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1 Basic Notions

1.1 Complex differentiation

Notation. .
• Let D(a, r) be the open ball (disc) of radius r centred at a ∈ C.
• U ⊂ C is open if for any a ∈ U , ∃ ε > 0 s.t. D(a, r) ⊂ U .
• A curve is a continuous map from a closed interval γ : [a, b] → C. It is
continuously differentiable, or C1, if γ′ exists and is continuous on [a, b].
• An open set U is path-connected if for every z, w ∈ U , there exists a curve
γ : [0, 1]→ U with endpoints z, w.

Definition. A domain is a non-empty path-connected open subset of C.

The course is about f : U → C, where U ⊂ C is open or(?) a domain.

We may write
f(x+ iy) = u(x, y) + iv(x, y)

where u, v : U → R are the real and imaginary parts of f .

Definition. • f : U → C is (complex) differentiable at w ∈ U if the limit

f ′(w) = lim
z→w

f(z)− f(w)

z − w

exists.
• f is holomorphic at w if ∃ε > 0 s.t. f is differentiable at all points of D(w, ε).
f is holomorphic in U if it is differentiable at all w ∈ U (equivalent to f being
holomorphic at all w ∈ U).

Remark. • Sometimes the word analytic is used instead of holomorphic.
• Complex differentiation follows the same formal rules as real differentiation.
Derivatives of sum, products, quotients; chain rule and inverse function theorem.

Definition. An entire function is a holomorphic function f : C→ C.

Example. Polynomials. If p(z) and q(z) are polynomials with q not identically
zero, then p

q is holomorphic on C except the zeroes of q.

Recall from Anlysis II that u : U → R, U ⊆ R2 open is said to be differentiable
at (c, d) ∈ U if ∃ (λ, µ) ∈ R2 s.t.

u(x, y)− y(c, d)− (λ(x− c) + µ(y − d))√
(x− c)2 + (y − d)2

→ 0

as (x, y)→ (c, d), and then Du(c, d) = (λ, µ) is the derivative of u at (c, d).

If this holds, then λ = ux(c, d) and µ = uy(c, d) are equal to the partial derivatives
at (c, d).
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Theorem. 1.1 (Cauchy-Riemann equations)
f = u+ iv : U → C is complex differentiable at w = c+ id ∈ U iff the functions
u, v are complex differentiable at (c, d) and

ux(c, d) = vy(c, d)

uy(c, d) = −vx(c, d)

If this holds, then f ′(w) = ux(c, d) + ivx(c, d).

Proof. From the definition, f will be differentiable at w with derivative f ′(w) =
p+ iq iff

lim
z→w

f(z)− f(w)− f ′(w)(z − w)

|z − w|
= 0

or equivalently, splitting into real and imaginary parts, iff

lim
(x,y)→(c,d)

u(x, y)− u(c, d)− (p(x− c)− q(y − d))√
(x− c)2 + (y − d)2

= 0,

lim
(x,y)→(c,d)

v(x, y)− v(c, d)− (q(x− c) + p(y − d)√
(x− c)2 + (y − d)2

= 0

since
f ′(w)(z − w) = p(x− c)− q(y − d) + i(q(x− c) + p(y − d))

so f is differentiable at w with derivative

f ′(w) = p+ iq

iff u, v are differentiable at (c, d), with

Du(c, d) = (p,−q),
Dv(c, d) = (q, p).

Example. f(z) = z̄. Then u(x, y) = x,v(x, y) = −y. We have ux = 1,
vy = −1 6= 1. So f is nowhere complex differentiable.

Remark. Assume f is differentiable at w. We know

f ′(w) = lim
z→w

f(z)− f(w)

z − w
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First take z = w + h, h real. Then

f ′(w) = lim
h→0

u(c+ h, d)− u(c, d) + i(v(c+ h, d)− v(c, d))

h

= ux(c, d) + ivx(c, d)

if we now take z = wih, h real, then

f ′(w) =
1

i
(uy(c, d) + ivy(c, d))

= vy(c, d)− iuy(c, d)

But they have to be the same f ′(w). So ux = vy, uy = −vx.

Remark. Later on we will prove that f holomorphic =⇒ f ′ holomorphic. This
implies that all higher partial derivatives of u, v exist and are continuous (u, v
are C∞ functions).

We have
uxx = vyx

uyy = −vxy

by symmetry of the mixed partial derivative uxx + uyy = 0, i.e. ∇2u = 0, the
Laplace’s equation. So u is harmonic. By the same argument we know v is
harmonic.

Hence the real and imaginary parts of a holomorphic function are harmonic.

Corollary. Let f = u+ iv : U → C for U open. Suppose the functions u, v have
continuous partial derivatives everywhere on U and satisfy Cauchy-Riemann
Equation. Then f is holomorphic in U .

Proof. Since partial derivatives are continuous in U , u, v are differentiable in U
(from Analysis II). Apply Theorem 1.1.

Corollary. f : D → C be holomorphic on a domain D. If f ′(z) = 0 for all
z ∈ D, then f is constant on D.

Proof. If f ′(z) = 0 then Du = Dv = 0 on D. For the other direction, from
Analysis II applied to u and v, u and v are constant. Hence f is constant.

1.2 Power Series

Consider power series
∑∞
n=0 cn(z − a)n for cn, a ∈ C.

Recall:

Theorem. (Radius of convergence)
Let cn be a sequence of complex numbers. Then there exists a unique R ∈ [0,∞],
the radius of convergence of the series, s.t.

∞∑
0

cn(z − a)n
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converges absolutely if |z − a| < R, and diverges if |z − a| > R. If 0 < r < R
then the series converges uniformly on {|z − a| ≤ r}. The radius of convergence
is given by

R = sup{r ≥ 0 : |cn|rn → 0}

or the root test,

R =
1

limn→∞ sup n
√
|cn|

Theorem. Let f(z) =
∑∞
n=0 cn(z − a)n be a complex power series with radius

of convergence R > 0. Then
(i) f is holomorphic in D(a,R);
(ii) Its derivative is given by the series

∑∞
n=1 ncn(z−a)n−1, which also has radius

of convergence R;
(iii) f has derivative of all orders on D(a,R), and f (n)(a) = n!cn;
(iv) If f vanishes identically on some disc D(a, ε), then cn = 0 ∀n.

Proof. WLOG we may assume a = 0.
Claim: The series

∑∞
n=1 ncnz

n−1 has also radius of convergence R.
Let R′ denotes its radius of convergence. n|cn| ≥ |cn| =⇒ R′ ≤ R.

Suppose 0 ≤ r < R and pick ρ ∈ (r,R). Then
∑
|cn|ρn converges and n|cn|rn−1

|cn|ρn =
n
r ( rρ )n → 0 as n→∞.

Then given ε > 0, ∃n0 s.t ∀n ≥ n0,

n|cn|rn−1 ≤ ε|cn|ρn

By comparison test, ∑
n|cn|rn−1

also converges, i.e. R′ = R.

Next consider the following:

hn(z, w) =

n−1∑
j=0

zjwn−1−j =

{
zn−wn
z−w z 6= w

nwn−1 z = w

Consider the series
∞∑
n=1

cnhn(z, w)

Claim: for any r < R, the above series converges uniformly on the set {(z, w) :
|z|, |w| ≤ r}.

