∑∞
i=0 ci converges if and only if

∑∞
i=k ci converges;

3)
∑∞
i=k α

i = αk

1−α if |α| < 1;

4) If
∑∞
i=0 ci converges, then (cn)→ 0;

5) If 0 < ai < bi for all i (here ai, bi ∈ R), and
∑∞
i=0 bi converges, then

∑∞
i=0 ai

converges as well;
6) If

∑∞
i=0 |ci| converges, then

∑∞
i=0 ci converges.

Corollary. If |ci| < bi for all i and
∑∞
i=0 bi converges, then

∑∞
i=0 ci converges.

Proof. Follows from (5) and (6).

Definition. A power series is

∞∑
i=0

ai (zi)
i

where ai, c, z ∈ C. Call c the center of the series.

Proposition. Suppose
∑∞
i=0 ai (z0 − c)i converges for some z0 ∈ C. Then the

series
∑∞
i=0 ai (z0 − c)i converges for all z with |z − c| < |z0 − c|.

Proof. By (4),
(
ai (z0 − c)i

)
→ 0. Pick N such that |ai (z0 − c)i | < 1 for all

i ≥ N .
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By (2), suffices to show that
∑∞
i=N ai (z − c)i converges. Now

|ai (z − c)i | = |ai (z0 − c)i | ·
∣∣∣∣ z − cz0 − c

∣∣∣∣i ≤ 1 · αi

(call this ’Key Estimate’, to be used later) for i ≥ N where α =
∣∣∣ z−cz0−c

∣∣∣.
For |z − c| < |z0 − c|, α < 1, so

∑∞
i=N α

i converges.

By corollary, it follows that
∑∞
i=0 ai (z − c)i converges.

Definition.

R = sup

{
|z − c||

∞∑
i=0

ai (z − c)i converges

}
is the radius of convergence of this series.

The above proposition says that
∑∞
i=0 ai (z − c)i converges for all z ∈ BR (c) =

{z ∈ C||z − c| < R}.

We can define f : BR (c)→ C by

f (z) =

∞∑
i=0

ai (z − c)i

Let

pn (z) = ai (z − c)i

Then (pn)→ f pointwise on BR (c).

Theorem. With notation as above, (pn)→ f uniformly on B̄r (c) = {z ∈ C||z − c| ≤ r}
for any r < R.

Proof. Fix z0 ∈ C with r < |z0 − c| < R. Then
∑∞
i=0 ai (z0 − c)i converges. Let

En (z) = f (z)− pn (z) =

∞∑
i=n+1

ai (z − c)i

We want to show that given ε > 0, ∃N s.t. |En (z) | < ε for all n > N and
z ∈ B̄r (c).

Pick N0 with |ai (z0 − c)i | < 1 for all i ≥ N0 as in the proof of the previous
proposition.

Now for n > N0, Key Estimate says that

|En (z) | =

∣∣∣∣∣
∞∑
i=m

ai (z − c)i
∣∣∣∣∣

≤
∞∑

i=n+1

|ai (z − c)i |

≤
∞∑

i=n+1

α (z)
i
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where α (z) = |z−c|
|z0−c| .

If z ∈ B̄r (c), α (z) ≤ α0 = r
|z0−c| < 1. So

|En (z)| ≤
∞∑
i=1

αi =
αn+1
0

1− α0

Now α0 < 1, so
αn+1

0

1−α0
→ 0 as n → ∞. Pick N > N0 s.t.

αn+1
0

1−α0
< ε for n > N .

Then |En (z) | < ε for all n > N and z ∈ B̄r (c) which is what we wanted.

Remark. (pn) may not converge uniformly on BR (c). For example,
∑∞
i=0 x

i

has R = 1, and equals f (x) = 1
1−x on B1 (0), but pn is a polynomial, so bounded

on B̄1 (0), so f (x)− pn (x) is not even a bounded function on B1 (0).

Corollary.

f (z) =

∞∑
i=0

ai (z − c)i

is a continuous map f : BR (c)→ C.

Proof. pn =
∑n
i=0 aI (z − c)i is a polynomial, so is continuous as a map C→ C.

(pn)→ f uniformly on B̄r (c) for any r < R, so f : B̄r (c)→ C is continuous for
any r < R.
Given z ∈ BR (c), pick r with z ∈ Br (c). Then f is continuous at z. So f is
continuous at all z ∈ BR (c), i.e. f : BR (c)→ C is continuous.

We can now construct lots of continuous functions using power series.

Example.

exp (z) =

∞∑
i=0

zi

i!

has R =∞, so is a well defined, continuous function on C.

Let f (x) = exp (x) for x ∈ R. We want to show that f ′ (x) = f (x):

d

dx

( ∞∑
i=0

xi
i!

)
=

∞∑
i=0

ixi−1

i!
=

∞∑
i=1

xi−1

(i− 1)!
= exp (x)

this looks easy, but why does the first equality hold?

Example. Suppose
∞∑
i=0

ai (z − c)

has radius of convergence R. Then if pn =
∑∞
i=0 ai (z − c)i, (pn) → f (z) =∑∞

i=0 ai (z − c)i uniformly on B̄r (c) for all r < R =⇒ f is continuous on B̄r (c)
for r ∈ R.
Take Ur = Br (c), so f is continuous on Ur for r < R. Ur is open. So f is
continuous on ∪r<RUr = BR (c).
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2.3 Integration and Differentiation

Recall from Analysis I:

Theorem. (Fundamental Theorem of Calculus) If f ∈ C [a, b], then

F (x) =

∫ x

x0

f (y) dy

exists, and
F ′ (x) = f (x) .

Some properties of integral:
Suppose f, g ∈ C [a, b].
(1) ∫ x

x0

f (y) + λg (y) dy =

∫ x

x0

f (y) dy + λ

∫ x

x0

g (y) dy

(2) If f (y) ≤ g (y) for all y ∈ [a, b], then∫ x

x0

f (y) dy ≤
∫ x

x0

g (y) dy

(3) ∣∣∣∣∫ x0

x

f (y) dy

∣∣∣∣ ≤ ∣∣∣∣∫ x0

x

|f (y)| dy
∣∣∣∣

Suppose fn ∈ C [a, b] and (fn)→ f uniformly on [a, b]. So f ∈ C [a, b]. Thus

F (x) =

∫ x

x0

fn (y) dy

and

F (x) =

∫ x

x0

f (y) dy

are defined.

Proposition. (Fn)→ F uniformly on [a, b].

Proof. (fn)→ f uniformly, so given ε > 0, ∃N s.t.

|fn (x)− f (x)| < ε

for all n > N and x ∈ [a, b]. Choose N s.t.

|fn (x)− f (x)| < ε

b− a
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for all n > N and x ∈ [a, b]. Then for x ∈ [a, b],

|Fn (x)− F (x)| =
∣∣∣∣∫ x

x0

(fn (y)− f (y)) dy

∣∣∣∣
≤
∣∣∣∣∫ x

x0

|fn (y)− f (y)| dy
∣∣∣∣

≤
∣∣∣∣∫ x

x0

ε

b− a
dy

∣∣∣∣ dy
=
ε |x− x0|
|b− a|

≤ ε

So (Fn)→ F uniformly on [a, b].

Note that (fn) ∈ C (R), (fn)→ f uniformly does not imply (Fn)→ F uniformly
on R. (But does on [a, b] for a, b ∈ R).

Let

f (y) =

∞∑
i=0

ai (y − c)i

be a real power series (ai, c, y ∈ R) with radius of convergence R. Then if the

partial sum pn (y) =
∑n
i=0 ai (y − c)i, then (pn)→ f uniformly on [c− r, c+ r]

for any r < R.

Corollary. ∫ x

c

f (y) dy =

∞∑
i=0

ai
i+ 1

(x− c)i+1

for all x ∈ (c−R, c+R).

Proof. Given x ∈ (c−R, c+R), pick r with |x − c| < r < R. Then (pn) → f
uniformly on [c− r, c+ r], so by proposition

(Pn)→
∫ x

c

f (y) dy

where

Pn =

∫ x

c

pn (y) dy =

n∑
i=0

ai
i+ 1

(x− c)i+1

Q: If (fn)→ f uniformly, what can I say about (fn)?
A: Nothing, because:

Example. Take fn (x) = 1
n sinnx, x ∈ [0, π]. Then (fn) → 0 uniformly on

[0, π], but f ′n (x) = cosnx doesn’t converge for any x ∈ (0, π).
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Proposition. If

f (y) =

∞∑
i=0

ai (y − c)i

converges on (c−R, c+R), then

f (y) =

∞∑
i=0

iai (y − c)i−1

on (c−R, c+R).

Proof.

Lemma.
∞∑
i=0

iai (y − c)i−1

converges for all y ∈ (c−R, c+R).

Pick y0 with |y − c| < |y0 − c| < R.∑∞
i=0 ai (y − c)i converges, so by ’Key Estimate’, ∃N s.t.

|ai (y − c) |i < αi

for all i ≥ N , where α =
∣∣∣ y−cy0−c

∣∣∣ < 1.

