
Coding and Cryptography

March 23, 2018

1

CONTENTS 2

Contents

0 Miscellaneous 3

1 Introduction to communication channels and coding 4

1.1 Noiseless coding . 5

1.2 Mathematical entropy . 7

2 Error control codes 14

2.1 Bound on codes . 17

2.2 Channel Capacity . 18

2.3 Conditional Entropy . 19

2.4 Linear codes . 24

2.5 Syndrome Decoding . 26

2.6 Reed-Muller Codes . 27

2.7 Shift registers . 33

2.8 Berlekamp-Massey algorithm . 34

3 Cryptography 36

3.1 Stream Ciphers . 38

3.2 Public key cryptosystems (asymmetric cryptosystems) 39

3.3 RSA encryption . 41

3.4 Diffie-Hellman Key Exchange . 42

0 MISCELLANEOUS 3

0 Miscellaneous

132

1 INTRODUCTION TO COMMUNICATION CHANNELS AND CODING4

1 Introduction to communication channels and
coding

For example, given a message M = ”Callme!” which we wish to send by
email. We first encode t as binary strings using ASCII. So f(C) = 1000011,
f(a) = 1100001, f∗(M) = 10000111100001...0100001.

The message goes from the source to the receiver after encoded by the source
and decoded by the receiver via a channel, where errors could occur. The basic
problem is, given a source and a channel (described probabilistically, we aim to
design an encoder and a decoder in order to transmit information economically,
reliably, and preserving privacy (secretly).

Some examples of each aspect:
economcically : Morse code, where common letters have shorter codewords;
reliability : every book has an ISBN of form a1...a10 where ai ∈ {0, 1, ..., 9} for
1 ≤ i ≤ 9 and a10 ∈ {0, 1, ..., 9, X}, s.t. 10a1 + 9a2 + ... + a10 ≡ 0 (mod 1)1,
where we treat X as 10. In this way errors can be detected, although not
corrected. There is another version of ISBN which is 13 digit;
preserve privacy RSA.

A communication channel takes letters from an input alphabet Σ1 = {a1, ..., ar}
and emits letters from an output alphabet Σ2 = {b1, ..., bs}.

A channel is determined by the probabilities P (y1, ..., yk received|x1, ..., xk sent).

Definition. A discrete memoryless channel(DMC) s a channel for which Pij =
P (bj received|ai sent) is the same each time the channel is used, and is indepen-
dent of all past and future. The channel matrix is the r× s matrix with entrices
pij . Note the rows sum to 1.

Example. (Binary Symmetric Channel, BSC)
BSC has Σ1 = Σ2 = {0, 1}, 0 ≤ p ≤ 1. It has channel matrix

(
1−p p
p 1−p

)
, i.e. p is

the probability symbol is mistransmitted.

Example. (Binary Erasure Channel)
Σ1 = {0, 1}, Σ2 = {0, 1, ∗}, 0 ≤ p ≤ 1. Then the channel matrix is

(
1−p p 0
0 p 1−p

)
, i.e.

p is the probability that a synbol can’t be read.

Informal definition: A channel’s capacity is the highest rate at which information
can be reliably transimitted over the channel. Here rate means the units of
information per unit tme (we want that high), and reliably means arbitrarily
small error probability.

There are 3 sections:
1) Noiseless coding (data compression);
2) Error control codes;
3) Cryptography.

1 INTRODUCTION TO COMMUNICATION CHANNELS AND CODING5

1.1 Noiseless coding

Notation. For Σ an alphabet that Σ∗ =
⋃
n≥0 Σn be th set of all finite strings

of elements of Σ.

If x = x1...xr, y = y1...ys are strings from Σ, write xy for the concatenation
x1...xry1...ys. Further, |x1...xry1...ys| = r + s the length of string.

Definition. Let Σ1,Σ2 be two alphabets. A code is a function f : Σ1 → Σ∗2.
The strings f(x) for x ∈ E are called codewords.

Example. (Greek five code)
Σ1 = {α, β, ..., ω} (24 letters); Σ2 = {1, 2, 3, 4, 5} (more used). Now let α →
11, β → 12, ..., ω → 54.

Example. Σ1 = {all words in the dictionary}. =,Σ2 = {A,B, ..., space}. Then
f =’spell the word and a space.’

We sent a message x1, ..., xn ∈ Σ∗1 as f(x1)f(x2)...f(xn) ∈ Σ∗2, i.e. extend f to
f∗ : Σ∗1 → Σ∗2.

Definition. A code f is decipherable if f∗ is injective, i.e. every string from Σ2

arises from at most one message.

Note that f being injective is not enough. See this example:

Example. Σ1 = {1, 2, 3, 4}, Σ2 = {0, 1}, f(1) = 0, f(2) = 1, f(3) = 00,
f(4) = 01. Then f is injective, but f∗(312) = 0001 = f∗(114) so f∗ is not
decipherable.

Notation. If |Σ1| = m, |Σ2| = a, then we say f is an a-ary code of size m (in
particular, if a = 2 we use the word binary).

Our aim is to construct decipherable codes with short word lengths.

Provided f : Σ1 → Σ∗2 is injective, the following codes are always decipherable:
(1) A Block code is a code with all codewords of the same length (eg Greek fire
code);
(2) In a comma code we reserve one letter from Σ2 that is only used to signal
the end of the codeword (example 2);
(3) A prefix-free code is a code where no codeword is a prefix of another (If
x, y ∈ Σ∗2, x is a prefix of y if y = xz for some z ∈ Σ∗2).

Remark. (1) and (2) are special cases of (3).

Prefix-free codes are also known as instantaneous codes (i.e. a word can be
recognised as soon as its complete), or self-punctuating codes.

Theorem. (1.1, Kraft’s inequality)
Let Σ1| = m, Σ2| = a. A prefix-free code f : Σ1 → Σ∗2 with word lengths
s1, ..., sm exist iff

m∑
i=1

a−si ≤ 1

1 INTRODUCTION TO COMMUNICATION CHANNELS AND CODING6

Proof. First we prove forward implication. Consider an infinite tree where each
has a descendents, labelled by the elements of Σ2. Each codeword corresponds to
a node, the path from the root to this node spelling at the codeword. Assuming
f is prefix-free, no codeword is the ancestor of any other. Now view the tree as
a network with water being pumped in at constant rate and divding the flow
equally at each node. The total amount of water we can extract at the codewords
is
∑m
i=1 a

−si which is therefore ≤ 1.

Conversely, suppose we can construct a prefix-free code with word lengths
s1, ..., sm , wlog s1 ≤ s2 ≤ ... ≤ sm. We pick codewords of lengths s1, ...,
sequentially ensuring previous codewords are not prefixes. Suppose there is no
valid choice for the rth codeword. The constructing the tree as above gives∑r−1

i=1 a
−si = 1, contradicting our assumption. So we can construct a prefix-free

code.