Observe
|hn(z, w)| ≤ nrn−1

So |cnhn(z, w)| ≤ |cn|nrn−1 := Mn. Since
∑
Mn converges, by Weierstrass

M-test, the claim is true.
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Therefore the above series converges to a continuous function g(z, w) defined on
{(z, w)|z|, |w| < R},

g(z, w) =

{ ∑∞
n=1 cn

zn−wn
z−w = f(z)−f(w)

z−w z 6= w∑∞
n=1 ncnw

n−1 z = w

As g is continuous, fixing w and letting z → w, we get

lim
z→w

f(z)− f(w)

z − w
=

∞∑
n=1

ncnw
n−1

This proves (i) and (ii). (iii) follow by induction, and (iv) is clear.

Definition. The complex exponential function is

ez = exp(z) =

∞∑
n=0

zn

n!

Proposition. 1.4
(i) ez is an entire function, and (ez)′ = ez;
(ii) For all z, w ∈ C, ez+w = ezew and ez 6= 0;
(iii) If z = x+ iy, ez = ex(cos y + i sin y);
(iv) ez = 1 ⇐⇒ z ∈ 2πiZ;
(v) If w ∈ C, ∃z ∈ C s.t. ez = w iff w 6= 0.

Proof. (i) Note that radius of convergence R =∞. By the previous theorem, ez

is holomorphic and (ez)′ = ez.
(ii) e0 = 1. Let w ∈ C, define F (z) = ez+we−z. Then F ′(z) = 0. So F is
constant. So F (z) = F (0) = ew. If we take w = −z, eze−z = 1, so ez 6= 0.
The other three are left as exercise.

1.3 Logarithm

Definition. By definition, if z ∈ C, we say that w ∈ C is a logarithm of z if
ew = z. z has a logarithm iff z 6= 0 and if z 6= 0 z has an infinite number of
logarithms, all differing by integer multiples of 2πi.

Definition. Let U ⊂ C\{0} be an open set. We say that a continuous function
λ : U → C is a branch of the logarithm if eλ(z) = z.

Remark. Such a branch must be in fact holomorphic with λ′(w) = 1
w .

Let k = λ(w), k + h = λ(z). Then

λ(z)− λ(w)

z − w
=

h

ek+h − ek

Let z → w. Since λ is continuous, we see that h→ 0. Hence

λ(z)− λ(w)

z − w
→ 1

ek
=

1

w
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Note: This simple argument also shows that in general, if f is holomorphic,
f ′(w) 6= 0, a continuous local inverse must be differentiable with derivative 1

f ′(w)

(Inverse function theorem).

A useful choice of branch is the following:

Definition. Let U = C\{x ∈ R : x ≤ 0}.

The principal branch of log is the function Log : U → C given by

Log(z) = log |z|+ i arg(z)

where arg(z) is the unique argument of z in the range (−π, π).

Certainly, eLog z = elog z(cos arg(z) + i sin arg(z)) = z.
Log is continuous because arg(z) : U → R is continuous.
C\{0} → S1= unit circle by z → z

|z| is continuous. This maps U → S1\{−1}.

θ → eiθ is a homomorphism from (−π, π)→ S1\{−1}.

Proposition. 1.5
(i) Log z is holomorphic in U with derivative 1

z ;

(ii) If |z| < 1, then Log(1 + z) =
∑∞
n=1

(−1)n−1zn

n .

Proof. (i) Follow from the previous remark.
(ii) Note

d

dz
Log(1 + z) =

1

z + 1

and that the series has radius of convergence 1. So we can differentiate RHS
term by term:

d

dz
(

∞∑
n=1

(−1)nzn

n
) =

∞∑
n=1

(−1)n−1zn−1 =
1

1 + z

so LHS and RHS have the same derivative, i.e. their difference is a constant. Set
z = 0 we see that they are equal.

Note: there is no continuous extension of Log z to C\{0} (consider taking the
limit from 2nd quadrant downward and 3rd quadrant upward). Later on we’ll
see that there is no branch of log defined on C\{0}.
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We can also define fractional/complex powers by the formula

zα = exp(αLog z)

for z ∈ U .

1.4 Conformal maps

Let f : U → C be a holomorphic function with U open. Let w ∈ U , if f ′(w) 6= 0,
we say that f is conformal at w.

Such an f preserves angles in the following sense: Suppose we have γi : [−1, 1]→
U , C1 curves. γi(0) = w¡ γ′i(0) 6= 0. Let δi(t) = f(γi(t)). Then the angles
between the two curves at w before and after the map f are the same.

δ′i(0) = f ′(w)γ′i(0), so

arg((fγ1)′(0))− arg((fγ2)′(0)) = arg(γ′1(0))− arg(γ′2(0))

Definition. f : U → C is conformal if f ′(w) 6= 0 ∀w ∈ U .

Definition. If f : D → C is holomorphic where D is a domain with f ′ 6= 0
everywhere, and f is 1-1 so that f : D → f(D) is a bijection, then we say that
f is a conformal equivalence (note: such an f has f−1 holomorphic by IVT).

D and f(D) are ’equivalent’ from a holomorphic point of view.

Example. (1) Mobius map: endomorphism of C ∪ {∞} by

f(z) =
az + b

cz + d
, ad− bc 6= 0

this is a bijection. We see f ′(z) 6= 0.
(2) z → zn. {z ∈ C∗, 0 < arg(z) < π

n} → {z ∈ C : =(z) > 0}, for n ≥ 1. This is
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conformal on C∗ (for n ≥ 2, z → zn is not conformal at z = 0).
(3) ez is conformal in all C. If we restrict to the principal branch, then this is a
conformal equivalence.

Theorem. (Riemann mapping theorem)
Let D ⊂ C be any domain bounded by a simple closed curve. Then then there
exists a conformal equivalence between D and D(0, 1). More generally, such a
conformal equivalence exists for any D simply connected, which is not all C.
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2 Complex Integration I

If f : [a, b]→ C is continuous, then∫ b

a

f(t)dt =

∫ b

a

<(f(t))dt+ i

∫ b

a

=(f(t))dt

Basic estimate:

Proposition. 2.1 ∣∣∣∣∣
∫ b

a

f(t)dt

∣∣∣∣∣ ≤ (b− a) sup
t∈[a,b]

|f(t)|

with equality iff f is constant.

Proof. Let θ = arg
∫
abf(t)dt and set M = supt∈[a,b] |f(t)|. Then∣∣∣∣∣

∫ b

a

f(t)dt

∣∣∣∣∣ = e−iθ
∫ b

a

f(t)dt

=

∫ b

a

e−iθf(t)dt

=

∫ b

a

<(e−iθf(t))dt

≤
∫ b

a

|f(t)|dt

≤ (b− a)M

if the equality holds, then all the equality holds along the chain. So |f(t)| = M
∀t, and f(t) = Meiθ. So f is constant.

Let γ : [a, b]→ C be a C1 curve (i.e. γ1 exists and is continuous). We define the
length of γ to be

l =

∫ b

a

|γ′(t)|dt

γ is simple if γ(t1) 6= γ(t2) unless t1 = t2 or {t1, t2} = {a, b}.