If y = c,
∑
iai (y − c)i−1 obviously converges. If not, estimate∣∣∣iai (y − c)i−1

∣∣∣ < i

|y − c|
αi

Now
∑∞
i=0

i
|y−c|α

i converges by Ratio Test. So
∑∞
i=0 iai (y − c)i−1 converges as

well.

Now begin the proof of proposition:

g (y) =

∞∑
i=0

iai (y − c)i−1

is continuous on (c−R, c+R). So by corollary,∫ x

c

g (y) dy =

∞∑
i=1

ai (x− c)i = f (x)− f (c)



2 UNIFORM CONVERGENCE 18

By Fundamental Theorem of Calculus, f ′ (x) = g (x).

Application: Power series solutions of ODEs are legit (as long as we check the
radius of convergence).
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3 Compactness

3.1 Compact subsets of Rn

Let V be a normed space. Then if (vn)→ v ∈ V and
(
vnj

)
is a subsequence of

(vn), then
(
vnj

)
→ v. We leave this as an exercise.

Definition. A ⊂ V is bounded if ∃M ∈ R s.t. ||v|| ≤M for all v ∈ A.

If || · || and || · ||′ are Lipschitz equivalent, then boundedness with respect to the
two norms are equivalent.

Corollary. (Bolzano-Weierstrass in Rn) If (vk) is a bounded sequence in Rn, it
has a converging subsequence.

Proof. To prove this, simply pick a subsequence with the first coordinate conver-
gent, then pick a subsequence of that subsequence with the second coordinate
convergent, etc..

Let vk = (v1,k, ..., vn,k).
(vk) is bounded, so (vi,k) is bounded for all 1 ≤ i ≤ n. By B-W theorem, there

exists a convergent subsequence
(
v1,k1j

)
of (v1,k). Now the sequence

(
v2,k1j

)
is

bounded. So by B-W, there exists a subsequence
(
v2,k2j

)
which converges. Then

by the previous exercise,
(
v1,k2j

)
converges.

Now consider the sequence
(
v3,k2j

)
. By B-W, it has a convergent subsequence(

v3,k3j

)
. etc.

Apply B-W n times, we get
(
vknj

)
of original (vn) s.t.

(
vi,knj

)
converges for

1 ≤ i ≤ n. So
(
vknj

)
converges.

Example. Let V = C [0, 1] with || · ||∞, and

fn (x) =

{
1− nx x ∈

[
0, 1

n

]
0 x ∈

[
1
n , 1
]

If

f (x) =

{
1 x = 0
0 x > 0

then (fn)→ f pointwise. Then (fn) is bounded with respect to || · ||∞ but has
no convergent subsequence.
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Proof. Suppose
(
fnj

)
→ g uniformly, then

(
fnj

)
→ g pointwise, so g = f . But

f 6∈ C [0, 1], so
(
fnj

)
6→ f uniformly.

Definition. We say A ⊂ V is sequentially compact (s.compact) if any sequence
(vn) in A has a convergent subsequence

(
vnj

)
→ v ∈ A.

Example. R is not s.compact, since (n) has no convergent subsequence.

Example. A = (0, 2) is not s.compact, since
(
1
n

)
→ 0 6∈ A.

Proposition. Suppose A ⊂ V is s.compact. Then A is closed in V and bounded.

Proof. We prove the contrapositive:

If A is not closed, then there exists a sequence (vn)→ v with vn ∈ A for all n
but v 6∈ A. By the exercise, any subsequence

(
vnj

)
converges to v 6∈ A. So A is

not s.compact.

If A is not bounded, then for all n ∈ N we can find vn ∈ A with ||vn|| ≥ n.
We claim that

(
vnj

)
has no convergent subsequence: if

(
vnj

)
→ v, then ∃J s.t.

||vnj
− v|| < 1 for all j > J . So

||vnj || ≤ ||v||+ ||vnj
− v|| ≤ ||v||+ 1

for all j > J , but this is impossible since nj ≥ j, so ||vnj
|| ≥ j →∞ as j →∞.

It follows that vn has no convergent subsequence, so A is not s.compact.

Theorem. (Heine-Borel) A ⊂ Rn is s.compact if and only if A is closed and
bounded.

Proof. By the proposition, A is s.compact =⇒ A is closed and bounded.
Conversely, suppose A is closed and bounded, and (vn) is a sequence in A. Then
(vn) is bounded (since A is). So by B-W, it has a convergent subsequence. Since
A is closed, v ∈ A. So A is s.compact.

Remark. By previous example, B̄1 (0) in C [0, 1] with || · ||∞ is closed and
bounded but not s.compact since (fn) has no convergent subsequence. So
Heine-Borel theorem does not hold in general spaces.

Remark. If A ⊂ V a normed space, then A is s.compact ⇐⇒ A is compact.

Proposition. Suppose C ⊂ V is s.compact and f : C →W is continuous. Then
f (C) is s.compact.

Proof. Suppose (wn) is a sequence in f (C). Pick vn ∈ C with f (vn) = wn.
We know C is s.compact, so (vn) has a convergent subsequence

(
vnj

)
→ v ∈ C.

Now f is continuous, so
(
wnj

)
=
(
f
(
vnj

))
→ (f (v)) ∈ f (C). So f (C) is

s.compact.

We’ll use the above to prove maximum value theorem.
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Lemma. If A ⊂ R is closed and bounded, then supA ∈ A.

Proof. A is bounded, so supA exists. Pick xn ∈ A with supA− 1
n ≤ xn ≤ supA.

Then (xn)→ supA. The result follows since A is closed.

Theorem. (Maximum value theorem) Suppose C is s.compact, f : C → R is
continuous. Then there exists v ∈ V s.t.

f (v) ≥ f (v′)

for all v′ ∈ C.

Proof. We know A = f (C) is a s.compact subset of R, so it is closed and bounded.
So by the lemma, supA is in A = f (C). So pick v ∈ C with f (v) = supA.

Application: Norms on Rn:

Let || · || be a norm on Rn.

Lemma. The map id:(Rn, || · ||1)→ (Rn, || · ||) is continuous.

Proof. Write v = (v1, ..., vn) =
∑n
i=1 viei. By the triangle inequality,

||v|| ≤
n∑
i=1

||viei|| =
n∑
i=1

|vi|||ei|| ≤ C
n∑
i=1

|vi| = C||v||1

Where C = max1≤i ≤ n {||ej ||}. By criterion of section 1.4, the given map is
continuous.

Corollary. The map f : (Rn, || · ||1)→ R given by f (v) = ||v|| is continuous.

Theorem. || · || is Lipschitz equivalent to || · ||1.

Proof. Let S = {v ∈ Rn | ||v1 = 1} = g−1 ({1}), where g (v) = ||v||1.

Now g : (Rn, || · ||1)→ R is continuous, {1} is closed in R, so g−1 ({1}) is closed
in (Rn, || · ||1). S is also obviously bounded in (Rn, || · ||1). So S is s.compact by
Heine-Borel.

f : (Rn, || · ||1) → R, f (v) = ||v|| is continuous by corollary. So by maximum
value theorem, there exists v± ∈ S s.t.

C− = f (v−) ≤ f (v) ≤ f (v+) = C+

for all v ∈ S, i.e. C− ≤ v ≤ C+ for all v ∈ S where C− = ||v−|| > 0 since
v− ∈ S =⇒ v− 6= 0 =⇒ v− 6= 0.

Then for v 6= 0 in Rn, v/||v||1 ∈ S. So

0 < C− ≤ ||
v

||v||1
≤ C+
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i.e.
C−||v||1 ≤ ||v|| ≤ C+||v||1

where C−, C+ > 0. So the two norms are Lipschitz equivalent.

Corollary. Any two norms on Rn are Lipschitz equivalent.

3.2 Completeness

Let V be a normed space, and let (vn) be a sequence in V .

Definition. The sequence (v)n is Cauchy if given ε > 0, there exists N s.t.
||vn − vm|| < ε for all n,m ≥ N .

Example. If (vn)→ v, then (vn) is Cauchy.

Proof. Given ε > 0, pick N s.t. ||vn−v|| < ε
2 for all n ≥ N . Then for n,m ≥ N ,

by triangle inequality,

||vn − vm|| ≤ ||vn − v||+ ||v − vm|| < ε

i.e. (vn) is Cauchy.

Example. Let sn =
∑n
i=1

1
i . Then sn diverges. Also it is not Cauchy, even

though |sn − sn+1| → 0 as n→∞.

Cauchy sequences want to converge.

Example. Given ε > 0, pick N s.t. ||vn − vm|| < ε for all n,m ≥ N . Then all
but finitely many terms of (vn) are contained in Bε (vN ).

However they may not have an element of V to converge to.

Example. Let V = C [0, 1] with || · ||1. Take

fn =

 0 x ∈ [0, 1/2]
n (x− 1/2) x ∈ [1/2, 1/2 + 1/n]
1 x ∈ [1/2 + 1/n, 1]
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f (n) is Cauchy:
If m,n ≥> N , |fn (x) − fm (x) | = 0 if x 6∈ An = [1/2, 1/2 + 1/N ], and < 1 if
x ∈ AN . Then

||fn − fm||1 =

∫ 1

0

|fn (x)− fm (x) |dx ≤
∫ 1/2+1/N

1/2

1dx =
1

N

so (fn) is Cauchy.