Theorem. (1.2, Mcmillan)
Every decipherable code satisfies Kraft’s inequality.

Proof. (Karush)
Let f : Σ1 → Σ∗2 be a decipherable code with word lengths s1, ..., sm, let
s = max1≤i≤m si. Let r ∈ N,

(

m∑
i=1

a−si)r =

rs∑
b=1

bia
−l

where bi is the number of ways of choosing r codewords of toatl length l. f
decipherable implies that bl ≤ |Σ2|l = al. Thus (

∑m
i=1 a

−si)r ≤
∑rs
l=1 a

la−l = rs,
so
∑m
i=1 a

−si ≤ (rs1/r)→ 1 as r →∞. So
∑m
i=1 a

−si ≤ 1.

So we have a corollary: a decipherable code with prescribed word lengths exist
iff there exists a prefix-free code with the same word lengths.

1 INTRODUCTION TO COMMUNICATION CHANNELS AND CODING7

So we can restrict our attention to prefix-free codes.

1.2 Mathematical entropy

Entropy is a measure of ’randomness’ or ’certainty’. Consider a random variable
X taking values x1, ..., xn with probability p1, ..., pn (

∑
pi = 1, 0 ≤ pi ≤ 1). The

entropy H(x) is roughly speaking the expected number of tosses of a fair coin
needed to simulate X (or the expected number of yes/no questions we need to
ask in order to establish the value of X).

Example. Suppose p1 = p2 = p3 = p4 = 1
4 . We identify {x1, ..., x4} with

{HH,HT, TH, TT}, so H(x) = 2.

Example. (p1, p2, p3, p4) = (1/2, 1/4, 1/8, 1/8). Then H(x) = 1/2 + 1/4× 2 +
1/8× 3 + 1/8× 3 = 7/4. So the entropy here is smaller.

So in some sense, there is more randomness in the first example than the second.

Definition. (Entropy)
The entropy of X,

H(X) = H(p1, ..., pn) = −
n∑
i=1

pi log pi

where, as most of the time in this course, log = log2.

Remark. (1) If pi = 0, we define pi log pi = 0;
(2) H(X) ≥ 0.

Example. (3)
We toss a biased coin with P(heads) = p. Write H(p) = H(p, 1− p) = −p log p−

1 INTRODUCTION TO COMMUNICATION CHANNELS AND CODING8

(1 − p) log(1 − p). If p = 0 or 1, the outcome is certain and so entropy is 0.
Entropy is maximal where p = 1/2 (check), a fair coin.

Note the entropy can also be viewed as the expected value of the information of
X, where information is given by I(X = x) = − logP(X = x). For example, if a
coin always lands heads, we gain on information from tossing the coin.
This entropy is the average amount of information conveyed by a random variable
X.

Lemma. (1.3, Gibbs’ inequality)
Let p1, ..., pn and q1, ..., qn be probability distributions. Then −

∑
pi log pi ≤

−
∑
pi log qi, with equality iff pi = qi.

Proof. It supplies to prove the inequality with log replaced by ln. Note lnx ≤ x−1
with equality iff x = 1. Let I = {1 ≤ i ≤ n : pi 6= 0}. Then ln qi

pi
≤ qi

pi
− 1 ∀i ∈ I.

So
∑
i∈I pi ln qi

pi
≤
∑
qi −

∑
pi︸ ︷︷ ︸

=1

≤ 0. Rearranging we get −
∑
i∈I pi ln pi ≤

−
∑
i∈I pi ln qi, so −

∑n
i=1 pi ln pi ≤ −

∑n
i=1 pi ln qi. If equality holds then qi

pi
= 1

∀i ∈ I, so
∑
i∈I qi = 1 =⇒ pi = qi for 1 ≤ i ≤ n.

Corollary. H(p1, ..., pn) ≤ log n with equality iff p1 = p2 = ... = pn = 1
n .

Proof. Take q1 = q2 = ... = qn = 1
n in previous lemma.

Two alphabets Σ1,Σ2 with |Σ1| = m, |Σ2| = a (m ≥ 2, a ≥ 2). We model the
source as a sequence of random variables X1, X2, ... taking values in Σ1.

Definition. A Bernoulli or memoryless source is a sequence of independently,
identically distributed random variables, i.e. for each µ ∈ Σi, the probability
of Xi = µ is independent of i and independent of all past and future symbols
emitted. Thus

P(X1 = x1, ..., Xk = xk) =

k∏
i=1

P(Xi = xi)

Let Σ1 = {µ1, ..., µn}, pi = P(X = µi) and assume pi > 0. The expected word
length of a code f : Σ1 → Σ∗2 with word lengths s1, ..., sm is E(S) =

∑m
i=1 pisi.

Definition. A code f : Σ1 → Σ∗2 is optimal if it has the shortest possible
expected word length among decipherable code.

Theorem. (1.4, Shannon’s Noiseless Coding theorem)
The minimum expected word length of a decipherable code f : Σ1 → Σ∗2 satisfies

H(x)

log a
≤ E(S) <

H(X)

log a
+ 1

1 INTRODUCTION TO COMMUNICATION CHANNELS AND CODING9

Proof. The lower bound is given by combining Gibbs and Kraft inequalities. Let

qi = a−si

c where c =
∑
a−si ≤ 1 by Kraft’s inequality. Note

∑
qi = 1. Now

H(X) = −
∑

pi log pi ≤ −
∑
i

pi log qi

=
∑
i

pi(si log a+ log c)

= (
∑
i

pisi) log a+ log c

≤ E(s) log a

We get equality if and only if pi = a−si for some integers si.

For the upper bound, put si = d− loga pie. We have loga pi ≤ si < − loga pi + 1,
so a−si ≤ pi =⇒

∑
a−si ≤

∑
pi ≤ 1. So by theorem (1.), there exists a

prefix-free code with word lengths s1, ..., sm.
Also,

E(S) =
∑

pisi

<
∑

pi(− loga pi + 1)

=
H(X)

log a
+ 1

Remark. The lower bound holds for all decipherable codes.

Shannon-Fano Coding (as in Goldie & Pinch):
This follows from the proof above. Set si = d− loga pie and construct a prefix-free
code with word lengths s1, ..., sm by taking the si in increasing order ensuring
that previous codewords are not prefixes. The Kraft inequality ensures there is
enough room.

Example. µ1, ..., µ5 emitted with probabilities 0.4, 0.2, 0.2, 0.1, 0.1. We try to
construct Shannon-Famo code (with a = 2, Σ2 = {0, 1}):

pi d− log pie code
0.4 2 00
0.2 3 010
0.2 3 100
0.1 4 1100
0.1 4 1110

The expected word length is 2× 0.4 + 3× 0.2 + 3× 0.2 + 4× 0.1 + 4× 0.1 = 2.8.
As a comparison, H(X) ≈ 2.12, which is consistent with our previous inequality.