Definition. f : U → C is continuous, γ : [a, b] → U is a C1 curve. Then the
integral of f along γ is ∫

γ

f(z)dz =

∫ b

a

f(γ(t))γ′(t)dt

Basic properties:
(1) Linearity:∫

γ

(c1f1(z) + c2f2(z))dz = c1

∫
γ

f1(z)dz + c2

∫
γ

f2(z)dz
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(2) if a < a′ < b, then∫
γ

f(z)dz =

∫
γ|[a,a′]

f(z)dz +

∫
γ|[a′,b]

f(z)dz

(3) Inverse path: if (−γ) : [−b,−a]→ U is the curve

(−γ)(t) = γ(−t)

then ∫
−γ

f(z)dz = −
∫
γ

f(z)dz

(4) Independent of re-parameterization: if φ : [a′, b′]→ [a, b] is C1 and φ(a′) = a,
φ(b′) = b, then if δ = γ ◦ φ : [a′, b′]→ U , then we have∫

γ

f(z)dz =

∫
δ

f(z)dz

This is because δ′ = γ′φ′,∫
δ

f(z)dz =

∫ b′

a′
f(γ(φ(t)))γ′(φ(t))φ′(t)dt

Substitution s = φ(t) gives
∫
γ
f(z)dz.

Let γ : [a, b]→ C be a continuous curve. Suppose we have a = a0 < a1 < ... <
an−1 < an = b s.t. γi := γ|[ai−1,ai] is C1 for 1 ≤ i ≤ n. Then we say that γ is
piecewise C1 and define ∫

γ

f(z)dz =

n∑
i=1

∫
γi

f(z)dz

Example. (1) f(z) = zn, U = C∗, n ∈ Z. Consider γ : [0, 2π]→ U by t→ eit,
then γ′ = ieit.
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We have ∫
γ

f(z)dz =

∫ 2π

0

eintieitdt

= i

∫ 2π

0

ei(n+1)tdt

=

{
2πi n = −1
0 n 6= −1

(2) f(z) = z2, γ1 : [−R,R]→ C, γ1(t) = t; γ2 : [0, 1]→ C, γ2(t) = Reiπt.

We have ∫
γ

f(z)dz =

∫
γ1

f(z)dz +

∫
γ2

f(z)dz

=

∫ R

−R
t2dt+

∫ 1

0

R2e2πitiπReiπtdt

=
2R3

3
+

(
−2R3

3

)
= 0

Proposition. 2.2
For any continuous f : U → C (U open) and any curve γ : [a, b]→ U , we have∣∣∣∣∫

γ

f(z)dz

∣∣∣∣ ≤ length(γ) sup
γ
|f |(= sup

t∈[a,b]

|f(γ(t))|)
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Proof. WLOG assume γ is C1 and let M = supγ |f |. Then∣∣∣∣∫
γ

f(z)dz

∣∣∣∣ =

∣∣∣∣∣
∫ b

a

f(γ(t))γ′(t)dt

∣∣∣∣∣
≤
∫ b

a

|f(γ(t))||γ′(t)|dt

≤M
∫ b

a

|γ′(t)|dt

= Mlength(γ).

Theorem. 2.3
(Fundamental theorem of Calculus)
Suppose f : U → C is continuous and ∃ F (z) s.t. F ′(z) = f(z) ∀z ∈ U . Then
for any curve γ : [a, b]→ U ,∫

γ

f(z)dz = F (γ(b))− F (γ(a)).

Such F is called an anti-derivative of f on U .

Proof. ∫
γ

f(z)dz =

∫ b

a

f(γ(t))γ′(t)dt

= F (γ(b))− F (γ(a)).

Corollary. 2.4
If γ is closed (γ(b) = γ(a)) and f is continuous with anti-derivative F on
U ⊃ γ([a, b]), then ∫

γ

f(z)dz = 0.

Look at f(z) = zn for n ∈ Z. Then∫
γ

zndz =

{
0 n 6= −1
2πi n = −1

If n 6= −1, zn = d
dz

(
zn+1

n+1

)
, so the result 0 is expected by the above corollary.

However if n = −1, then 1
z does not have an anti-derivative on C∗ (no branch of

log on C∗).

Proposition. 2.5
Let U ⊂ C be a domain. If f : U → C is continuous and∫

γ

f(z)dz = 0

for all closed paths γ in U , then f has an anti-derivative F on U .
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Proof. Pick a0 ∈ U . Since U is a domain, for each w ∈ U we can pick a path
γw : [0, 1]→ U s.t. γw(0) = a0, γw(1) = w.

Let

F (w) =

∫
γw

f(z)dz

Note F is independent of the choice of γw by hypothesis.

We claim F is holomorphic and F ′ = f .

Since U is open, ∃r > 0 s.t. D(w, r) ⊂ U . Let h be s.t. |h| < r and let δh be
the radial path from w to w + h.

Let γ = γw ∗ δh ∗ (−γw+h) be concatenation of paths. γ is closed. So∫
γ

f(z)dz = 0

i.e.

F (w + h) =

∫
γw∗δh

f(z)dz

= F (w) +

∫
δh

f(z)dz

= F (w) + hf(w) +

∫
δh

(f(z)− f(w))dz.

So ∣∣∣∣F (w + h)− F (w)

h
− f(w)

∣∣∣∣ =
1

|h|

∣∣∣∣∫
δh

(f(z)− f(w))dz

∣∣∣∣
≤ length(δh)

|h|
sup
z∈δh
|f(z)− f(w)|

→ 0

as h→ 0 by continuity of f .

Definition. A domain U is star-shaped (star-domain) if ∃p ∈ U s.t. ∀a ∈ U ,
the straight segment [a, p] ⊂ U .
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Example. A disc is convex, so is star-shaped, so is a domain.

Corollary. 2.6
If U is star-shaped, f : U → C is continuous and∫

γ

f(z)dz = 0

for all triangles γ ⊂ U , then f has an anti-derivative on U .

Proof. If U is star-shaped, then about p, let γω = [p, ω] ∀ω ∈ U . The previous
proof works since γω ∗ δh ∗ (−γω+h) is a triangle.

Theorem. 2.7 (Cauchy’s Theorem for Triangles)
Let U be a domain. Let T ⊂ U be a triangle. If f : U → C is holomorphic, then∫

∂T

f(z)dz = 0

Proof. Let

η =

∣∣∣∣∫
∂T

f(z)dz

∣∣∣∣ ,
l = length(∂T ). Let T 0 = T and subdivide into 4 equal triangles T = T1∪ ...∪T4.
Then

Then ∫
∂T

f(z)dz =

4∑
i=1

∫
∂Ti

f(z)dz

as internal lines cancel in pairs.
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So, ∃i, 1 ≤ i ≤ 4, s.t. ∣∣∣∣∫
∂Ti

f(z)dz

∣∣∣∣ ≥ η

4
.

Let T 1 = Ti for this i, and repeat. We produce a sequence T 0, T 1, ... s.t.∣∣∣∣∫
∂T i

f(z)dz

∣∣∣∣ ≥ η

4i
,

and

length(∂T i) =
l

2i
.

We observe that
∞⋂
i=0

T i 6= φ

since T 0 is compact. So there exists

z0 ∈
∞⋂
i=0

T i

Since f is differentiable at z0, given ε > 0, ∃δ > 0 s.t.

|w − z0| < δ =⇒ |f(w)− f(z0)− (w − z0)f ′(z0)| < ε|w − z0|

Pick n s.t. Tn ⊂ D(z0, δ). Then

η

4n
≤
∣∣∣∣∫
∂Tn

f(z)dz

∣∣∣∣
=

∣∣∣∣∫
∂Tn

(f(z)− f(z0))− (z − z0)f ′(z0)dz

∣∣∣∣
This is because ∫

∂Tn
dz =

∫
∂Tn

zdz = 0
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(1 and z have primitive, z, z2

2 ). Continuing, using estimate from last lecture,

RHS ≤ length(∂Tn)ε sup
z∈∂Tn

|z − z0|

≤ [length(∂Tn)]2ε

=
l2

4
ε

So
η ≤ εl2

But ε is arbitrary. So η = 0.