Now let

f (x) =

{
0 x ∈ [0, 1/2]
1 x ∈ (1/2, 1]

which is not in C [0, 1].

If (fn)→ g ∈ C [0, 1] then (fn)→ g with respect to || · ||1 on [0, 1]−An for any
N > 0. On the other hand, (fn)→ f uniformly on [0, 1]−AN for any N > 0.

On the other hand, (fn)→ f uniformly on [0, 1]−AN for any N > 0. So (fn)→ f
with respect to || · ||1 on [0, 1]− AN for all N > 0. Therefore g (x) = f (x) for
all x ∈ [0, 1]. Contradiction.

Definition. A normed space V is complete if every Cauchy sequence (vn) in V
converges to a limit v ∈ V .

Example. (C [0, 1] , || · ||1) is not complete.

Application: Completeness of Rn.

Let V be a normed vector space, and suppose (vn) is a Cauchy sequence in V .

Lemma. (vn) is bounded. (Exercise)

Lemma. If (vn) has a convergent subsequence (vni)→ v ∈ V , then (vn)→ v.
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Proof. Given ε > 0, pick M s.t. ||vn − vm|| < ε
2 whenever n,m > M . Now vni

converges to v, so pick I s.t. ||vni
− v|| < ε

2 whenever i > I.
So choose I ′ > I s.t. nI′ ≥M . Then for n > nI′ ,

||vn − v|| ≤ ||vn − vnI′ ||+ ||vnI′ − v|| < ε

So (vn)→ v.

Theorem. Rn is complete.

Proof. Suppose (vn) is a Cauchy sequence in Rn. By lemma 1, (vn) is bounded.
By B-W, (vn) has a convergent subsequence (vni

)→ v. By lemma 2, (vn)→ v,
i.e. every Cauchy sequence converges. So Rn is complete.

Remark. If || · || and || · ||′ are Lipschitz equivalent, then (vn) is Cauchy with
respect to the two norms are equivalent. So Completeness with respect to the
two norms are equivalent.

Since all norms on Rn are Lipschitz equivalent, the the theorem holds for any
norm.

We saw (C [0, 1] , || · ||1) is not complete. What about (C [0, 1] , || · ||∞)?

Bounded sequences need not have convergent subsequences.

Theorem. C [0, 1] is complete with respect to || · ||∞.

Proof. Given a Cauchy sequence (fn), we must find f ∈ C [0, 1] s.t. (fn) → f
uniformly.

Given ε > 0, choose N s.t. ||fn − fm|| < ε/2 for all n,m ≥ N. Then if x ∈ [0, 1],

|fn (x)− fm (x) ≤ max
x∈[0,1]

|fn (x)− fm (x) |

= ||fn − fm||∞
< ε/2 < ε

For n,m ≥ N .

So (fn (x)) is a Cauchy sequence in R. But R is complete. So limn→∞ fn (x)
exists.

Define f (x) = limn→∞ fn (x). Then (fn)→ f pointwise.

Now we want to prove (fn)→ f uniformly. Given ε > 0, and x ∈ [0, 1], pick M
(depending on x) s.t. |fn (x)− f (x) < ε/2 whenever n ≥M .

Let R = max (N,M), then for n ≥ N ,

|fn (x)− f (x) | ≤ |fn (x)− fR (x) |+ |fR (x)− f (x) |
< ε/2 + ε/2 = ε
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for n,R ≥ N . i.e. |fn (x)− f (x) | < ε for all x ∈ [0, 1] i.e. ||fn − f ||∞ < ε.
So (fn)→ f uniformly.

fn ∈ C [0, 1] =⇒ f ∈ C [0, 1]. So (fn)→ f ∈ C [0, 1] uniformly.

3.3 Uniform continuity

Suppose V,W are normed spaces, A ⊂ V .

Definition. f : A→ W is uniformly continuous if for every ε > 0, ∃δ > 0 s.t.
||f (v)− f (v′) || < ε whenever ||v − v′|| < δ.

Example. Let f : R→ R by f (x) = x2. Then f (x+ δ)−f (x) = 2xδ+ δ2. For
fixed δ, 2xδ + δ2 →∞ as x→∞. So f (x) = x2 is not uniformly continuous.

Example. Let f : (0, 1]→ R with f (x) = 1
x . This is not uniformly continuous

as well (consider x→ 0).

Theorem. If C is s.compact, and f : C →W is continuous, then f is uniformly
continuous.

Proof. Suppose f is not uniformly continuous. Then there exists ε > 0 s.t. for all
n > 0 we can find vn,wn ∈ C with ||vn−wn|| < 1

n , and ||f (vn)− f (wn) || ≥ ε
(else f is uniformly continuous).

Since C is s.compact, (vn) has a convergent subsequence (vni
)→ v∗ ∈ C.

f is continuous and v∗ ∈ C, so ∃δ > 0 s.t. ||f (v) − f (v∗) || < ε/2 whenever
v ∈ Bδ (v∗).

If v,v′ ∈ Bδ (v∗), then

||f (v)− f (v′) || ≤ ||f (v)− f (v∗) ||+ ||f (v∗)− f (v′) ||
< ε/2 + ε/2 = ε

(vni)→ v∗, so pick I1 s.t. ||vni − v∗|| < δ/2 when i ≥ I1.

Pick I2 s.t. 1/I2 < δ/2. Then for i ≥ max (I1, I2), we have ||vni
− v∗|| < δ/2

and ||vni
−wni

|| < 1
ni
< 1

i <
1
I2
< δ

2 .

So ||wni
− v∗|| < ||wni

− vni
|| + ||vni

− v∗|| < δ/2 + δ/2 = δ, i.e. wni
,vni

∈
Bδ (v∗), ||f (vni

) − f (wni
) || ≥ ε. Contradiction. So f must be uniformly

continuous.

3.4 Application: Integration

Recall from Analysis I: We say f : [a, b]→ R is piecewise constant if ∃a = a0 <
a1 < ... < an = b and c1, ..., cn ∈ R s.t. f (x) = ci if x ∈ (ai−1, ai).
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Let P [a, b] = {f : [a, b]→ R | f is piecewise constant}. If f ∈ P [a, b] is as above,
then

I (f) =

n∑
i=1

ci (ai − ai−1) = ”

∫
”f

Lemma. If f, g ∈ P [a, b], λ ∈ R, then

f − λg ∈ P [a, b]

and I (f − λg) = I (f)− λI (g).

Write f ≥ g if f (x) ≥ g (x) for all x ∈ [a, b].

Lemma. If f ≥ 0, I (f) ≥ 0.

So if f, g ∈ P [a, b] , f ≥ g, then I (f) ≥ I (g).

Definition. (Riemann Integral) Suppose f : [a, b]→ R is bounded. Let

U (f) = {g ∈ P [a, b] | g ≥ f} ,
L (f) = {g ∈ P [a, b] | g ≤ f}

since f is bounded, these are not empty.
Let

U (f) = {I (g) | g ∈ U (f)} ,
L (f) = {I (g) | g ∈ L (f)}

If g+ ∈ U (f) and g− ∈ L (f), then g+ ≥ f ≥ g−. So I (g+) ≥ I (g−). If
u ∈ U (f) and l ∈ L (f), then u ≥ l. So U (f) is bounded below, L (f) is
bounded above.

Now let
u (f) = inf U (f) ,

l (f) = inf L (f)
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Note that u (f) ≥ l (f).

We say f is Riemann integrable if u (f) = l (f), in which case we define∫ b

a

f (x) dx = u (f) = l (f)

If f ∈ P [a, b], then u (f) = I (f) = l (f), so f is RI.

Theorem. If f ∈ C [a, b], then f is RI.

Lemma. Given ε > 0, ∃g+ ∈ U (f) and g− ∈ L (f) s.t. I (g+)− I (g−) < ε.

Proof. [a, b] is closed and bounded in R, so it is s.compact. By last lecture’s
theorem, f : [a, b]→ R is uniformly continuous.
So pick δ s.t.

|f (x)− f (y) | < ε

b− a
whenever |x−y| < δ. Choose a = a0 < a1 < ... < an = b such that ai+1−ai < δ
for all i.

Define
c+i = max

x∈[ai−1,ai]
f (x) ,

c−i = min
x∈[ai−1,ai]

f (x)

(These exist by Maximum value theorem) So

c+i = f
(
x+
)
≥ f

(
x−
)
∀x ∈ [ai−1, ai] ,

c−i = f
(
x−
)
≤ f (x)∀x ∈ [ai−1, ai]

x+, x− ∈ [ai−1, ai] =⇒ |x+ − x−| < δ.

Define
g+ (x) = c+i if x ∈ [ai−1, ai) ,

g− (x) = c−i if x ∈ [ai−1, ai)

Then |x+ − x−| < δ =⇒ c+i − c
−
i < ε

b−a for all i. So to sum up, g+ ≥ f ≥ g−
and g+ − g− ≤ ε

b−a .

Thus g+ ∈ U (f), g− ∈ L (f), and

I
(
g+
)
− I

(
g−
)

= I
(
g+ − g−

)
≤ I

(
ε

b− a

)
= ε

Now prove the theorem:

Proof. I (g+) ≥ u (f) ≥ l (f) ≥ I (g−). So u (f)− l (f) ≤ I (g+)− I (g−) < ε for
all ε > 0, which implies u (f) = l (f).
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Corollary. If f ∈ C [a, b], ∃fk ∈ P (a, b) s.t. (fk)→ f uniformly on [a, b].