Definition. (Huffman coding)
For simplicity we take a = 2. Let Σ1 = {µ1, ..., µm}, pi = P(X = µi). WLOG
p1 ≥ p2 ≥ ... ≥ pm. Huffman coding is defined inductively:
If m = 2, assign codewords 0 and 1;
If m > 2, find a Huffman coding in the case of meesages µ1, µ2, ..., ν with
probaiblities p1, p2, ..., pm−1 + pm; append 0 (1 respectively) to the codeword for
ν tove a codeword for µm−1 (µm respectively).

1 INTRODUCTION TO COMMUNICATION CHANNELS AND CODING10

Remark. (i) This construction gives a prefix-free code;
(ii) We exercise some choice when some of the pi are equal. So Huffman codes
are not unique.

Example. We look at the previous example:

So we get {1, 01, 000, 0010, 0011} as the prefix-free code constructed. The ex-
pected word length is 2., which is better then the Shannon-Fano coding.

Theorem. (1.5)
Huffman coding is optimal.

Lemma. (1.6)
Suppose µ1, ..., µm ∈ Σ1 emitted with probabilities p1, ..., pm. Let f be an opti-
mal prefix-free code with word lengths s1, ..., sm. Then
(i) if pi > pj , then si ≤ sj ;
(ii) there exists 2 codewords of maximal length which are equal up to the last digit.

Proof. (i) Otherwise, swap codewords i and j to reduce the expected word
length.
(ii) If not, then either there is only one codeword of maximal length, or any two
codewords of maximal length differ before the last digit. In either case, delete
the last digit of each codeword of maximal length. This maintains the prefix free
condition, contradicting with f being optimal.

Proof. (of 1.5 (a = 2))
We show, by induction on m, that any Huffman code of size m is optimal.
m = 2: codewords 0, 1 optimal;

1 INTRODUCTION TO COMMUNICATION CHANNELS AND CODING11

m > 2: source Xm emits µ1, ..., µm with probabilities p1 ≥ p2 ≥ ... ≥ pm. Source
Xm−1 emits µ1, ..., µm−2, ν. with probabilities p1, ..., pm−2, pm−1 + pm. We
construct a Huffman coding fm−1 for Xm−1 and extend to a Huffman coding for
Xm. Then the expected codeword length satisfies E(Sm) = E(Sm−1)+pm−1+pm.
Let f ′m be an optimal code for Xm, wlog f ′m prefix free. Lemma (1.6) shows
that shuffling codewords we may assume that the last two codewords of f ′m are
of maximal length and differ only in the last digit, say y0 and y′ (for some string
y). We define a code f ′m−1 for Xm−1 with f ′m−1(µi) = f ′m(µi) ∀1 ≤ i ≤ m− 2,
f ′m−1(ν) = y. Then f ′m−1 is a prefix free code and the expected word length
satisfies

E(S′m) = E(S′m−1) + pm−1 + pm

By induction hypothesis, fm−1 is optimal, so E(Sm−1) ≤ E(S′m−1) =⇒
E(Sm) ≤ E(S′m), so fm is optimal.

Remark. Not all optimal codes are Huffman. For example, if p = 0.3, 0.3, 0.2, 0.2,
we could use code 00, 10, 01, 11 which is not Huffman.
Nevertheless, the previous result says if we have a prefix-free optimal code with
word lengths s1, ..., sm associated with probabilities p1, ..., pm, there exists a
Huffman code with those word lengths.

Definition. The joint entropy of X and Y is

H(X,Y) = −
∑
x∈Σ1

∑
y∈Σ2

P (X = x, Y = y) logP(X = x, Y = y)

Lemma. H(X,Y) ≤ H(X) +H(Y), with equality iff X and Y independent.

Proof. Let Σ1 = {x1, ..., xm}, Σ2 = {y1, .., yn} pij = P(X = x,Y = yj), pi =
P(X = xi), qj = P(Y = yj). Apply Gibbs inequality with pij and piqj we get∑

pij log(pij) ≤ −
∑

pij log(piqj)

= −
∑
i

∑
j

pij log pi −
∑∑

pij log qj

= −
∑

pi log pi −
∑

qj log qj

i.e. H(x, y) ≤ H(x) + H(Y). Equality holds iff pij = piqj ∀i, j ⇐⇒ X,Y
independent.

Suppose we have a source Ω which produces a string X1, X2, ... of random
variables with values in Σ. The probability mass function (pmf) of X(n) =
(X1, ..., Xn) is given by

pn(x1, ..., xn) = P(X1, ..., Xn = x1, ..., xn)∀x1, ..., xn ∈ Σn

Now pn : Σn → R by X(n) : Ω→ Σn. We can form p(X(n) : Ω
X(n)

−−−→ Σn pn−→ R
by w → pn(X(n) = X(n)(w)) a random variable.

For example, let Σ = {A,B,C}. ThenX(2) = AB(0.3), AC(0.1), BA(0.1), BA(0.2), CA(0.25), CB(0.05)
So p2(AB) = 0.3, etc.. And p2(X(2)) takes values 0.3 with probability 0.3, 0.1
with probability 0.2, 0.2 with probaility 0.2, 0.25 with probability 0.25, 0.05 with
probaility 0.05.

1 INTRODUCTION TO COMMUNICATION CHANNELS AND CODING12

Definition. A sequence of random variables X1, ... converges in probability to

c ∈ R, written Xn
p−→ c as n→∞, if ∀ε > 0, P (|xn − c| ≤ ε)→ 1 as n→∞. So

Xn and c can take very different values for large n but only on a set with small
probability.

Theorem. (Weak law of large numbers)
Let X1, X2, ... be an i.i.d. sequence of random variables with finite expected
value µ, then

1

n

n∑
i=1

Xi
p−→ µ

as n→∞.

Application: Suppose X1, X2, ... is a Bernoulli source. Then p(X1), p(X2), ... are
i.i.d. random variables, and p(X1, ..., Xn) = p(X1)...p(Xn). Take log of both
sides we get

− 1

n
log p(X1, ..., Xn) = − 1

n

n∑
i=1

log p(Xi)
p−→ E(− log p(X1)) = H(X1)

as n→∞.

Definition. A source X1, X2, ... satisfies the Asymptotic Equipartition Property
(AEP) if for some H ≥ 0 we have

− 1

n
log p(X1, ..., Xn)

p−→ H

as n→∞.

Motivating example: suppose we have a coin with p(H) = p. If coin tossed N
times, expect approximately pN heads and (1− p)N tails. The probability of a
particular sequence of pN heads and (1− p)N tails equals ppN (1− p)(1−p)N =
2N(p log p+(1−p) log(1−p)) = 2−NH(A), where A is the result of independent coin
toss. So, with high probability we will get a typical sequence, and its probability
will be close to 2−NH(A).