Corollary. 2.8 (Convex Cauchy)
Let f be a holomorphic function on a star-shaped domain U . Then∫

γ

f(z)dz = 0

for all curves γ on U .

Proof. by the previous theorem,∫
∂T

f(z)dz = 0

for all triangles. So by 2.6, f has an anti-derivative F on U . Then by Fundamental
Theorem of Calculus we get the desired result.

Addendum. Suppose U is star-shaped and S ⊂ U is a finite set. Let f : U → C
be continuous and holomorphic. on U\S. Then the conclusion of Cauchy’s
theorem still holds, i.e. ∫

γ

f(z)dz = 0

for all curves γ.

Proof. Suffices to prove that ∫
∂T

f(z)dz = 0

∀T . Let M = supT |f |. Subdivide T into rn equal subtriangles, as in the proof
of Theorem 2.7.
Let T ′ ⊂ T be a subtriangle. If T ′ ∩S = φ, then the proof of 2.7 gives the result.
Otherwise, for any T ′, ∣∣∣∣∫

∂T ′
f(z)dz

∣∣∣∣ ≤ l2−nM
Each element of S belongs to at most 6 subtriangle, so this gives∣∣∣∣∫

∂T

f(z)dz

∣∣∣∣ ≤∑
T ′

∣∣∣∣∫
∂T ′

f(z)dz

∣∣∣∣ ≤ 6(#S)lM

2n

let n→∞ we get the desired result.
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Theorem. 2.9 (Cauchy’s integral formula for a disc)
Let D = D(a, r) be a disc, and suppose f : D → C is holomorphic. For every
w ∈ D and ρ with |w − a| < ρ < r, we have

f(w) =
1

2πi

∫
|z−a|=ρ

f(z)

z − w
dz

Proof. Consider the function

g(z) =

{
f(z)−f(w)

z−w z 6= w

f ′(w) z = w

Apply the Addendum to g to derive∫
|z−a|=ρ

g(z)dz = 0

So ∫
|z−a|=ρ

f(z)

z − w
dz =

∫
|z−a|=ρ

f(w)

z − w
dz (*)

To compute (*), note the following

1

z − w
=

1

(z − a)
(

1− w−a
z−a

)
=

∞∑
n=0

(w − a)n

(z − a)n+1

since
∣∣∣w−az−a

∣∣∣ < 1. Now recall∫
γ

zndz =

{
2πi n = −1
0 n 6= −1

So ∫
|z−a|=ρ

f(w)

z − w
dz =

∞∑
n=0

∫
|z−a|=ρ

f(w)
(w − a)n

(z − a)n+1
dz = 2πif(w).
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where the second equality is just the calculation as in the example of zn (n ∈ Z
from previous lecture. The first needs justification:

Lemma. If fn : U → C and f : U → C continuous and γ : [a, b] → U a curve
s.t. fn → f uniformly on im(γ), then∫

γ

fn(z)dz →
∫
γ

f(z)dz

Hence the proof of Cauchy’s formula is completed if we can prove this lemma.

Proof of lemma: Let Mn = supγ |fn − f |. Uniform convergence just says that
Mn → 0 as n→∞. Then from∣∣∣∣∫

γ

(fn(z)− f(z))dz

∣∣∣∣ ≤Mnlength(γ)→ 0.

we get the desired result.

Corollary. 2.10 (The mean value property)
If f : D(w,R)→ C is holomorphic, then for every 0 < r < R we can write

f(w) =

∫ 1

0

f(w + re2πit)dt.

Proof. Apply the CIF with a = w and parameterise the circle of integration as

γ(t) = w + re2πit, t ∈ [0, 1]

Now we shall look at some applications of the CIF.

Theorem. 2.11 (Liouville’s theorem)
Every bounded entire function is constant.

Proof. Let f : C→ C be holomorphic, s.t. |f(z)| < M for all z ∈ C.

Pick w ∈ C, and take R > |w|. By CIF,

f(w)− f(0) =
1

2πi

∫
|z|=R

f(z)

z − w
dz − 1

2πi

∫
|z|=R

f(z)

z
dz

=
1

2πi

∫
|z|=R

wf(z)

z(z − w)
dz

Now

|f(w)− f(0)| = 1

2π

∣∣∣∣∣
∫
|z|=R

wf(z)

z(z − w)
dz

∣∣∣∣∣
≤ 1

2π
|w| sup
|z|=R

|f(z)|
|z(z − w)|

2πR

≤ |w|
2π

2πRM

R(R− |w|)
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As R→∞, we get f(w) = f(0).

Theorem. 2.12 (Fundamental Theorem of Algebra)
Every non-constant polynomial with complex coefficients has a complex root.

Proof. Let p(z) = zn + cn−1z
n−1 + ...+ c1z+ c0 be a polynomial of degree n > 0.

Then |p(z)| → ∞ as z →∞. So ∃R s.t. |p(z)| > 1 for all |z| > R.

If p has no roots, then we can consider f(z) = 1
p(z) . Then f is entire and bounded

since f is also bounded on {z : |z| ≤ R} by continuity. So f is a constant, and p
is a constant. Contradiction.

Theorem. 2.13 (Local Maximum Principle)
Let f : D(a, r) → C be holomorphic. If for every z ∈ D(a, r), |f(z)| ≤ |f(a)|,
then f is constant.

Proof. By the mean value property (corollary 2.10), we have for 0 < ρ < r,

|f(a)| =
∣∣∣∣∫ 1

0

f(a+ re2πit)dt

∣∣∣∣
≤ sup
|z−a|=0

|f(z)|

≤ |f(a)|.

Hence the equalities hold. Then by proposition 2.1 we know |f(z)| = |f(a)| for
all z s.t. |z − a| = ρ. But this holds for all ρ. So |f | is constant in D(a, r). So f
is constant (see example sheet).

Theorem. 2.14 (Taylor expansion)
Let f : D(a, r) → C be holomorphic. Then f has a convergent power series
representation in D(a, r)

f(z) =

∞∑
n=0

cn(z − a)n

where

cn =
f (n)(a)

n!
=

1

2πi

∫
|z−a|=ρ

f(z)dz

(z − a)n+1

for any 0 < ρ < r.

Proof. If |w − a| < ρ < r, then by the CIF,

f(w) =
1

2πi

∫
|z−a|=ρ

f(z)

z − w
dz

As we did before we write

1

z − w
=

∞∑
n=0

(w − a)n

(z − a)n+1
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(see the proof of CIF). Then the RHS above is then equal to

1

2πi

∫
|z−a|=ρ

f(z)

( ∞∑
n=0

(w − a)n

(z − a)n+1

)
dz =

∞∑
n=0

(
1

2πi

∫
|z−a|=ρ

f(z)

(z − a)n+1
dz

)
(w − a)n

the coefficient for each (w − a)n can be treated as cn.

Corollary. 2.15
Suppose f : U → C, U open, f holomorphic. Then its derivative of all orders
exist and are holomorphic.

Remark. This shows the equivalence between the terms ”holomorphic” (f ′

exists) and ”analytic”(f can be written as a power series).