Proof. For each k, choose g+k as in the proof of lemma with ε = 1
k . Then(

g+k
)
→ f uniformly.

Example. (Speed and Distance) Suppose f [a, b]→ Rn is continuous. f (t) =
(f1 (t) , ..., fn (t)) where all fi are continuous.

Define
∫ b
a
f (t) dt =

(
f1 (t) dt, ...,

∫ b
a
fn (t) dt

)
(Integrating pointwise).

If f (t) = v (t) =velocity of a particle in Rn at time t, then p (b) − p (a) =∫ b
a
f (t) dt is the displacement of particle from its position at t = a. ||v (t) || is

the speed of particle.

Proposition. If f : [a, b]→ Rn is continuous, then

||
∫ b

a

f (t) dt|| ≤
∫ b

a

||f (t) ||dt

Lemma. If xi, yi ∈ R satisfy:
(1) xi ≤ yi for all i;
(2) (xi)→ x and (yi)→ y
Then x ≤ y.

Proof. yi − xi ≥ 0, (yi − xi)→ y − x =⇒ y − x ≥ 0.

Lemma. The proposition holds if f is piecewise constant (maybe not continu-
ous).

Proof. Suppose f (t) = vi for t ∈ (ai−1, ai). Then

||
∫ b

a

f (t) dt|| = ||I (f) ||

= ||
n∑
i=1

(ai+1 − ai) vi||

≤
n∑
i=1

(ai − ai−1) ||vi||

= I (||f ||)

=

∫ b

a

||f ||dt.

Proof of proposition:
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Proof. Choose a sequence of piecewise constant functions fk : [a, b] → Rn s.t.
(fk)→ f uniformly.
Then ∫ b

a

fk →
∫ b

a

f

(uniformly convergence =⇒ L1 convergence) and(∣∣∣∣∣
∣∣∣∣∣
∫ b

a

fk

∣∣∣∣∣
∣∣∣∣∣
)
→

(∣∣∣∣∣
∣∣∣∣∣
∫ b

a

f

∣∣∣∣∣
∣∣∣∣∣
)

since || · || is continuous.

Also (||fk||)→ ||f || uniformly (|| · || is continuous). So(∫ b

a

||fk||

)
→
∫ b

a

||f ||

So now take xk = ||
∫ b
a
fk||, x = ||

∫ b
a
f ||, yk =

∫ b
a
||fk||, y =

∫ b
a
||f ||.

Then xk ≤ yk, so x ≤ y.
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4 Differentiation

Slogan: The derivative is a linear map.

4.1 Derivative

Definition. Let U ⊂ Rn be open, f : U − {x0} → Rm. We say

lim
x→x0

f (x) = y

if the function f̄ : U → Rm given by

f̄ (x) =

{
f (x) x 6= x0
y x = x0

is continuous at x0.

Note that we don’t care which norms on Rn or Rm we use: all the norms on Rn
are Lipschitz equivalent, so they determine the same continuous functions.

Definition. Suppose U ⊂ Rn is open, x0 ∈ U and f : U → Rm. We say f is
differentiable at x0 if there is a linear map L : Rn → Rm s.t.

lim
v→0

f (x0 + v)− (f(x0) + L(v))

||v||
= 0

If such an L exists, it is unique.

Proof. Suppose L1, L2 exist. Subtracting the two limit equations gives

lim
v→0

L2(v)− L1(v)

||v||
= 0

If v ∈ Rn, v 6= 0, then tv → 0 as t→ 0+. So

lim
t→0+

L2(tv)− L1(tv)

||tv||
= 0

Since L1, L2 are linear maps, simplify that and we get L2(v) = L1(v). But v is
arbitrary. So L1 = L2.

When the equation in the definition of differentiability holds, we say

Df |x0
= L

is the derivative of f at x0. Note that Df |x0 is a linear map from Rn to Rm.

Equivalently, f is differentiable at x0 with Df |x0 = L if

f(x0 + v) = f(x0) + L(v) + ||v||α(v)

where limv→0 α(v) = 0.
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Proposition. Suppose f : U → Rm is differentiable at x0 ∈ U . Then f is
continuous at x0.

Lemma. Suppose L : Rn → (W, || · ||) is a linear map where W is a normed
space. Then limv→0 L(v) = 0.

Note that the lemma is false if Rn is replaced by an arbitrary normed space.

Proof. Let v = (v1, ..., vn) =
∑n
i=1 viei. Then

||L(v)|| = ||
n∑
i=1

viL(ei)||

≤
n∑
i=1

|vi| · ||L(ei)||

≤ C
n∑
i=1

|vi|

= C||v||1

Where C = max{||L(e1)||, ..., ||L(en)||}.

Given ε > 0, pick δ > ε/C. If ||v||1 < δ then ||L(v)|| < ε, so limv→0 L(v) = 0.

Prove of proposition:

Proof. Since f is differentiable at x0, we have

f(x0 + v) = f(x0) + L(v) + ||v||α(v)

where limv→0 α(v) = 0. Now take the limit v → 0 of both sides we have

lim
v→0

f(x0 + v) = f(x0)

So f is continuous at x0.

4.2 The derivative as a matrix

Suppose U ⊂ Rn is open, f : U → Rm.

We say f is differentiable if f is differentiable at all x ∈ U .

If so, we have Df : U → L(Rn,Rm).

From Linear Algebra we know that there is a bijection between L(Rn,Rm) and
the set of m× n real matrix:

[aij ]←→ L(ej) =
∑

aijei
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Now let’s consider given f : U → Rm, how we compute Df = [aij(x)]. We first
reduce to the case m = 1 by writing

f(x) = (f1(x), ..., fn(x))

Then think about F : U → R.

Proposition. f is differentiable at x0 if and only if fi is differentiable for all
1 ≤ i ≤ m. If so,

Df |x0 = (Df1|x0 , ..., Dfm|x0).

Proof. Suppose g : U → Rm. Using the uniform norm on Rm, we see that
limv→0 g(v) = 0 iff limv→0 gi(v) = 0 for all 1 ≤ i ≤ m.

Now let L : Rn → Rm. Then

lim
v→0

f(x0 + v)− (f(x0) + L(v))

||v||
= 0

if and only if

lim
v→0

fi(x0 + v)− (fi(x0) + Li(v))

||v||
= 0

for all 1 ≤ i ≤ m, i.e. fi is differentiable at x0 and Dfi|x0 = Li.

Summary:

Df |x0
=

 Df1|x0

...
Dfm|x0


where Dfi|x0 : Rn → R is a 1× n matrix [a1, ..., an].

Definition. (Directional Derivative)
Suppose F : U → R. If v ∈ Rn, the directional derivative of F in direction v at
x is

DvF |x = lim
t→0

F (x+ tv)− F (x)

t

=
d

dt
(F (x+ tv))|t=0

DvF measures the rate of change of F if I walk away from x at velocity v.

It’s also helpful to consider

D+
v F = lim

t→0+

F (x+ tv)− F (x)

t

and similarly for D−v F . We can prove that

D−v F |x = −D+
−vF |x

Note: DvF exists iff D+
v F,D

−
v F both exist and are equal.



4 DIFFERENTIATION 33

Example. Consider a special case v = ei. Then

DiF |x =
∂F

∂xi
|x

= DeiF |x

=
d

dt
(F (x1, ..., xi + t, ..., xn))|t=0

=
d

dt
(F (x1, ..., xi−1, t, xi+1, ..., xn))|t=x

is the ith partial derivative of F .

Proposition. If F : U → R is differentiable at x, then DvF |x = DF |x(v).

Proof. If v = 0 then both sides are 0.

If v 6= 0, then tv → 0 as t→ 0+, so differentiability of F implies

lim
t→0+

F (x+ tv)− ((F (x) + L(tv))

||tv||
= 0

where L = DF |x. So

lim
t→0+

F (x+ tv)− F (x)

t
− L(v) = 0

i.e. D+
v F |x = DF |x(v). Then D−v F |x = −D+

−vF |x = −L(−v) = L(v).

If DF |x = [a1, ..., an] then ai = DF |x(ei) = DeiF |x = DiF |x. So we have

DF |x = [D1F |x, ..., DnF |x]

Summary: if f : Rn → Rm, then

Df =

 Df1
...
Dfm

 = [Djfi]

Example. Let f : R3 → R2 with f(x, y, z) = (x2 + y2 + z2, xyz). Then

Df =

[
1 2y 3z2

yz xz xy

]

Note: Just because DiFx all exists doesn’t mean that F is differentiable at x.

Example. Let F : R2 → R be given by

F (x, y) =

{
0 xy = 0
H(x, y) otherwise

where H(x, y) is any arbitrary horrible function. Then

D1F |0 = D2F |0 = 0

but F may not even be continuous.



4 DIFFERENTIATION 34

We can even have DvF well defined for every v, but F is not differentiable.