Lemma. (1.8)
A source X1, X2, ... satisfies AEP iff it satisfies the following condition (*):
∀ε < 0,∃n0(ε)s.t.∀n ≥ n0(ε)∃ a typical set Tn ⊂ Σn s.t:
(i) P ((X1, ..., Xn) ∈ Tn) > 1− ε;
(ii) 2−n(H+ε) ≤ p(x1, ..., xn) ≤ 2−n(H−ε) for all (x1, ..., xn) ∈ Tn.

Proof. (sketch)
AEP =⇒ (*):
Take Tn = {(x1, ..., xn) ∈ Σn : | − 1

n log p(x1, ..., xn)−H) < ε} = {(x1, ..., xn) ∈
Σn : 2−n(H+ε) ≤ p(x1, ..., xn) ≤ 2−n(H−ε)}.
(*) =⇒ AEP:
P (| − 1

np(X1, ..., Xn)−H| < ε) ≥ P (Tn)→ 1 as n→∞.

1 INTRODUCTION TO COMMUNICATION CHANNELS AND CODING13

Definition. A source X1, X2, ... is reliably encodable at rate r if there exists
An ⊂ Σn for each n s.t.:
(i) log |An|

n → r as n→∞;
(ii) p((X1, ..., Xn) ∈ An)→ 1 as n→∞.
So, in principle, you can encode at rate almost r with negligible error for long
enough strings.
So if |Σ| = a, you can reliably encode at rate log a. However, you can often do
better. For example, consider telegraph english with 26 letters and a space, we
have 27 ≈ 24.755. So we can encode at a rate of 4.76 bits/letter. But much lower
rates suffice, there is a lot of redundancy in the english language. Hence the
following definition:

Definition. The information rate, H, of a source, is the infimum of all rates at
which it is reliably encodable.

Roughly, nH, is the number of bits required to encode (X1, ..., Xn).

Theorem. (1.9, Shannons’ first encoding theorem)
If a source satisfies AEP with same constant H, then the source has information
rate H.

Proof. Let ε > 0 and let Tn ⊂ Σn be typical sets. Then for sufficiently large
n ≥ n0(ε), p(x1, ..., xn) ≥ 2−n(H+ε) ∀(x1, ..., xn) ∈ Tn.

So, P((X1, ..., Xn) ∈ Tn) ≥ 2−n(H+ε)|Tn| =⇒ |Tn| ≤ 2n(H+ε). So the source is
reliably encodable at rate H + ε.
Conversely, if H = 0 we are done. Otherwise, pick 0 < ε < H

2 . Suppose
the source is reliably encodable at rate H − 2ε, say with sets An. Then
p(x1, ..., xn) ≤ 2−n(H−ε) ∀(x1, ..., xn) ∈ Tn. This implies P ((x1, ..., xn) ∈ An ∩
Tn) ≤ 2−n(H−ε)|An|, so logP (An∩Tn

n ≤ −(H−ε)+ log |An|
n → −(H−ε)+(H−2ε) =

−ε as n→∞. (??) So log p(An∩Tn)→ −∞, i.e. p(An∩Tn)→ 0. But p(Tn)→ 1
as n → ∞ and P (An) → 1 as n → ∞, contradiction(??). So the source is not
reliably encodable at rate H − 2ε. So the information rate is H.

Corollary. A Bernoulli source X1, X2, ... has information rate H(X1).

2 ERROR CONTROL CODES 14

2 Error control codes

Definition. A [n,m] binary code is a subset C ⊂ {0, 1}n of size |C| = m. We
say C has length n. The elements of C are called codewords.
Note: so this is a block codes.

We use a [n,m] code to send one of m possible messages through a BSC making
use of the channel n times. Suppose that we have a probability of p that a digit
get mistransmitted, i.e. 0 becomes 1 or the other way.

Definition. The information rate of C is ρ(C) = logm
n (as usual, log is base 2).

Note since C ⊂ {0, 1}n, ρ(C) ≤ 1, with equality iff C = {0, 1}n. A code with
size m = 1 has information rate 0.
We aim to design codes with large information rate and small error rate. Appar-
ently, these two are contradicting.

The erro rate depends on the decoding rule. We consider 3 possible rules:
(i) The ideal observer: decoding rule decodes x ∈ {0, 1}n as the codeword c
maximising P(c sent|x received);
(ii) The maximum likelihood decoding rule decodes x ∈ {0, 1}n as c ∈ C
maximising P(x received |c sent);
(iii) The minimum distance decoding rule decodes x ∈ {0, 1}n as c ∈ C minimising
the number of {1 ≤ i ≤ n : xi 6= ci}, i.e. the manhattan distance.

Remark. Some convention should be agreed in the case of a ’tie’, e.g. choose
at random, or ask for message to be sent again.

Lemma. (2.1)
If all messages were equally likely, then (i) and (ii) agree.

Proof. By Bayes rule,

P(c sent|x received) =
P(c sent, x received)

P(x received)

=
P(c sent

P(x received)
P(x received|c sent)

We suppose P (c sent) is independent of c, so for fixed xmaximising P(c sent|x received)
is the same as maximising P(x received|c sent).

Definition. Let x, y ∈ {0, 1}n. Then Hamming distance between x and y is
d(x, y) = |{1 ≤ i ≤ n : xi 6= yi}|.
Lemma. (2.2)
If p < 1

2 then (ii) and (iii) agree.

Proof. Suppose d(x, c) = r. Then

P(x received|c sent) = pr(1− p)n−r = (1− p)n(
p

1− p
)r

since p < 1/2, p
1−p < 1. So choosing c to maximise the probability is the same

as choosing r to minimise the distance d(x, c).

2 ERROR CONTROL CODES 15

Note that p < 1
2 is really a reasonable assumption (else just revert everything

we received).

Example. Suppose codewords 000 and 111 are sent with probabilities α = 9
10

and 1−α = 1
10 respecitvely. We use a BSC with p = 1

4 . If we receive 110 then we
know by minimum distance to decode it as 111. By lemma (2.2), the maximum
likelihood would give the same choice as well.
However, for ideal observer, we get P(000 sent|110 received) = 3

4 (after some
calculation). So ideal observer would decode as 000 (that’s why it’s ideal).

Remark. Ideal observer rule is also known as minimum-error rule. However, it
does rely on knowing the probability of the codewords sent.

From now on we use minimum distance decoding.

Definition. (i) C is d-error detecting if changing at mod d letters of a codeword
cannot give another codeword.
(ii) C is e-error correcting if knowning that the string received has at most e
errors is sufficient to determine which codeword was sent.

For example, the repetition code of length n, C = {000...0, 111...1} is [n, 2]-code.
It is n− 1 error-detecting, and bn−1

2 c-error correcting. But it’s information rate
is only 1

n .

Another example: the simple parity check code of length n (also known as
paper tape code): we view {0, 1} = Z/2Z, and C = {(x1, ..., xn) ∈ {0, 1}n,∑n
i=1 xi = 0}.

This is a [n, 2n−1] code. It is 1-error detecting, but cannot correct any errors.
It’s information rate is n−1

n .