Corollary. 2.16 (Morera’s theorem) Let U be a domain and f : U → C be
continuous. If

∮
γ
f(z)dz = 0 for all closed paths in U , then f is holomorphic.

Proof. Proposition 2.5 implies that f has an anti-derivative F . F holomorphic
implies F ′ = f is also holomorphic.

Suppose f : U → C is holomorphic on some open U , D(a, r) ⊂ U . Then CIF
gives

f(w) =
1

2πi

∫
Cr

f(z)

z − w
dz

We also have

f ′(w) =
1

2πi

∫
Cr

f(z)

(z − w)2
dz

We can justify this as follows. Take w,w0 ∈ D(a, r). By CIF,

f(w)− f(w0) =
1

2πi

∫
Cr

f(z)(w − w0)

(z − w)(z − w0)
dz

Then after some calculation we get

f(w)− f(w0)− (w − w0)

2πi

∫
Cr

f(z)

(z − w0)2
dz =

(w − w0)2

2πi

∫
Cr

f(z)

(z − w)(z − w0)2
dz.

(*)
So

f(w)− f(w0)

w − w0
− 1

2πi

∫
Cr

f(z)

(z − w0)2
dz =

(w − w0)

2πi

∫
Cr

f(z)

(z − w)(z − w0)2
dz.

Let w → w0,∣∣∣∣∫
Cr

f(z)

(z − w)(z − w0)2

∣∣∣∣ ≤ 2πr sup
z∈Cr

|f(z)|
|z − w||z − w0|2

≤ 2πrM

(r − |w|)(r − |w0|)2

where M = supz∈Cr |f(z)|. So the integral is bounded. Therefore the RHS of
(*) tends to 0. So done.
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By induction and further work, one also gets

f (n)(w) =
n!

2πi

∫
Cr

f(z)

(z − w)n+1
dz

for any n ∈ Z, n ≥ 0.

Definition. Let U ⊂ C be open, fn : U → C be a sequence of functions. We
say that {fn} is locally uniformly convergent in U if for any a ∈ U , there exists
an open disc D(a, r) ⊂ U on which {fn} is uniformly convergent in the usual
sense.

Example. Let D(0, 1) = U . Then zn → 0 but not uniformly. However, this
is uniformly convergent on any D(0, r) for r < 1. So zn is locally uniformly
convergent.

Proposition. 2.17
A sequence of functions fn : U → C is locally uniformly convergent if and only
if it converges uniformly on all compact subsets of U .

Proof. If fn → f uniformly on compact subsets, then given a ∈ U and r > 0 s.t.
D(a, r) ⊂ U , fn → f uniformly on D(a, r), hence fn → f locally uniformly.

Conversely, if fn → f locally uniformly in U , then given K ⊂ U compact, we
proceed as follows. For each a ∈ K, choose a disc D(a, ra) ⊂ U on which {fn}
converges uniformly. Now

⋃
aD(a, ra) covers K. Since K is compact, there

exists a finite set S ⊂ U s.t.

K ⊂
⋃
a∈S

D(a, ra)

So {fn} converges uniformly on K.

Theorem. 2.18
Let {fn} be a sequence of holomorphic functions on U which is LUC. Then the
limit function f is holomorphic, and {f ′n} also converges locally uniformly to f ′.

Proof. Let D = D(a, r) ⊂ U be any disc. Then by Cauchy’s theorem, for any
closed γ in D, ∫

γ

fn(z)dz = 0

since each fn is holomorphic. But we know fn → f uniformly on γ (since γ([a, b])
is compact: image of compact set under continuous map is compact). Also f is
continuous (locally uniform limit of continuous functions). Hence

0 =

∫
γ

fn(z)dz →
∫
γ

f(z)dz

by lemma(?). Hence ∫
γ

f(z)dz = 0.
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By Morera’s theorem (2.16), f is holomorphic in D. Next, by the CIF for f ′, for
any w ∈ D(a, r2 ),

|f ′(w)− f ′n(w)| = 1

2π

∣∣∣∣∣
∫
|z−a|=r

f(z)− fn(z)

(z − w)2
dz

∣∣∣∣∣
≤
r sup|z−a|=r |f(z)− fn(z)|

r2/4

Since fn → f uniformly on {|z − a| = r}, we say that f ′n → f ′ uniformly on
D(a, r2 ).

Suppose f : D(w,R)→ C is holomorphic and write it as

f(z) =
∑
n≥0

cn(z − w)n.

If f is not identically zero on D(w,R), then not all the cn are zero. Let
m := min{n ∈ N|cn 6= 0}. Now we can rewrite

f(z) = (z − w)mg(z)

where

g(z) =

∞∑
n=m

cn(z − w)n−m

is holomorphic on D(w,R) and g(w) 6= 0.

This gives

Theorem. 2.19 (Principle of isolated zeros)
Let f : D(w,R)→ C be holomorphic and not identically zero. Then ∃ 0 < r ≤ R
s.t. f(z) 6= 0 for 0 < |z − w| < r.

Proof. Suppose f(w) 6= 0, then by continuity of f , there exist r > 0 s.t. f(z) 6= 0
for z ∈ D(w, r). Otherwise, f has order m > 0 at z = w. Hence f(z) =
(z − w)mg(z) with g holomorphic and g(w) 6= 0. Hence g(z) 6= 0 on some disc
D(w, r) and then

f(z) 6= 0

for 0 < |z − w| < r.

Theorem. 2.20 (Uniqueness of analytic continuation)
Let D′ ⊂ D be domains and f : D′ → C is analytic. There is at most one
analytic function g : D → C s.t. g(z) = f(z) for all z ∈ D′.

If an extension g exists, it is called an analytic continuation of f to D.

Proof. Let g1, g2 : D → C both be analytic continuations of f to D. Then
h = g1 − g2 : D → C is analytic and h(z) = 0 in D′. Now define

D0 = {w ∈ D : h ≡ 0 on some open disk D(w, r)}
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and
D1 = {w ∈ D : h(n)(w) 6= 0 for some n ≥ 0}.

D0 and D1 are open, and D0 ∩ D1 = φ because h has locally a power series
expansion.

We see that D = D0∪D1. Since D is connected and D0 ⊃ D′ and hence D0 6= φ.
So we must have D0 = D.

Corollary. 2.21 (Identity principle)
Let f, g : D → C be analytic on a domain D. If S = {z ∈ D : f(z) = g(z)}
contains a non-isolated point, then f = g on D.

Proof. Let w be a non-isolated point (i.e. for every ε > 0, ∃z ∈ S s.t. 0 <
|z − w| < ε). Then f − g is analytic in D and vanishes in S. So it has a
non-isolated zero. By theorem 2.19, f − g vanishes in an open disc with centre
w. Then by theorem 2.20, f = g on D.

Remark. Given f : D′ → C analytic and D ⊃ D′, deciding whether f has or
doesn’t have an analytic extension could be a difficult problem. For example,
consider

f(z) =

∞∑
0

zn

on D(0, 1). Then 1
1−z is an analytic continuation to C\{1}. In contrast,

f(z) =

∞∑
1

zn!

defines an analytic function on D(0, 1) that cannot be analytically continued to
any domain containing D(0, 1). |z| = 1 is called the ’natural boundary’.

Corollary. 2.22 (Global maximum principle, c.f. Theorem 2.13)
Let U ⊂ C be a bounded domain in C, and let Ū be the closure of U and
f : Ū → C continuous and holomorphic on the inside. Then |f | contains its
maximum on the boundary Ū\U .