Example. Let S1 = {v ∈ R2|||v|| = 1}. Choose h : S → R to be any function.
Define F : R2 → R by

F (v) =

{
||v||h( v

||v|| ) v 6= 0

0 v = 0

Then D+
v F |0 = ||v||h( v

||v|| ). If we let h(−v) = −h(v) then D+
v F = D−v F , so

DvF is well defined. Now if F is differentiable, DvF |0 = DF |0(v), so h(v) would
have to be a linear function on S1; but h is arbitrary except the one condition
above.

A criterion for differentiability: Let U ⊂ Rn be open.

Definition. C1(U) = {f : U → R| for 1 ≤ i ≤ n, the partial derivative Dif |x
exists for all x ∈ U and is a continuous function of x}.

Example.

F (x, y, z) = ecos x
2y+z − y2z ∈ C1(R3)

Theorem. If F ∈ C1(U), then F is differentiable on U . Tools used in proof:
• Alternative characterisation of differentiability in 4.1;
• If limv→0 g(v) = w0 and limv→w0 f(v) = z, then limv→0 f(g(v)) = z;
• Suppose b : U → R is bounded onBr(v0) for some r > 0. Then limv→v0 b(v)α(v) =
0 if limv→v0 α(v) = 0.

Proof. (of the bullet point):
Since b is bounded, there exists M ∈ R s.t. |b(x)| ≤M for all v ∈ Br(v0). Since
limv→0 α(v) = 0, given ε > 0, there exists δ > 0 s.t. ||α(v)|| < ε

M whenever
v ∈ Bδ(v0). Then let δ′ = min(δ, r). We have ||b(v)α(v)|| = ||b(v)||||α(v)|| < ε
for v ∈ Bδ(v0). So limv→v0 b(v)α(v) = 0.

Proof. (for n = 2)
We want to estimate F (x+ v)− F (x) for small v. Since U is open, ∃r > 0 s.t.
Br(x) ⊂ U .

From now on we assume ||v|| < r (since v is small that’s reasonable). So x′ ∈ U .
Since D1F exists, we write

F (x′)− F (x) = F (x1 + v1, x2)− F (x1, x2) = v1DF |x + |v1|α1(v1)

where limv1→0 α1(v1) = 0. Similarly

F (x+ v)− F (x′) = v2 ·D2F |x + |v2|α2(v2)

where limv2→0 α2(v2) = 0.
Mistake! Here α2(v2) depends on v1.

Instead, apply 1-variable mean value theorem to f(t) = F (x1 + v1, x2 + t) to
write

F (x+ v)− F (x′) = v2D2F |x′′(v)
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where x′′(v) = (x1 + v1, x2 + h(v)) where 0 < h(v) < v2. Then as before, we can
add to get

F (x+ v)− F (x) = L(v) + ||v||E(v)

where

E(v) =
|v1|
||v||

α1(v1) +
|v2|
||v||

(D2F |x′(v) −D2F |x)

= E2(v) +E1(v)

Note that ||x′′(v)− x||2 = (v21 + h(v)2)0.5 ≤ ||v||2. So limv→0 x
′′(v) = x.

Now D2F is continuous, so limv→0D2F |x′′ −D2F |x = 0.

We’ll show that as v → 0, E1(v), E2(v)→ 0, then we are done.

• E1: As v → 0, x′ → x. Now D2F is continuous, so

lim
x′→x

(D2F |x′ −D2F |x) = 0

So
lim
v→0

(D2F |x′ −D2F |x) = 0

Now |v2|
||v|| < 1 for all v ∈ R2\{0}, so by lemma E1 → 0.

• E2: limv→0 v1 = 0 and limv1→0 α(v1) = 0, so limv→0 α1(v1) = 0. Same as
above we get E2 → 0.

(Refer to DC notes last page of Section 6.1 (p66).)

Example. Let V = Mn×n(F) ∼= Rn2

, f : V → V by f(x) = x2. Then

f(x+ v) = (x+ v)2 = x2 + xv + vx+ v2 = f(x) + Lx(v) + v2

where
Lx(v) = xv + vx

is linear in V . Compare with the definition we get

DF |x = Lx.

4.3 The Chain Rule

Theorem. (Chain Rule)
Suppose g : Rn → Rm is differentiable at x, and f : Rm → Rl is differentiable at
g(x). Then f ◦ g : Rn → Rl is differentiable at x, and

D(f ◦ g)|x = Df |g(x) ◦Dg|x
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Example. Suppose r : R → Rn by r(t) = (r1(t), ..., rn(t)), F : Rn → R,
F ◦ r : R→ R.

Then D(F ◦ r)|t is a linear map R → R given by 1 × 1 matrix [ ddt (F ◦ r)],
Dr|t : R→ Rn is given by r′1|t...

r′n|t


and DF |t : Rn → R given by

[D1F |r(t), ..., DnF |r(t)]

So D(F ◦ r) is given by matrix multiplication:

D(F ◦ r) =

n∑
i=1

DiF |r(t) · r′i(t)|t

=
∑ ∂F

∂xi
r′i

Now back to the theorem. Since g is differentiable, g(x+ v) = g(x) + (L1(v) +
||v||α(v))(= e(v)) at x where L1 = Dg|x : Rn → Rm and limv→0 α(v) = 0.

Lemma. limv→0 e(v) = 0.

Proof. g is differentiable at x =⇒ g is continuous at x. Done.

Lemma. ∃r > 0, s.t. ||e(v)||||v|| is bounded on Br(0).

Proof.
||e(v)||
||v||

= ||L1(
v

||v||
) + α(v)||

≤ ||L1(
v

||v||
)||+ ||α(v)||

write v′ = v
||v|| , so ||v′|| = 1.

L1 is linear, so continuous. {v ∈ Rn|||v|| = 1} is closed and bounded in Rn, so
by MVT, ∃M s.t. ||L1(v′)|| ≤M for all v′ with ||v′|| = 1.

limv→0 α(v) = 0, so ∃r s.t. ||α(v)|| < 1 for v ∈ Br(0).

Then for v ∈ Br(0), ||e(v)||||v|| ≤< M + 1.

Proof. (of Chain Rule)
f is differentiable at g(x), so

f(g(x) + w) = f(g(x)) + LL2(w) + ||w||B(w)

where L2 = Df |g(x) and limw→0B(w) = 0.
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f(g(x+ v)) = f(g(x) + e(v))

= fg(x) + L2(e(v)) + ||e(v)||B(e(v))

= fg(x) + L2(L1(v)) + L2(||v||α(v)) + ||e(v)||B(e(v))

= fg(x) + (Df |g(x) ·Dg|x)(v) + ||v||E(v)

where

E(v) = L2(α(v)) +
||e(v)||
||v||

B(e(v))

we must show that limv→0E(v) = 0 and then we are done.

We know limv→0 α(v) = 0. L2 is linear, hence continuous, so limw→0 L2(w) =
L2(0) = 0. Thus limv→0 L2(α(v)) = 0.

By the above second lemma, ∃r > 0 s.t. ||e(v)||||v|| is bounded on Br(0). By the

above first lemma limv→0 e(v) = 0.

We know limw→0B(w) = 0 =⇒ limv→0B(e(v)) = 0.

Then by last lecture’s lemma,

lim
v→0

||e(v)||
||v||

B(e(v)) = 0

So limv→0E(v) = 0.

Application of Chain Rule:
• The gradient.

Suppose F : U → R, where U ⊂ Rn is open. DF |x ∈ L(Rn,R).

Recall from LA that Rn ∼= L(Rn,R) by v → φv : φv(w) = v · w. That sends
∇F |x to DF |x = [D1F |x, ..., DnF |x] where ∇F |x = (D1F |x, ..., DnF |x) is the
gradient of F at x.

So
DvF |x = DF |x(v) = ∇F |x · v

• Mean value inequality.

Definition. (Convex)
lüe

Proposition. Suppose U ⊂ Rn is open and convex, and F : U → R is differen-
tiable. If ||∇F |x||2 ≤M ∀x ∈ U1. Then

|F (x1)− F (x0)| ≤M ||x1 − x0||2

for all x0, x1 ∈ U .
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Proof. Let γ : [0, 1]→ Rn be given by

γ(t) = (1− t)x0 + tx1

then γ is differentiable and γ′(t) = x1 − x0.

Let f(t) = F (γ(t)). By Chain rule, f is differentiable and f ′(t) = ∇F |γ(t) · γ′(t).

By Cauchy-Schwartz,

|f ′(t)| ≤ ||∇F |γ(t)|| · ||x1 − x0||
≤M ||x1 − x0||

Apply 1-variable MVT to f(t), we see that

|F (x1)− F (x0)| = |f(1)− f(0)| = |f ′(c)|

for some c ∈ [0, 1]
≤M ||x1 − x0||

Corollary. If U ⊂ Rn is open and convex, F : U → R has DiF ≡ 0 for
1 ≤ i ≤ n. Then F (x) ≡ c for some c ∈ R.

Proof. DiF ≡ 0 =⇒ F differentiable =⇒

|F (x1)− F (x0)| ≤ 0 · ||x1 − x0|| = 0

for all x1, x0 ∈ U .

Remark. The hypothesis that U is convex is needed for the proposition, but
can be weakened for the corollary.