Remark. Suppose we change our code C ⊂ {0, 1}n by using the same permuta-
tion to reorder each codeword. This gives a code with the same mathematical
properties (e.g. information rate, error detection etc.). We say such codes are
equivalent.
Suppose d(x, c) = r. Then

P(x received|c sent) = pr(1− p)n−r = (1− p)n(
p

1− p
)r

since p < 1/2, p
1−p < 1. So choosing c to maximise the probability is the same

as choosing r to minimise the distance d(x, c).

Example. (3, Hamming’s original code, 1950)
Let C ⊆ F 7

2 be defined by

c1 + c3 + c5 + c7 = 0

c2 + c3 + c6 + c7 = 0

c4 + c5 + c6 + c7 = 0

since we can choose c3, c5, c6, c7 freely, then c1, c2, c4 is uniquely determined. We
get |C| = 24, so C is a [7, 16] code.

2 ERROR CONTROL CODES 16

Information rate = logm
n = 4

7 .
Suppose we receive x ∈ F 7

2 . We form the syndrome zx = (z1, z2, z4) where

z1 = x1 + x3 + x5 + x7

z2 = x2 + x3 + x6 + x7

z4 = x4 + x5 + x6 + x7

if x ∈ C then z = (0, , 0). If d(x, c) = 1 for some c ∈ C, then the place where
x and c differ is given by z1 + 2z2 + 4z4 (not mod 2). So this is also 1-error
correcting.
Since if x = c+ e1 where ei = 0...010...0 where 1 is in the ith position, then the
syndrome of x is the syndrome of e1, and for example syndrome of e3 is (1, 1, 0),
the binary expansion of 3. True for each 1 ≤ i ≤ 7.

Recall d(x, y) is the number of differences between x, y.

Lemma. (2.3)
The hamming distance is a metric on Fn2 .
Don’t really want to copy the proof – this is obvious.

Remark: we could also write d(x, y) =
∑n
i=1 di(xi, yi) where d1 is the discrete

metric on {0, 1}.

Definition. The minimum distance of a code C is the smallest Hamming
distance between distinct codewords.
An [n,m]-code with minimum distance d is sometimes called an [n,m, d]-code.

Note: m ≤ 2n, with equality if C = Fn2 , this is called the trivial code. Also
d ≤ n, with equality in the case of the repetition code.

Lemma. (2.4)
Let C be a code with minimum distance d.
(i) C is (d− 1)-error detecting, but cannot detect all sets of d errors.
(ii) C is bd−1

2 c error correcting, but cannot correct all sets of bd−1
2 c+ 1 errors.

Proof. (i) If x ∈ Fn2 and c ∈ C with 1 ≤ d(x, c) ≤ d− 1, then x 6∈ C, so errors
detected. The second part is obvious.
(ii) Let e = bd−1

2 c, so e ≤ d−1
2 < e + 1, i.e .2e < d ≤ 2(e + 1). Let x ∈ Fn2 . If

∃c1 ∈ C with d(x, c1) ≤ e, we want to show d(x, c2) > e ∀c2 ∈ C, c2 6= c1, which
can be done by triangle inequality. So C is e-error correcting. The second part
is trivial as well.

Example. (1) The repetition code is a [n, 2, n]-code, it is n− 1 error detecting
and bn−1

2 c error correcting.
(2) The simple parity check code is a [n, 2n−1, 2]-code. It is 1-error detecting
and 0-error correcting.
(3) Hamming’s original [7, 16]-code is 1-error correcting, i.e. d ≥ 3. Since 0000000
and 1110000 are both in the code we get d = 3, i.e. [7, 16, 3]-code.

2 ERROR CONTROL CODES 17

New codes from old:
Let C be an [n,m, d]-code.
(i) The parity extension of C is

C̄ = {(c, ..., cn,
∑

ci) : (c1, ..., cn) ∈ C}

It is a [n+ 1,m, d′]-code where d ≤ d′ ≤ d+ 1.
(ii) Fix 1 ≤ i ≤ n. Deleteing the ith letter from each codeword gives a punctured
code. Assuming d ≥ 2, [n− 1,m, d′′] where d− 1 ≤ d′′ ≤ d.
(iii) Fix 1 ≤ i ≤ n and a ∈ {0, 1}. The shortened code is {(c1, ..., ci−1, ci+1, ..., cn) :
(c1, ..., ci−1, a, ci+1, ..., cn) ∈ C}. It is a [n − 1,m′, d′]-code where d′ ≥ d and
some choice of a gives m′ ≥ m

2 .

2.1 Bound on codes

Definition. Let X ∈ Fn2 and r ≥ 0. The (closed) Hamming ball with centre x
and radius r is just what we think it will be (obvious). We denote it by B(x, r).
Note that the volume V (n, r) = |B(x, r)| = sumr

i=0

(
n
i

)
is independent of x.

Lemma. (2.5, Hamming’s bound)
If C ⊂ Fn2 is e-error correcting, then

|C| ≤ 2n

V (n, e)

Proof. Since C is e-error correcting, the Hamming Balls B(c, e) are disjoint for
c ∈ C. So done.

Definition. A [n,m]-code which can correct e-errors is called perfect if m =
2n

V (n,e) .

Note that if 2n

V (n,e 6∈ Z then no perfect e-erro correcting code of length n can
exist.

Example. Hammings’ original [7, 16, 3]-code can correct 1 error. We can check
that is is a perfect code.

Note, however, that a perfect e-error correcting code will always incorrectly
decode e+ 1 errors.

Definition. A(n, d) = max{m : ∃ a[n,m, d]−code}, i.e. size of largest code
with parameters n and d. For example, A(n, 1) = 2n, A(n, n) = 2.

Proposition. (2.6)

2n

V (n, d− 1)
≤ A(n, d) ≤ 2n

V (n, bd−1
2 c

The lower and upper bounds have alternative names: GSV-bounds and Ham-
ming’s bound.

2 ERROR CONTROL CODES 18

Proof. We’ve already done the upper bound. For the lower bound, let C be a
code of length n and minimum distance d of largest possible size. Then 6 ∃x ∈ Fn2
such that d(x, c) ≥ d ∀c ∈ C, otherwise we can place C with C ∪ {x}. So
Fn2 ⊆ ∪c∈CB(c, d− 1), i.e. |C| ≥ 2n

V (n,d−1) .

Example. Consider n = 10, d = 3. Then V (n, 1) = 1 + 10 = 11. V (n, 2) =
1 + 10 +

(
10
2

)
= 56. 2.6 gives 19 ≤ A(10, 3) ≤ 93. The exact value is 72, only

known in 1999.

There exist asymptotic versions of GSV and Hammings bound: Let α(δ) =
lim sup 1

n logA(n, δn), 0 ≤ δ ≤ 1.
Notation: H(δ) = −δ log δ − (1− δ) log(1− δ).
Asymptotic GSV boudn: α(δ) ≥ 1−H(δ) for 0 < δ < 1/2;
Asymptotic Hamming: α(δ) ≤ 1−H(δ/2).