Proof. |f | is a continuous function in the compact set Ū , so it has a maximum.
If this maximum is achieved at a ∈ U , then the local maximum principle says
that f is constant on D(a, r) for some r > 0. So f is constant on U and hence
on Ū .
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3 Complex Integration II

Theorem. 3.1
If γ : [a, b] → C\{w} is continuous, then there exists a continuous function
θ : [a, b]→ R s.t.

γ(t) = w + r(t)eiθ(t), r(t) = |γ(t)− w| (*)

Proof. By translation we may assume w = 0.
Note: (1) If γ([a, b]) ⊂ D = {<(z) > 0} then we may take θ(t) = arg γ(t) where
arg is the principal branch of the argument which is continuous on D.
(2) Similarly, if γ([a, b]) ⊂ {<(z/eiα) > 0}, then

θ(t) = α+ arg(γ(t)/eiα)

will do.

We may assume |γ(t)| = 1 by replacing γ by γ(t)/|γ(t)|. Since γ is continuous
on [a, b], it is uniformly continuous. So there exists δ > 0 s.t. if s, t ∈ [a, b] with
|s− t| < δ, then |γ(s)− γ(t)| <

√
2.

Subdivide as follows: consider a = a0 < a1 < ... < aN = b, where each

an − an−1 < 2δ. Then if t ∈ [an−1, an], we have
∣∣∣γ(t)− γ

(
an−1+an

2

)∣∣∣ < √2. So

the image of [an−1, an] lies in a semicircle, hence in a half-plane (see diagram).
So by the above notes, there exists a function θn : [an−1, an]→ R continuous s.t.
γ(t) = eθn(t) for all t ∈ [an−1, an].

Since θn−1(an−1) = θn(an−1) + 2πBn, where Bn ∈ Z. So by adding suitable
multiple of 2π to each θn, we can make them match and fit together to get a
continuous θ.

Given such a continuous θ, define

I(γ,w) =
θ(b)− θ(a)

2π



3 COMPLEX INTEGRATION II 28

This is well-defined: if θ1, θ2 are two continuous functions s.t. (*) holds, then
θ1 − θ2 ∈ 2πZ, so is constant by continuity.

If γ is closed, i.e. γ(b) = γ(a), then I(γ,w) ∈ Z.

Remark. Other possible common notations are n(γ,w) or nγ(w).

If γ is C1 (or piecewise C1), we can give directly a function θ which is also C1

(or piecewise). Assume WLOG w = 0. Then define

h(t) :=

∫ t

0

γ′(s)

γ(s)
ds

with

h′(t) =
γ′(t)

γ(t)

So
d

dt

(
γ(t)e−h(t)

)
= γ′(t)e−hγe−h(−h′) = e−h(γ − h′γ) = 0

So γ(t)e−h is a constant. Write γ(t) = γ(a)eh(t). So θ(t) = arg(γ(a)) + =h(t).

Lemma. 3.2
Let γ : [a, b]→ C \ {w} closed and piecewise C1 curve. Then

I(γ,w) =
1

2πi

∫
γ

dz

z − w
.

Proof. γ(t) = w + γ(t)eiθ(t) with r and θ pieciwise C1. Then∫
γ

dz

z − w
=

∫ b

a

γ′(t)

γ(t)− w
dt

=

∫ b

a

(
r′

r
+ iθ′

)
dt

= [log r(t) + iθ(t)]
b
a

= i(θ(b)− θ(a))

= 2πiI(γ,w).

Corollary. 3.3
(1) I(γ,w) is constant on each path-component on C \ γ([a, b]).
(2) If w is in the unique unbounded component of C \ γ([a, b]) then I(γ,w) = 0.

Proof. (1) Note C \ γ([a, b])→ I(γ,w) is continuous.
(Check that

1

2πi

∫
γ

dz

z − w
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we can argue just as we did a couple of lectures ago when proving the CIF for
f ′(w)).
Since it takes value in Z, it must be constant on each component.

(2) γ([a, b]) is compact, so there exists a unique unbounded component. Then

|I(γ,w)| = 1

2π

∣∣∣∣∫
γ

dz

z − w

∣∣∣∣ ≤ length(γ)

2π
sup
z∈r

1

|z − w|
≤ length(γ)

2π |w|2

as |w| → ∞. The last inequality holds since w ∈ {z ∈ C : |z| > 2 max |u|, u ∈
γ([a, b])}.

3.1 General form of Cauchy’s theorem (homotopy ver-
sion)

Definition. Let φ : [a, b] → U , ψ : [a, b] → U be piecewise closed paths. A
homotopy from φ to ψ is a map F : [0, 1]× [a, b]→ U s.t
(i) F is continuous;
(ii) F |{0}×[a,b] = φ, F{1}×[a,b] = ψ;
(iii) ∀s ∈ [0, 1], Fs(t) = F (s, t) : [a, b]→ U is closed and piecewise C1.

This is like some continuous transform of φ into ψ, where the first argument of
F is the ’time’; so the second condition marks the starting shape and end ending
shape.

Definition. A domain U is simply connected if every piecewise C1 closed path
γ : [a, b]→ U is homotopic to a constant path (i.e. a point).

We can think of this as: any curve can be continuously shrinked into one point.

Remark. A star-domain is simply connected.

Remark. (*) U simply connected is also equivalent with:
(1) I(γ,w) = 0 for all closed curves γ in U and w 6∈ U ;
(2) U ⊂ C∞, the complemment of U is connected in C∞;

Definition. Let φ : [0, 1] → U and ψ : [0, 1] → U be paths. Then ψ is an
elementary deformation of φ if
(i) ∃x0 = 0 < x1 < ... < xn = 1 and convex open sets C1, ..., Cn ⊂ U s.t. for
t ∈ [xi−1, xi], φ(t) and ψ(t) ∈ Ci.
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Let φi = φ|[xi−1,xi], ψi = ψ|[xi−1,xi]. Let γi be a straight line segment from φ(xi)
to ψ(xi).

Convex Cauchy:

∫
φi+γi−ψi−γi−1

f(z)dz = 0

for f holomorphic.

If we sum over i from 1 to n, we obtain∫
φ

f(z)dz =

∫
ψ

f(z)dz

(integrals over γi cancel in pairs).

Proposition. 3.4
If φ and ψ are homotopic closed paths in a domain U , then there are φ =
φ1, ..., φN = ψ s.t. φi+1 is an elementary deformation of φi.

This proposition and the previous argument give

Theorem. 3.5 (Homotopy form of Cauchy’s theorem)
Let f : U → C be holomorphic. If φ, ψ are homotopic closed paths, then∫

φ

f(z)dz =

∫
ψ

f(z)dz.

In particular, if γ is homotopic to a constant path, then intγf(z)dz = 0.

Corollary. 3.6
let U be a simply-connected domain and f : U → C holomorphic. Then∫

γ

f(z)dz = 0

for all closed paths γ.
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Proof. (of proposition 3.4) (exercise on uniform continuity)
Let F : [0, 1] × [a, b] → U be the homotopy between φ and ψ. We know
im(F ) is compact. The distance between im(F ) and C \ U is ε > 0. Hence
D(F (s, t), ε) ⊂ U ∀(s, t).

F is uniformly continuous, so given ε > 0, ∃δ > 0 s.t. |(s, t)− (s′, t′)| < δ =⇒
|F (s, t)− F (s′, t′)| < ε.