Example. Suppose any 2 points x1, x0 in U can be joined by a differentiable
path γ : [0, 1]→ U with γ(0) = x0, γ(1) = x1. Then the corollary still holds.

Proof. Consider f(t) = F (γ(t)). Then f ′(t) = DF |γ(t)(γ′(t)) by the chain
rule. DiF ≡ 0 =⇒ DF ≡ 0 =⇒ f ′(t) ≡ 0 =⇒ f(t) is constant. So
F (x0) = f(0) = f(1) = F (x1) for any x0, x1 in U .

However, the corollary does not hold if U is disconnected. In fact it holds
whenever U ⊂ Rn is open and connected.

4.4 Higher Derivatives

Q: If the derivative is a linear map, what is the 2nd derivative?
A: 2nd derivative is a symmetric bilinear form.

Suppose U ⊂ Rn is open, f : U → Rm is differentiable.

Fix v ∈ Rn and define gv : U → Rm by

gv(x) = Df |x(v).
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Definition. f is twice differentiable if all gv are differentiable. If so, define
D2f |x(v, w) = Dgv (w), i.e.

D2f |x : Rn × Rn → Rm

Example. V = Mn×n(R) ∼= Rn2

. f : V → V is given by f(x) = x2. Then from
previous section we know

gA(X) = DF |X(A) = XA+AX

Differentiate gA(X), get

gA(X +B) = A(X +B) + (X +B)A

= (AX +XA) +AB +BA

= gA(X) + LA(B)

where LA(B) = AB +BA is linear in B.

So DgA |X(B) = AB +BA = D2f |X(A,B).

Note: D2fX(A,B) = D2f |X(B,A).

Lemma. Suppose f : U → Rm is twice differentiable, let B(v, w) = D2f |x(v, w).
Then B is a bilinear form.

Proof.
gv1+λv2(x) = Df |x(v1 + λv2)

= Df |x(v1) + λDf |x(v2) = gv1(x) + λgv2(x)

So differentiating we get linearity in the first argument. Similarly we can prove
linearity in the second argument.

Suppose F : U → R is differentiable. Then the partial derivatives DiF : U → R
are all defined.

Notation. Write DijF = Di(DjF ) if it exists.

Definition. C2(U) = {F : U → R| all 1st and 2nd order partial derivatives of
F are defined and continuous }.

Proposition. If F ∈ C2(U), then F is twice differentiable and

D2F |x(v, w) =
∑

1≤i,j≤n

viwjDjiF (x)

Proof. Let G‘i = DiF . Then all 1st order partial derivatives of Gi are defined
and continuous so Gi is differentiable.

Then for v ∈ Rn, Gv(x) = DF |x(v) =
∑

1≤i≤n viDiF |x =
∑
viG(x).

So for a fixed value of v, Gv(x) is a linear combination of the Gis. Since all of
them are differentiable, Gv is differentiable. So F is twice differentiable, and
D2F |x(v, w) = DGv|x(w) =

∑
1≤j≤n wjDjGv|x =

∑
1≤j,i≤n viwjDjiF |x.
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Now Dj(Gv) = Dj(
∑n
i=1 viGi) =

∑n
i=1 viDjGi =

∑n
i=1 viDjiF .

Equivalently, D2F |x(v, w) = W tBv where B = [DijF |x] is the Hessian matrix
of 2nd order partial derivatives.

Example. F (x, y) = x2y3. Then

B =

(
2y3 6xy2

6xy2 6x2y

)

Recall that if U ⊂ Rn is open and F ∈ C2(U), then D2F |x : Rn × Rn → R is
bilinear and given by

D2F |x(v, w) =
∑

1≤i,j≤n

viwjDjiF |x = wTH(x)v

where H(x) = [DjiF |x] is the Hessian matrix.

Theorem. (symmetry of mixed partials)
Suppose U ⊂ R2 is open and F ∈ C2(U). Then D12F = D21F .

Note that it’s not enough for the partial derivatives to be defined. They must
be continuous or the theorem may fail (see example sheet).

Lemma.

D12F |(x0,y0) = lim
v→0

S(v)

v2

where

S(v) = F (x0 + v, y0 + v)− F (x0 + v, y0)− F (x0, y0 + v) + F (x0, y0)

Proof. Since U is open, there exists ε > 0 s.t. Bε((x0, y0), || · ||∞) ⊂ U .

From now on, assume |v| < ε/2.

Consider A(y) = F (x0 + v, y) − F (x0, y). Fix v with |v| < ε/2. Then A is
differentiable on (y0 − ε/2, y0 + ε/2), and

A′(y) = D2F (x0 + v, y)−D2F (x0, y)

Note that S(v) = A(y0 + v)−A(y0). So by MVT,

S(v) = vA′(y∗)

for some y∗ ∈ [y0, y0 + v]

= v[D2F (x0 + v, y∗)−D2F (x0, y
∗)]

= v[B(x0 + v)−B(x0)]

where B(x) = D2F (x, y∗).
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B is differentiable on (x0 − ε/2, x0 + ε/2), agetB′(x) = D12F (x, y∗). Applying
MVT to B we get

S(v) = v2B′(x∗) = v2D12F (x∗, y∗)

for some x∗ ∈ [x0, x0 + v]. Note that we have

||(x∗(v), y∗(v))− (x0, y0)||∞ ≤ ||v||∞

So
lim
v→0

(x∗(v), y∗(v)) = (x0, y0)

Then

lim
v→0

S(v)

v2
= lim
v→0

D12F (x∗(v), y∗(v))

= D12F (x0, y0)

Since D12 is continuous.

Proof. (of theorem)
The expression S(v) is symmetric under interchanging roles of x and y. Similar
arguments as in the above proof shows

D21F (x0, y0) = lim
v→0

S(v)

v2
= D12F (x0, y0)

So they are equal.

Corollary. If U ⊂ Rn is open, G ∈ C2(U), then DijG = DjiG for all 1 ≤ i, j ≤
n.

Proof. Apply the theorem to F (z1, z2 = G(x1, x2, ...z1(i), ..., z2(j), ..., xn).

In other words, if G ∈ C2(U), the Hessian matrix H = [DjiG|x] is symmetric:
HT = H.

Corollary. D2G|x is symmetric. i.e. D2G|x(v, w) = D2G|x(w, v).

Proof. D2G|x(v, w) = wTHv is a 1× 1 matrix, so symmetric. Take its transpose
and we get the other side of the equation.

Higher derivatives are defined inductively: If F : U → R is (k − 1) times
differentiable, then

DkF |x(v1, ..., vk) = DG|x(vk)

(if exists) where
G(x) = Dk−1F |x(v1, ..., vk−1)
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The same proof as for k = 2 shows that if F ∈ Ck(U) then F is k times
differentiable, and

DkF |x(v1, ..., vk) =
∑

α∈{1,...,n}k
vαDαF |x

where

vα =

k∏
i=1

vi,αi

where
vi = (vi,1, ..., vi,n)

α = (α1, ..., αk)

If we let A(v1, ..., vk) = DkF |α(v1, ..., vk), then A is
1) Symmetric: A(v1, ..., vk) = A(vi, ..., vik) where (i1, ..., ik) is any permutation
of (1, ..., k);
2) Multilinear: (v1 + λv′1, v2, ..., vk) = A(v1, v2, ..., vk) + λA(v′1, v2, ..., vk).

Proposition. Suppose F ∈ Ck(U) and define

f(t) = F (x0 + tv)

for x0 ∈ U . Since U is open, f is defined on (−ε, ε).

Then f is k−times differentiable and

fk(t) = DkF |x0+tv(v, v, ..., v)( k times)

Proof. Recall that if G ∈ C1(U) and g = G(x0 + tv) then g′(t) = DvG|x0+tv =
DG|x0+tv(v).

The proof is by induction on k:

k = 1 is exactly the above equation applied to G = F .

For the general case, suppose the proposition holds for k − 1. Then let

h(t) = f (k−1)(t)

= Dk−1F |x0+tv(v, ..., v)

= H(x0 + tv)

where H(x) = Dk−1F |x(v, ..., v).

Apply the above equation to G = H, get

fk(t) = h′(t) = DH|x0+tv(v) = DkF |x0+tv(v, ..., v) (k times)
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Theorem. (Taylor’s Theorem)
If F ∈ Ck(Rn), then

F (x0 + v) =

k−1∑
i=0

1

i!
DiF |x0

(v, ..., v) +
1

k!
DkF |x0+tv(v, ..., v)

for some t ∈ [0, 1].

Proof. Consider f(t) = F (x0 + tv) as above. Then by Taylor’s theorem in 1
variable, we have

f(1) =

k−1∑
i=0

1

i!
f (i)(0) · 1i +

1

k!
f (k)(t)1k

for some t ∈ [0, 1], i.e.

F (x+ v) =

k−1∑
i=0

1

i!
DiF |x0(v, ..., v) +

1

k!
Dk|x0+tv(v, ..., v)

Remark. DkF |x0(v, ..., v) is a degree k polynomial in the coefficients of v s.t.
all the kth order partial derivatives agree with kth order partial derivatives of F
at x0.
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5 Metric spaces

5.1 Basics

Definition. lüe

Example. lüe

Definition. (open and closed sets)
lüe

5.2 Lipschitz Maps

Suppose (X, dX) and (Y, dY ) are metric spaces.