We’ll prove the asymptotic GSV bound.

Proposition. (2.7)
Let 0 < δ < 1

2 . Then
(i) log V (n, bnδc) ≤ nH(δ);

(ii) logA(n,bnδc
n ≥ 1−H(δ).

Proof. (i) =⇒ (ii): GSV bound impliesA(n, bnδc) ≥ 2n

V (n,bnδc , so logA(n, bnδc) ≥
n− log V (n, bnδc) ≥ n− nH(δ) by (i). So logA(n,bnδc)

n ≥ 1−H(δ);
Proof of (i):

1 = (δ + (1− δ))n =

n∑
i=0

(
n

i

)
δi(1− δ)n−i

≥
bnδc∑
i=0

(
n

i

)
δi(1− δ)n−i

= (1− δ)n
bnδc∑
i=0

(
n

i

)
(

δ

1− δ
)i

≥ (1− δ)n
bnδc∑
i=0

(
n

i

)
(

δ

1− δ
)nδ

Taking log, we get

0 ≥ n(δ log δ + (1− δ) log(1− δ)) + log V (n, bnδc)
=⇒ log V (n, bnδc) ≤ nH(δ)

2.2 Channel Capacity

Let |Σ| = q. A code of length n is a subset of Σn (usually we take q = 2).

2 ERROR CONTROL CODES 19

A code is used to send messages through a discrete memoryless channel with q
imput letters. For each code a decoding rule is chosen.
We define ê(C) = maxc∈C P(error |c sent), the maximum error probability.

Definition. A channel can transmit reliably at rate R if there exist a sequence
of codes C1, C2, ... where Cn is a code of length n and size b2nRc such that
ê(Cn)→ 0.

Lemma. (2.8)
Let ε > 0. A BSC with error probability p is used to send n digits. Then the
probability of the BSC making at least n(p+ ε) errors → 0 as n→∞.

Proof. Let µi = 1 if digit mistransmitted, 0 otherwise. Then µ1, ... are iid rvs.
Also P (µi = 1) = p, so E(µi) = p. So the require probability is P (

∑n
i=1 µi ≥

n(p+ ε)) ≤ P(| 1n
∑
µi − p| ≥ ε)→ 0 as n→∞ by WLLN.

Remark:
∑n
i=1 µi is a binomial rv with parameters n and p.

Proposition. (2.9)
The capacity of a BSC with error probability p < 1/4 is not zero.

Proof. Choose δ with 2p < δ < 1/2. We prove reliably encoding at rate
R = 1−H(δ) > 0. Let Cn be the largest code of length n and minimum distance
bnδc. So |Cn| = A(n, bnδc) ≥ 2n(1−H(δ)) = 2nR by (2.7). Replacing Cn by a
subcode gives |Cn| = b2nRc and still minimum distance ≥ bnδc. Using minimum
distance decoding,

ê(Cn) ≤ P (BSC makes ≥ bbnδc − 1

2
c+ 1 errors)

≤ P (BSC makes ≥ nδ − 1

2
errors)

Pick ε > 0 s.t. p+ ε < δ
2 . Then nδ−1

2 = n(δ2 −
1

2n) > n(p+ ε) for n sufficiently
large. So ê(Cn) ≤ P (BSC makes ≥ n(p+ε) errors)→ 0 as n→∞ by (2.8).

2.3 Conditional Entropy

Let X and Y be random variables taking values in Σ1 and Σ2. We define

H(X|Y = y) = −
∑
x∈Σ1

P (X = x|Y = y) logP (X = x|Y = y),

H(X|Y) =
∑
y∈Σ2

P (Y = y)H(X|Y = y)

(some form of weighted average).

Lemma. (2.10)
H(X,Y) = H(X|Y) +H(Y).

2 ERROR CONTROL CODES 20

Proof.

H(X|Y) = −
∑
y∈Σ2

∑
x∈Σ1

P (X = x|Y = y)P (Y = y) logP (X = x|Y = y)

= −
∑
y∈Σ2

∑
x∈Σ1

P (X = x, Y = y) log
P (X = x, Y = y)

P (Y = y)

= −
∑
y∈Σ2

∑
x∈Σ1

P (X = x, Y = y) logP (X = x, Y = y)+

∑
y∈Σ2

(
∑
x∈Σ1

P (X = x, Y = y)) logP (Y = y)

= H(X, y)−H(y)

Example: A fair six sided dice is thrown. X is the value on the dice, y = Xmod2.
So H(X,Y) = H(X) = log 6, H(y) = log 2 = 1, H(X|Y) = H(X,Y)−H(Y) =
log 3, and H(Y |X) = 0.

Corollary. H(X|Y) ≤ H(X) with equality iff X and Y are independent.

Proof. Since H(X|Y) = H(X,Y) − H(Y), this is equivalent to ”H(X,Y) ≤
H(X)+H(Y) with equality iff X and Y independent, which is true by (1.7).

In the definition of conditional entropy, we can replace random variables X
and Y with random vectors X = (X1, ..., Xr and Y = (Y1, ..., Ys). This defines
H(X1, ..., Xr|Y1, ..., Ys).

Lemma. (2.11)
H(X|Y) ≤ H(X|Y,Z) +H(Z).

Proof. We expand H(X,Y, Z) using (2.10) in two different ways: H(X,Y, Z) =
H(Z|X,Y) +H(X|Y) +H(Y) and H(X,Y, Z) = H(X|Y, Z) +H(Z|Y) +H(Y).
Since H(Z|X,Y) ≥ 0, we get H(X|Y) ≤ H(X|Y,Z) +H(Z|Y) ≤ H(X|Y, Z) +
H(Z) by corollary.

Lemma. (2.12, Fano’s inequality)
Let X,Y be random variables taking values in Σ1 with Σ1| = m. Let p = P (x 6=
y). Then H(X|Y) ≤ H(p) + p log(m− 1).

Proof. Let Z = 1 if X 6= Y , and 0 oterwise. Then P (Z = 1) = p. So by (2.11),

H(X|Y) ≤ H(X|Y,Z) +H(Z)︸ ︷︷ ︸
=H(p)

(∗)

Now H(X|Y = y, Z = 0) = 0 (must have X = y), H(X|Y = y, Z = 1) ≤
log(m − 1) since m − 1 choices for X remain. So, H(X|Y, Z) =

∑
y,z P (Y =

y, Z = z)H(X|Y = y, Z = z) ≤
∑
y P (Y = y, Z = 1) log(m− 1), where the sum

is just P (Z = 1) = p and by (*) we get the result.

2 ERROR CONTROL CODES 21

Definition. Let X,Y be random variables. The mutual information is

I(X,Y) = H(X)−H(X|Y)

i.e. the amount of information about X conveyed by Y .