Pick N s..t 1+(b−a)
n < δ and set xj = a+ (b−a)j

n for j = 1, ..., n. Let

φi = F |{1/n}×[a,b]

Then
Cij = D(F (1/n, xj), ε)

are convex. If s ∈ [ i−1
n , in ],t ∈ [xj−1, xj ], then F (s, t) ∈ Cij because of the

uniform continuity equation. So φi is an elementary deformation of φi−1.
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4 Singularities, Laurent expansions and the residue
theorem

4.1 Laurent expansions

Theorem. 4.1
Let f be holomorphic on an annulus A = {z ∈ C : r < |z − a| < R} for
0 ≤ r < R ≤ ∞. Then
(i) f has a unique convergent series expansion on A

f(z) =

∞∑
n=−∞

cn(z − a)n;

(ii) For any ρ ∈ (r,R), the coefficient cn is given by

cn =
1

2πi

∫
|z−a|=ρ

f(z)

(z − a)n+1
dz;

(iii) If r < ρ′ ≤ ρ < R, then the series converges uniformly on the set {z ∈ C :
ρ′ ≤ |z − a| ≤ ρ} (hence locally uniformly in A).

Proof. As in the proof of the CIF, we consider the following function: if w ∈ A,

g(z) =

{
f(z)−f(w)

z−w z 6= w

f ′(w) z = w

g is holomorphic in A (follows from results in previous lectures). Choose r <
pρ2 < |w− a| < ρ1 < R, C1 : |z − a| = ρ1, C2 : |z − a| = ρ2. By theorem 3.5 (C1

and C2 are homotopic in A),∫
C1

g(z)dz =

∫
C2

g(z)dz

=⇒
∫
C1

f(z)

z − w
dz − f(w)

∫
C1

dz

z − w
(= 2πiI(C1, w) = 1)

=

∫
C2

f(z)dz

z − w
− f(w)

∫
C2

dz

z − w
(= 2πiI(C2, w) = 0)

So

f(w) =
1

2πi

∫
C1

f(z)

z − w
dz − 1

2πi

∫
C2

f(z)dz

z − w

Let the first integral be f1(w) and the second be f2(w). For f1, expand just as
in the proof of Taylor series to get

f1(w) =

∞∑
n=0

cn(w − a)n

where

cn =
1

2πi

∫
C1

f(z)

(z − a)n+1
dz
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∀n ≥ 0 ( 1
z−w =

∑∞
n=0

(w−a)n

(z−a)n+1 ).

For f2 we use

−1

z − w
=

1/w − a
1− z−a

w−a
=

∞∑
m=1

(z − a)m−1

(w − a)m

which converges uniformly for |z − a| = ρ2, giving

f2(w) =

∞∑
m=1

dm(w − a)−m

where

dm =
1

2πi

∫
C2

f(z)

(z − a)−m+1
dz

∀m ≥ 1. Writing n = −m we get part (i).

(missing two lectures)

Let f : U \ {z1, ..., zk} → C be holomorphic, U simply connected, zi 6∈ im(γ), γ
closed. Then

1

2πi

∫
γ

f(z)dz =
∑
i

I(γ, zi)Reszif

Some observations about computing residues:
(i) Simple pole at a: Resaf = limz→a(z − a)f(z);
(ii) f = g/h, g, h are holomorphic, g(a) 6= 0, a simple zero of h, then

Resaf =
g(a)

h′(a)
;

(iii) f(z) = (z − a)−kg(z), with g holomorphic, then Resaf = g(k−1)(a)
(k−1)! =

coefficient of (z − a)k−1 in Taylor expansion for g.

Example. Consider ∫ ∞
−∞

cosx

1 + x+ x2
dx.
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Let f(z) = eiz

1+z+z2 . f has a simple pole at w = e2πi/3. We have

Reswf =
eiw

2w + 1

On the semicircle Reiθ for θ ∈ [0, π],∣∣∣∣∫ π

0

f(Reiθ)Rieiθdθ

∣∣∣∣ ≤ ∫ π

0

|f(Reiθ)|Rdθ

= R

∫ π

0

e−R sin θ

|R2e2iθ +Reiθ + 1|
dθ

= O(1/R)→ 0

as R→∞.

By using the residue theorem,∫ ∞
−∞

cosx

1 + x+ x2
dx = <

(∫
R
f(z)dz

)
= <

(
2πi+ eiw

2w + 1

)
=

2π√
3

cos(1/2)e−
√

3/2

Two useful lemmas for estimating the integrals:

Lemma. 4.8
Let f be holomorphic on D(a,R) \ {a}, with a simple pole at a. If 0 < ε < R,
let γ : [α, β]→ C be γε(t) = a+ εeit. Then

lim
ε→0

∫
γε

f(z)dz = (β − α)iResaf.

Proof. Let f(z) = c
z−a + g(z) with g holomorphic in D(a,R), and c = Resaf .

Then ∣∣∣∣∫
γε

g(z)dz

∣∣∣∣ ≤ (β − α)ε sup
γz

|g(z)| → 0
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as ε→ 0 (since g is continuous on D(a,R), the supremum is bounded). But

lim
ε→0

∫
γε

c

z − a
dz = c lim

ε→0

∫ β

α

iεeit

εeit
dt = (β − α)i.

Lemma. 4.9 (Jordan’s lemma)
If f is holomorphic on {|z| > r}, and zf(z) is bounded for large |z|, then ∀α > 0,∫

γR

f(z)eiαzdz → 0

as R→∞, where γR(t) = Reit for t ∈ [0, π].

Proof. |f(z)| ≤ c
|z| for large |z|, where c is the same constant. On (0, π2 ],

d

dθ

(
sin θ

θ

)
=
θ cos θ − sin θ

θ
≤ 0

So sin θ
θ decreases and hence sin t ≥ 2t

π for t ∈ [0, π2 ]. Then

|eiαz| = e−Rα sin t ≤

{
e−

Rα2t
π 0 ≤ t ≤ π

2

e−
Rα2t′
π 0 ≤ t′ = π − t ≤ π

2

For the 1/4−circle in the first quadrant, let z = eit. Then∣∣∣∣∣
∫ π/2

0

eiαRe
it

f(Reit)iReitdt

∣∣∣∣∣ ≤
∫ π/2

0

ce−
2Rtα
π dt

=
cπ

2Rα
[1− e−Rα → 0

as R→∞. Same for the other 1/4−circle.

Example. (see CM sheet)∫∞
0

sin x
x dx.
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Let f(z) = eiz

z . Then ∫
γR,ε

f(z)dz = 0,∫
eiz

z
dz → 0

as R→∞ by Jordan’s lemma.

lim
ε→0

∫
f(z)dz = −πi

Res0f = 1, sin x
x is even. So ∫ ∞

0

sinx

x
=
π

2
.

Example.

I =

∫ π
2

0

dt

1 + sin2 t
.

We have

sin t =
eit − e−it

2i

hence if |z| = 1, |z| = eit, sin t = z−1/z
2i , dz

dt = ieit. Then∫ π/2

0

dt

1 + sin2 t
=

1

4

∫ 2π

0

dt

1 + sin2 t

=
1

4

∫
|z|=1

dz

iz +
[
1 + (z−1/z)2

−4

]
=

∫
|z|=1

izdz

z4 − 6z2 + 1

y2 − 6y + 1 has roots 3±
√

2, so z4 + 6z2 + 1 has roots 1±
√

2,−1±
√

2. We
see 1−

√
2 and −1 +

√
2 are inside the circle.