Definition. f : X → Y is k−Lipschitz (k ∈ R+) if dY (f (x1) , f (x2)) ≤
kdX (x1, x2) for all x1, x2 ∈ X.
f is Lipschitz if it’s k−Lipschitz for some k ∈ R+.

Proposition. f is Lipschitz implies that f is uniformly continuous.

Proof. Suppose f is k−Lipschitz. If d (x1, x2) < ε/k, then d (f (x1) , f (x2)) <
ε.

Proposition. Suppose U ⊂ Rn is open, F ∈ C1 (U), and k = B̄r (x0) ⊂ U .
Then F |k is Lipschitz.

Proof. F is C1, so the map

U → Rn → R
x→ ∇F |x → ||∇F |x||

is continuous.

k = B̄r (x0) is a closed and bounded subset of Rn. By the Maximum Value
Theorem, ∃M ∈ R s.t. ||∇F |x|| ≤M for all x ∈ k. k = B̄r (x0) is convex, so by
Mean Value Inequality,

|F (x1)− F (x2) | ≤M ||x1 − x2||2

i.e.
d (F (x1) , F (x2)) ≤Md (x1,x2)

for x1,x2 ∈ k.

Proposition. If f : Y → Z is k1−Lipschitz, g : X → Y is k2−Lipschitz, then
f ◦ g : X → Z is k1k2−Lipschitz.
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Proof.
d2 (f (g (x1)) , f (g (x2))) ≤ k1dy (g (x1) , g (x2))

≤ k1k2dx (x1, x2)

So The composition of Lipschitz maps is Lipschitz.

Proposition. If || · || and || · ||′ are two norms on a vector space V , then || · ||
is Lipschitz equivalent to || · ||′ if and only if both the identity maps from V
equipped with one norm to the other norm are Lipschitz.

Definition. Suppose V,W are finite dimensional normed vector spaces.
If L ∈ L (V,W ), the operator norm

||L||op = sup
v∈V,v 6=0

||L (v) ||W
||v||V

= max
||v||=1

||L (v) ||W .

The maximum exists since S1 is closed and bounded in V = Rn.

Lemma. || · ||op is a norm on L (V,W ).

Proof. Omitted.

Proposition. If ||L1||op = k, then L1 is k−Lipschitz.

Proof.
||L (v1)− L (v2) || = ||L (v1v2) ||

≤ k||v1 − v2||

Since ||L||op = k.

5.3 Contraction maps

Suppose X is a metric space and f : X → X.

Definition. x ∈ X is a fixed point of f if f (x) = x.

Definition. fn = f ◦ f ◦ ... ◦ f (n times) :X → Xit the composition of f with
itself n times.

If f is k−Lipschitz, then fn is kn-Lipschitz.

Definition. f : X → X is a contraction map if f is k−Lipschitz for some k < 1.

Theorem. Suppose X is a complete metric space, f : X → X is a contraction
map. Then f has a unique fixed point.

Proof. Suppose f is k−Lipschitz for some k < 1.

Lemma. If x ∈ X, then d (x, fn (x)) ≤ 1
1−kd (x, f (x)) regardless of n.
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Proof. fn is kn Lipschitz, so

d
(
fn (x) , f (n+1) (x)

)
= d (fn (x) , fn (f (x)))

≤ knd (x, f (x))

So
d (x, fn (x)) ≤ d (x, f (x)) + ...+ d

(
fn−1 (x) , fn (x)

)
≤ d (x, f (x)) + kd (x, f (x)) + ...+ kn−1d (x, f (x))

=
1− kn

1− k
d (x, f (x))

≤ 1

1− k
d (x, f (x))

Proof of Theorem:
Pick x ∈ X and consider (fn (x)).

This sequence is Cauchy: if m ≥ n, then

d (fm (x) , fn (x)) = d
(
fn (x) , fn

(
fm−n (x)

))
≤ knd

(
x, fm−n (x)

)
≤ kn

1− k
d (x, f (x))

We know k < 1, so

lim
n→∞

kn
(
d (x, f (x))

1− k

)
= 0

So pick N s.t. the above is less than ε for all n ≥ N . Then if m ≥ n ≥ N ,

d (fn (x) , fm (x)) ≤ kn

1− k
d (x, f (x)) < ε

So (fn (x)) is Cauchy. So it converges to some x∗.

We claim that f (x∗) = x∗: since f is Lipschitz, f is continuous, and fn (x)→ x∗,
so f (fn (x))→ f (x∗). But fn+1 (x)→ x∗. So f (x∗) = x∗.

We also claim that x∗ is the only fixed point: Suppose f (y) = y. Then
d (f (x∗) , f (y)) = d (x∗, y). But d (f (x∗) , f (y)) ≤ kd (x∗, y), since f is a con-
traction where k < 1, this can only happen if d (x∗, y) = 0, i.e x∗ = y.
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6 Solving Equations

Problem: Suppose U ⊂ Rn is open. f : U → Rm is C1 and f(x0) = y0. Can we
solve f(x) = y for y close to y0?

If so, what does the set of x close to x0 solution look like?

There are three cases:
a) n < m. For ’most’ y ∈ Rm, there is no solution. Idea: dim(U) ≤ n < m.

b) m = n. If y is sufficiently close to y0 and Df |x0 is an isomorphism, then there
is a unique solution near x0 (inverse function theorem).

c) m < n. If Df |x0 is surjective and y is close to y0, set of solutions near x0
looks like Bε(0) ⊂ Rn−m (implicit function theorem).

We’ll prove (b) and use it to prove (c).

6.1 Newton’s method

n = 1: solve f(x) = y∗ = y.

Approximate f by graph of it’s tangent line at (x0, f(x0)).

g(x) = f(x0) + f ′(x0)(x− x0)

solve g(x1) = y∗:

x1 = x0 +
y∗ − f(x0)

f ′(x0)

Now repeat:

x2 = x1 +
y∗ − f(x1)

f ′(x1)

and etc. Hope that (xn)→ x∗ with f(x∗) = y∗.

General case: f : U ⊂ Rn → Rm: approximate f(x) near x = x0 by

g(x) = f(x0) +Df |x0(x− x0)

solve equation g(x1) = y: x1 = x0 + (Df |x0
)−1(y − f(x0)).

Repeat: x2 = x1 + (Df |x1)−1(y − f(x1)) etc.

Equivalently: define ny(x) = x+ (Df |x)−1(y − f(x)). Then

(xk) = (nky(x0))

(the kth iterate of ny).
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If x is a fixed point of ny, then

x = x+ (Df |x)−1(y − f(x))

=⇒ 0 = (Df |x)−1(y − f(x))

=⇒ 0 = y − f(x)

=⇒ f(x) = y

so we have a solution.

So if we knew ny was a contraction map, we would get a solution.

Problem: This only makes sense if Df |x is invertible. Analyzing (Df |x)−1 term
is painful.

Modified Newton’s method:

Suppose f : U → Rn is C1, f(x0) = y0 and Df |x0
= A is invertible where

A : Rn → Rn is a linear map.

Approximate Df |x by Df |x0
= A, i.e. consider

Ny(x) = x+A−1(y − f(x))

If Ny(x) = x, then f(x) = y so we found a solution.

Is Ny a contraction map when x is close to x0?

Compute

Ny(x)−Ny(x′) = x+A−1(y + f(x))− (x′ +A−1(y − f(x′))

= x− x′ +A−1(f(x′)− f(x))

= A−1(A(x)− f(x)− (A(x′)− f(x′)))

= A−1(h(x)− h(x′))

where h(x) = A(x)− f(x).

Notice:
Dh|x = DA|x −Df |x

= A|x −Df |x
= Df |x0

−Df |x

C1 maps: Df = U → L(Rn,Rn) = Mn×n(R) = Rn2

.

f is C1 if Df is continuous.

Note: Since all norms on Rn2

are equivalent, we can use whatever norm on
L(Rn,Rn) we like.

For applications: use operator norm || · ||op.
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Lemma. If ||Dh|x||op < M for all x ∈ Br(x0), then ||h(x)−h(x′)||2 ≤M
√
n||x−

x′|| for x, x′ ∈ Br(x0) (n is the dimension of space).

Proof. let hi be the ith component of h. Then

||Dhi|x|| = ||Dh|x(ei)|| ≤M · ||ei||2 = M

So by Mean value inequality, |hi(x)− hi(x′)| ≤M · ||x− x′||2. So

||h(x)− h(x′) ≤
√
nM · ||x− x′||

Proposition. Given ε > 0, there exists δ > 0 s.t. Ny is ε−lipschitz on Bδ(x0).

Proof. f is C1, so choose δ > 0 s.t.

||Dh|x|| = ||Df |x −Df |x0
||op ≤

ε

||A−1||op ·
√
n

for x ∈ Bδ(x0), so

||Ny(x)−Ny(x′)|| = ||A−1(h(x)− h(x′))||
≤ ||A−1||op||h(x)− h(x′)||
≤ ||A−1||op ·

√
n(ε/
√
n · ||A−1||op) · (||x− x′||)

6.2 The Inverse Function Theorem (See alternative notes)

Let U ⊂ Rn be open, f (x0) = y0, and f : U → Rn is C1, A = Df |x0
is

invertible.