By (1.7) and (2.10), we have I(X,Y) = H(X) + H(Y) − H(X,Y) ≥ 0 is
symmetric in X and Y . We get equality iff X and Y are independent.

consider a DMC. Let X takes values in Σ1, where |Σ1 = m with probabilities
p1, ..., pm. Let Y be the random variable output when channel is given input X.

Definition. The information channel capcity is maxX I(x; y).

Remark. The max is over all choices of p1, ..., pm; max is always attained since
I is continuous on a compact set.
The information capacity only depnds on the channel matrix.

Theorem. (2.13, Shannon’s Second Coding Theorem)
Operational capacity = information capacity. (LHS?)

We’ll show ≤ in general, and ≥ for a BSC.

We now compute the capacity of certain channels using Shannon’s second coding
theorem (error probability p):
Input X, P (X = 0) = 1− α, P (X = 1) = α, output Y , P (Y = 0) = (1− α)(1−
p) + αp, P (Y = 1) = α(1− p) + (1− α)p.

Capacity is
C = max

α
I(X,Y)

= max
α

(H(Y)−H(Y |X))

= max
α

(H(α(1− β) + (1− α)β)−H(p))

= 1−H(p) max attained when α = 1/2

= 1 + p log p+ (1− p) log(1− p)

Here we denote H(p) = H(p, 1− p).

Capacity of Binary Erasive Channel (erasive probability p):
In this model we have each bit having a probability of p being erased to become
a ∗.
Input X, P (X = 0) = 1−α, P (X = 1) = α; output Y , P (Y = 0) = (1−α)(1−p),
P (Y = 1) = α(1− p), P (Y = ∗) = p. Now H(X|Y = 0) = 0, H(X|Y = 1) = 0.
The only interesting case is

H(X|Y = ∗) = −
∑
x

P (X = x|Y = ∗) logP (X = x|Y = ∗)

= H(α)

where we work out

P (X = 0|Y = ∗ = 1− α, P (X = 1|Y = ∗) = α

2 ERROR CONTROL CODES 22

Capacity is
C = max

α
I(X,Y)

= max
α

(H(X)−H(X|Y))

= max
α

(H(α)− pH(α))

= (1− p) max
α

H(α)

= 1− p

attained when α = 1/2.

We model using a channel n times as the nth extension, i.e. we replace in-
put and output alphabets Σ1 and Σ2 by Σn

1 and Σn
2 . Channel probabilities:

P (y1...yn received|x1...xn sent = prodni=1P (yi received|xi send).

Lemma. (2.14)
The nth extension of a DMC with information capacity C has information
capacity nC.

Proof. We take r.v. input X1, ..., Xn = X producing r.v. output Y1, ..., Yn = Y .
Now

H(Y |X =
∑
x

P (X = x)H(Y |X = x)

Since channel is memoryless,

H(Y |X = x) =
∑
i

H(Yi|X = x) =
∑
i

H(Yi|Xi = xi)

So
H(Y |X) =

∑
x

P (X = x)
∑
i

H(Yi|Xi = xi)

=
∑
i

∑
n

H(Yi|Xi = n)P (Xi = n)

=
∑
i

H(Xi|Yi)

Now H(Y) ≤ H(Y1) + ...+H(Yn) by (1.7). So I(X,Y) = H(Y)−H(Y |X) ≤∑
i(H(Yi)−H(Yi|Xi)) =

∑n
i=1 I)Xi, Yi) ≤ nC by definition of info capacity.

For equality, we need Y1, ..., Yn to be independent. This can be achieved by taking
X1, ..., Xn independent and choosing the distribution s.t. I(Xi, Yi) = C.

Proposition. (2.15)
For a DMC, operational capacity ≤ information capacity.

Proof. Let C be the information capacity. Suppose we can transmit reliably at
rate R > C, i.e. there is a sequence of codes (Cn)n≥1 with Cn of length n and size
b2nRc such that ê(Cn)→ 0 as n→∞. Then ê(Cn) = maxc∈Cn P (error|c sent),
e(Cn) = 1

|Cn|
∑
c∈Cn

P (error| sent). Clearly e(Cn) ≤ ê(Cn), so e(Cn) → 0 as

n→∞. Take r.v. input X, equidistributed over Cn. Let Y be the r.v. output

2 ERROR CONTROL CODES 23

when X is transmitted and decoded. So e(Cn) = P (x 6= y) = p say.
Now H(X) = log(|Cn|) ≥ nR − 1 for n sufficiently large, H(X|Y) ≤ H(p) +
p log(|Cn|−1) ≤ 1+pnR (Fano’s inequality), I(X,Y) = H(X)−H(X|Y), nC ≥
nR−1−(1+pnR) (2.14), so pnR ≥ n(R−C)−2. So we get p ≥ n(R−C)−2)

nR 6→ 0
as n→∞.
Thus our sequence of codes cannot exist.

Proposition. (2.16)
Consider a BSC, erro probability p. Let R < 1 − H(p). Then ther exists a
sequence of codes (Cn)n≥1 of length n and size b2nRc such that e(Cn)→ 0 as
n→∞.

Proof. The idea is to construct codes by picking codewords at random. WLOG
let p < 1/2, so ∃ε > 0 s.t. R < 1−H(p+ε). We use minimum distance decoding
(in case of tie, make arbitrary choice).
Let m = b2nRc. We pick a [n,m]−code C at random (i.e. each with probability

1

(2n

m)
, say C = {c1, ..., cm}. Choose 1 ≤ i ≤ m at random (i.e. each with

probability 1/m). We send c1 through the channel and get output Y .
Then P (Y is not decoded as c) is the average value of e(C) as C runs over all
[n,m]−codes. We can pick Cn a [n,m]−code with e(Cn) at most this average.
So it will suffice to show that

P (Y is not decoded as ci)→ 0 as n→∞

Let r = bn(p+ε)c. Then the above probability ≤ P (Ci 6∈ B(Y, r)) +P (B(Y, r)∩
C) {ci}), i.e. either ci is not in the ball, or it is in the ball but is not the only
one. We consider the two probabilities separately:
(i) P (d(ci, y) > r) = P (BSC makes > r errors) = P (BSC makes > n(p + ε)
errors)→ 0 as n→∞ by WLLN.

(ii) if j 6= i, P (cj ∈ B(Y, r)|ci ∈ B(Y, r)) = V (n,r)−1
2n−1 ≤ V (n,r)

2n . So,

P (B(Y, r) ∩ C) {ci}) ≤ (m− 1)
V (n, r)

2n

≤ 2nR2nH(p+ε)2−n

= 2n(R−(1−H(p+ε))) → 0

as n→∞, since R < 1−H(p+ ε).

Proposition. (2.17)
Consider a BSC with error probaiblity p. Let R < 1−H(p). Then there exists
a sequence of codes (Cn)n≥1 with Cn of length n, size b2nRc and ê(Cn)→ 0 as
n→∞.