Resq±f =
iq±

4q3
± − 12q±

=
−i
√

2

16

So we get I = π
√

2
4 .
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5 The Argument Principle, Rouché’s theorem

Proposition. 5.1
Let f have a zero (pole) of order k at z = a. Then f ′(z)/f(z) has a simple pole
at z = a with residue k (respectively −k).

Proof. Assume f has a zero of order k at a. So f(z) = (z − a)kg(z), where g is
holomorphic and g(a) 6= 0.

If we compute
f ′(z)

f(z)
=

k

z − a
+
g′(z)

g(z)

where g′(z)/g(z) is a nice holomorphic function near a. So Refaf = k.

For a pole we have f(z) = (z − a)−kg(z) and we get residue −k.

Theorem. 5.2 (Argument Principle)
Let U be simply connected and suppose f is a mesomorphic function on U with
finitely many zeros {z1, ..., zk} and poles {w1, ..., wl}. Let γ be a closed curve in
U s.t. zi, wj 6∈ im(γ) ∀i, j. Then

1

2πi

∫
γ

f ′(z)

f(z)
dz =

k∑
i=1

I(γ, zi)ordzi(f)−
l∑

j=1

I(γ,wj)ordwjf

where ordzif and ordwjf denotes the order of the respective zero or pole.

Proof. The function f ′/f is holomorphic except at isolated singularities given by
{z1, ..., zk} and {w1, ..., wl}. Hence we can apply the residue theorem combined
with proposition 5.1 to prove the result.

Remark. Consider the curve Γ = f ◦ γ misses 0.

Then
1

2πi

∫
γ

f ′(z)

f(z)
dz =

1

2πi

∫
Γ

dw

w
= I(Γ, 0)
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(Note 1
2πi

∫ b
a
f ′(γ(t))γ′(t)dt

f(γ(t)) = 1
2πi

∫ b
a

Γ′(t)
Γ(t) dt). So

I(Γ, 0) =

k∑
i=1

I(γ, zi)ordzif −
l∑

j=1

I(γ,wj)ordwjf

Now if we let N be the number of zeros of f inside γ (counted with multiplicity),
P be the number of poles of f inside γ (same), then

I(Γ, 0) = N − P.

Definition. Let γ be a closed curve in U . We say that γ bounds a domain D if
I(γ,w) = 1 ∀w ∈ D and I(γ,w) = 0 ∀w 6∈ D ∪ γ.

Hence if γ bounds a domain D, I(Γ, 0) = N − P , where N,P are the number of
zeros and poles in D respectively.

Consequences for the local behaviour of a holomorphic function:

Let f be a non-constant holomorphic function in some U . Take a ∈ U and
f(a) = b. We say that the local degree of f at a is the order of the zero of
f(z)− b at z = a and denoted by dega(f), which is a positive integer.

Proposition. 5.3
The local degree of f at z = a equals I(f0γ, f(a)) for any circle γ(t) = a+ re2πit,
t ∈ [0, 1] of sufficiently small radius (local model z → zd).

Proof. Apply Theorem 5.2 to f(z)− f(a): This function has an isolated zero at
z = a, hence it is non-zero in 0 < |z − a| ≤ r for r sufficiently small.

Theorem. 5.4 (local mapping degree)
Let f : D(a,R) → C be holomorphic and non-constant with local degree
dega(f) = d > 0. Then if r > 0 is sufficiently small, then there exists ε > 0 s.t.
for every w with 0 < |w − f(a)| ≤ ε, the equation f(z) = w has exactly d roots
in D(a, r).
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(In the above diagram, every w in the image has exactly d preimages.)

Proof. Let b = f(a). Let r > 0 be s.t. both f(z)− b and f ′(z) are non-zero for
0 < |z − a| ≤ r.

Let γ be the circle with center a and radius r. Then Γ = f ◦ γ is a closed curve
missing b. Choose ε > 0 s.t. D(b, ε) does not meet Γ (image of Γ is compact,
hence its complement is open).

Then if w ∈ D(b, ε), then the number of zeros (with multiplicity) of f(z)− w in
D(a, r) equals I(Γ, w) by the Argument principle. But I(Γ, w) = I(Γ, b) = d by
proposition 5.3.

Since r was chosen so that f ′ is non-zero on D(a, r) \ {a}, the zeros are all
simple.

Corollary. 5.5 (open mapping theorem)
Let f : U → C be holomorphic and non-constant. Then f is an open mapping,
that is, it maps open sets to open sets.

Proof. Let V ⊂ U is open. We need to prove that f(V ) is open. Take b ∈ f(V )
and write it as b = f(a), with a ∈ V .

But V is open, so for r sufficiently small, D(a, r) ⊂ V . The previous theorem
gives ε > 0 s.t.

D(b, ε) ⊂ f(D(a, r)) ⊂ f(V ).

Theorem. 5.6 (Rouché’s theorem)
Let f, g : U → C be holomorphic. Let γ be a closed curve s.t. γ bounds a
domain D, and |f | > |g| on γ. Then f and f + g have the same number of zeros
in D.

Proof. Note that from the assumption, f and f + g do not have zeros on γ.
Consider the function h = 1 + g/f .
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R.T.P: h has the same number of zeros (N) as poles(P ) in D.

By argument principle, N − P = I(h ◦ γ, 0). To finish the proof, need to show
I(h ◦ γ, 0) = 0.

We have |h− 1| < 1| on γ by hypothesis, so 0 lies in the unbounded component
of the complement of the image of h ◦ γ. So I(h ◦ γ, 0) = 0.

Example. Consider polynomial p(z) = z4 + 6z + 3. At |z| = 2, |z4| = 16.15 =
6|z|+ 3 ≥ |6z + 3|. Let f = z4 and g = 6z + 3. Then by Rouché’s theorem, z4

has the same number of zeros as P inside |z| < 2. So all roots of P are inside
|z| < 2.

If we now look at |z| = 1, then 6|z|+ 4 > 4 ≥ |z4 + 3|. So P (z) has the same
number of roots as 6z inside |z| < 1. So P (z) has one root inside |z| < 1 and 3
roots inside 1 < |z| < 2.
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6 A Brief Summary of Our Theory

From IA Analysis I we know about power series and radius of convergence.
We proved some results about the criteria of complex differentiabilility (C-R
equation) which also had something to do with harmonic functions and Laplace
equations.

Then we proved some results about the existence of antiderivatives and being
holomorphic: Cauchy’s theorem for triangles; for star-domains; and for convex
domains. Somewhere in between we proved the Fundamental Theorem of
Calculus.

The next key idea was to go from the convex Cauchy to the Cauchy integral

formula by considering the auxiliary function g(z) = f(z)−f(w)
z−w , and also yielding

Liouville’s theorem and Local maximum principle, as well as Taylor series which
is helpful since holomorphic =⇒ derivative is holomorphic. From there we get a
connection to Converse Cauchy (Morera’s theorem), and get that uniform limits
of holomorphic functions are holomorphic.

The next stage of the course is topological in nature. We introduced two main
topological ideas: index and homotopy. There we reach another highlight of the
course (from local to global), the homotopy form of Cauchy’s theorem. Then we
discussed about Laurent Series and different types of singularities which yield
the idea of residues and residue theorem that enabled us to do contour integrals.
In the end we talked about the Argument pronciple, OMT, and Local degree
theorem (with connection from Residue theorem).
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