Let a = ||A−1||op, so that

||A−1 (v) || ≤ a||v||

for all v ∈ Rn.

Lemma. ∃n > 0 s.t. Df |x is invertible for all x ∈ Bn (x0).

Proof. f : U → Rn is C1, so the map

α :U →L (Rn,Rn) → R
x →Df |x → det (Df |x)

is continuous.

R− {0} is open in R, so α−1 (R− 0) is open in U .

α−1 (R− {0}) = {x ∈ U |Dfx is invertible}. x0 ∈ α−1 (R− {0}), so ∃n > 0 s.t.
Bn (x0) ⊂ α−1 (R = 0).
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Consider Ny (x) = x +A−1 (y − f (x)) (Modified Newton’s Method).

Fix r0 s.t. 0 < r0 < n and Ny is 1
2 -Lipschitz on B̄r0 (x0). By the lemma, Df |x

is invertible for x ∈ B̄r0 (x0).

We want Ny to be a contraction map.

Problem: Ny (Br0 (x0)) need not be in the region where Ny is contracting.

Solution: require y to be close to y0.

Proposition. (2) Let r (y) = 2a||y−y0||. If r (y) ≤ r0, then Ny : B̄r(y) (x0)→
B̄r(y) (x0).

Proof. Suppose x ∈ Br(y) (x0). Then

||Ny (x0) || ≤ Ny (x)−Ny (x0) ||+ ||Ny (x0)− x0||

≤ 1

2
||x− x0||+ ||A−1 (y − y0) ||

≤ 1

2
r (y) + a||y − y0||

=
1

2
r (y) +

1

2
r (y)

= r (y)

So Ny (x0) ∈ Br(y) (x0).

Proposition. (3) Suppose r ≤ r0. If y ∈ B r
2a

(y0), then there is a unique
x ∈ Br (x0) s.t. f (x) = y.

Proof. f (x) = y ⇐⇒ Ny (x) = x.

Ny: If y ∈ B̄r/2a (y0), then r (y) = r, so by the previous proposition,

Ny : B̄r (x0)→ B̄r (x0)

r ≤ r0, so Ny is 1
2− Lipschitz on B̄r (x0), i.e. Ny : B̄r (x0) → B̄r (x0) is a

contraction.

B̄r (x0) is a closed subset of Rn, which is complete, so B̄r (x0) is complete. Thus
there is a unique x ∈ Br (x0) such that Ny (x) = x, i.e. there exists a unique
x ∈ B̄r (x0) s.t. f (x) = y.

Note: r (y) = 2a||y − y0||, so r (y) ≤ r =⇒ y ∈ B̄r/2a (y0).

Remark. If y ∈ B̄r/2a (y0) for r < r0, then it’s in B̄r0/2a (y0), so the proposition
implies that there is a unique x ∈ B̄r0/2a (y0) with f (x) = y and x ∈ Br (x0).

Proposition. (4) There are open sets V ⊂ U , x0 ∈ V , W ⊂ Rn, y0 ∈ W s.t.
f |V : V →W bijectively.
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Proof. Take W = Br0/4a (y0). f is continuous, so f−1 (W ) is open. Take

]V = f−1 (W ) ∩Br0 (x0)

which is open.

Given y ∈ W , there exists x ∈ B̄r0/2 (x0) with f (x) = y by the previous
proposition. Moreover, this x is the unique x in that open ball. So x ∈ V =
f−1 (W ) ∩Br (x0) and is the unique such element.

Proposition. (5) Let g : W → V be the inverse of f . Then g is continuous at
y0.

Proof. If y ∈ B̄r/2a (y0), then g (y) ∈ B̄r (x0) by proposition 3, i.e. if ||y−y0|| ≤
δ, then ||g (y)− g (y0) || ≤ 2aδ. So g is continuous at y0.

Proposition. (6) g is differentiable at y0 and Dg|y0 = A−1.

Proof. Note that g (y) satisfies Ny (g (y)) = g (y), so if y ∈ B̄r/2a (y0), g (y) ∈
Ny
(
B̄r(y) (x0)

)
.

Now Ny : B̄r(y) (x0)→ B̄r(y) (x0) is ε (r (y))− Lipschitz, by proposition 1 where
ε (r (y))→ 0 as r (y)→ 0.

So Ny
(
Br(y) (x0)

)
⊂ Bε(r(y))·r(y) (Ny (x0)), i.e. g (y) = Ny (x0) + E (y), where

||E (y) || ≤ ε(r(y)) · r(y)

= ε(r(y))2a||y − y0||
= x0 +A−1 (y − y0) + E (y)

where
||E (y) ||
||y − y0||

≤ 2aε(r(y))

and ε(r(y)) → 0 as ||y − y0|| → 0. So the above equation says that g is
differentiable at y0, and Dg|y0

= A−1.

Definition. Suppose V,W ⊂ Rn are open. f : V →W is a diffeomorphism if
• f is bijective;
• f and f−1 are both C1.

Theorem. (Inverse function theorem) Suppose U ⊂ Rn is open, f : U → Rn is
C1 with f (x0) = y0 and Df |x0 is invertible. Then there are open subsets V ⊂ U
and x0 ∈ V , W ⊂ Rn and y0 ∈W s.t. f |V : V →W is a diffeomorphism.

Proof. Let V and W be as in Proposition 4. Then f : V →W bijectively. Let
g = f−1 : W → V . Must show g is C1.
We know V ⊂ Br0 (x0) where Df |x is invertible for all x ∈ Br (x0) (hypothesis
of this subsection).
Apply proposition 6 with x in place of x0, we see that g is differentiable at x,
and Dg|x = (Df |x)

−1
.
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g is differentiable implies that g is continuous. To see g is C1, note that
Dg : W → L (Rn,Rn) is a composition

W → V → L (Rn,Rn)→ L (Rn,Rn)

y→ g (y)

x→ Df |x
A→ A−1

Reformulation: Local change of coordinates:
Suppose Ui = fi (x1, ..., xn) for 1 ≤ i ≤ n.

Consider J =
(
∂ui

∂xj

)
= (Djfi) = matrix representing Df .

If det (J |x0
) 6= 0 (i.e. Df |x0

) then we can use (U1, ..., un) as a local system of
coordinates near x0.
i.e. we can solve for xj ’s in terms of ui’s:

xj = gj (u1, ..., un) .

Example. Polar coordinates: x = r cos θ, y = r sin θ,

J =

(
cos θ −r sin θ
sin θ r cos θ

)
det J = r i.e. there’s a good change of coordinates between polar and rectangular
coordinates except when r = 0.

6.3 The implicit function theorem

Let F : Rn → Rm be C1 (n ≥ m), F (x0) = y0.

Problem: Describe F−1 (y0) near x0.

Example. F : R2 → R, F (x, y) = x2 − y2.

−6 −4 −2 0 2 4 6

−20

0

20
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Notation. Bkε = Bε (0) ⊂ Rk = k−dimensional open ball.

Theorem. Suppose F : Rn → Rm is C1, f (x0) = y0, and DF |x0
is surjective.

Then there’s an open set V ⊂ Rn, x0 ∈ V , and a C1 map G : Bn−mε → Rn such
that:
1) F−1 (y0) ∩ V = imG;
2) G is injective;
3) DG|z is injective for all z ∈ Bn−mε .
i.e. if n−m = 1, B′ε = (−ε, ε), F−1 (y0) ∩ V is a paramterized curve;
if n−m = 2 then this is a parametrized surface.
For general n−m, we call this is a parametrized (n−m)-manifold.

Example. F (x, y) = x2 − y2, DF |(x,y) = [2x,−2y] is surjective ⇐⇒ (x, y) 6=
(0, 0).

Definition. F−1 (y0) is smooth at x0 if DF |x0
is surjective, singular at x0

otherwise.
F−1 (y0) is smooth if it is smooth at all x ∈ F−1 (y0).

Proof of theorem:

Proof. DF |x0 : Rn → Rm is surjective. So K := kerDF |x0 has dimension
(n −m). Choose any π ∈ L (Rn,Rm) with π (K) = Rn−m. Define f : Rn →
Rm × Rn−m = Rn by f (x) = (F (x) , π (x)). So Df : Rn → Rm ⊕ Rn−m.
Dfx0

(v) = (DF |x0
(v) , π (v)) since Dπ = π.

Claim: Df |x0
is an isomorphism: If Df |x0

(v) = 0, then DF |x0
(v) = 0 =⇒

v ∈ K. But π : K → Rn−m is an isomorphism, so π (v) = 0 =⇒ v = 0. So
kerDf |x0 = {0} =⇒ Df |x0 is an isomorphism.

By the inverse function theorem, there exists V ⊂ Rn, x0 ∈ V , W ⊂ Rm×Rn−m,
(y0, π (x0)) ∈W , s.t. f : V →W is an diffeomorphism. Let g = f−1 : W → V

Then F−1 (y0)∩V = f−1 (y0 × Rn−m)∩V , so g (y0 × Rn−m)∩W = F−1 (y0)∩
V .

Define G (z) = g (y0, z0), g is injective implies that G is injective, and Dg

injective =⇒ DG injective.
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