Proof. Pick R′ s.t. R < R′ < 1−H(p). By (2.16), we construct a sequence of
codes (C ′n)n≥1 with C ′n of length n, size b2nRc and e(C ′n)→ 0 as n→∞.
Throwing at the worst half of the codewords in C ′n, gives a code Cn with
ê(Cn ≤ 2e(C ′n). So ê(Cn)→ 0 as n→∞.
Note Cn has length n and size b2nR−1c, but 2nR−1 = 2n(R′−[frac1n ≥ 2nR for n
sufficiently large.

2 ERROR CONTROL CODES 24

We can replace Cn by a subcode of size b2n+Rc and still get ê(Cn) → 0 as
n→∞.

Conclusion: a BSC with error probaility p has operational capacity 1−H(p).

Remark: (i) How does it work? say capcity is 0.8, and we have a message a
string of 0′s and 1′s. Let R = 0.7s < 0.8, Then ∃ a set of 20.75n codewords of
length n that have error probability below some prescribed threshold, hence to
encode message:
(a) break message into block’s of size 3d[n4 e = m sufficiently large;
(b) encode these m-blocks into Cn using codewords of length 4

3m each m block;
(c) transmit new message through channel.

The theorem shows good codes exists. But the proof does not construct them
for us.

2.4 Linear codes

In practice, we consider codes with extra strucutre to allow efficient decoding.

Definition. A code C ⊂ Fn2 is linear if:
(i) 0 ∈ C;
(ii) If x, y ∈ C, then x+ y ∈ C.

Recall: F2 = {0, 1} the field with 2 elements, addition and multiplication are
mod 2. Equivalently, C ⊂ Fn2 is linear if its an F2 vector space.

Definition. The rank of a linear code C is its dimension as an F2 vector space.

A code C of length n and rank k is called an (n, k)-code.

We say C has a basi sv1, ..., vk. Then C = {
∑
λivi : λi ∈ F2} so |C| = 2k, i.e. a

(n, k)-code is a [n, 2k] code. The information rate is k
n .

For x, y ∈ Fn2 , we defined x · y =
∑n
i=1 xiyi ∈ F2 i.e. the inner product. Note

this is commutative, and distributive. But note x · x = 0 6 =⇒ x = 0.

Lemma. (2.18)
Let P ⊂ Fn2 be a subset. Then C = {x ∈ Fn2 : p · x = 0∀p ∈ P} is a linear code.

Proof. (i) 0 ∈ C since p · 0 = 0 ∀p ∈ P .
(ii) If x, y ∈ C, then p · (x+ y) = p · x+ p · y = 0, so x+ y ∈ C.

P is called a set of parity checks and C is a parity check code.

Definition. Let C ⊂ Fn2 be a linear code. The dual code

C⊥ = {x ∈ Fn2 : x · y = 0∀y ∈ C}

2 ERROR CONTROL CODES 25

by (2.18), C⊥ is a code.

Lemma. (2.19)
dimC + dimC⊥ = n.
Note that these two sets might have non-empty intersection.

Proof. V = Fn2 , V ∗ = linear maps from V → F2. Consider ϕ : V → V ∗ by
x→ θx where θx : y → x · y. Then ϕ is a linear map. Suppose x ∈ kerϕ, then
x · y = 0 ∀y ∈ V . Taking y = ei = (0...010..0) (ith place is 1) gives xi = 0. So
kerϕ = {0}. Since dimV = dimV ∗ (LA), it follows that ϕ is an isomorphism.
Thus φ(C⊥) = {θ ∈ V ∗ : θ(x) = 0∀x ∈ C}, i.e. the annihilator of C, denoted by
C◦. By Linear algebra we know dimC + dimC◦ = dimV = n.

Corollary. (C⊥)⊥ = C for any linear code C. In particular, any linear code is
a partiy check code.

Proof. Let x ∈ C. Then x · y = 0∀y ∈ C⊥ =⇒ x ∈ (C⊥)⊥, i.e. C ⊆ (C⊥)⊥.
By (2.19) twice, dim(C⊥)⊥ = dimC, so C = (C⊥)⊥.

Definition. Let C be a (n, k) linear code.
(i) A generator matrix for C is a k × n matrix whose rows are a basi for C.
(ii) A parity check matrix for C is a generator matrix for C⊥. It is a (n− k)× n
matrix.

Definition. (2.20)
Every (n, k) linear code is equivalent to a linear code with generator matrix
(Ik|B).

Proof. We can perform row operations: swap 2 rows or add one row to another
(multiplying by scalars is not useful here).
By Gaussian elimination, we get G, the generator matrix in row echelon form,
i.e. ∃l(1) < l(2) < ... < l(n) s.t. Gij = 0 if j < li and 1 if j = l(i). Permuting
the columns of G gives an equivalent code, i.e. l(i) = 1 for 1 ≤ i ≤ k. More row
operations put G in the form (Ik|B) with B a k × (n− k) matrix.

Remark. A message y ∈ F k2 (a row vector) is sent as yG. If G = (Ik|B) then
yG = (y|yB), where we can see y as message and yB as check digits.

Lemma. (2.21)
A (n, k) linear code with generator matrix G = (Ik|B) has parity check matrix
H = (−BT |In−k).

Proof. Since GHT = −B +B = 0, we know rows of H generate a subcode C⊥.
But dim(C⊥) = n− k = r(H) as H has In−k as submatrix. So the rows of H
are a basis for C⊥ as required.

Hamming weight: the weight of x ∈ Fn2 is N(x) = d(x, 0).

2 ERROR CONTROL CODES 26

Lemma. (2.22)
The minimum distance of a linear code C is the minimum weight of a non-zero
codeword.

Proof. Let x, y ∈ C. Then x+ y ∈ C, and d(x, y) = d(x− y, 0) = d(x+ y, 0) =
w(x+y). Note x, y distinct means x+y 6= 0, so d(C) = minx,y∈Cdistinct d(x, y) =
minz∈C,z 6=0 w(z).

Definition. The weight w(C) of a linear code C is the minimum weight of a
non-zero codeword.

By (2.22), this is the same as minimum distance.

2.5 Syndrome Decoding

Let C be a (n, k̂)-linear code with parity check matrix H. Then C = {x ∈ Fn2 :
Hx = 0} where x is a column vector.

Suppose we receive y = c+ e where c ∈ C is a codeword and e ∈ Fn2 is an error.
We compute the syndrome Hy. Suppose we know C is k-error correcting. Then
we tabulate the syndromes He for all e ∈ Fn2 with w(e) ≤ k. If we receive y we
search for Hy in our list. If successful, we get Hy = He for some e ∈ Fn2 with
w(e) ≤ k. We decode y as c = y − e. Then c ∈ C as Hc = Hy −He = 0 and
d(y, c) = w(e) ≤ k.

Recall Hamming’s original code: c1 + c3 + c5 + c7 = 0, c2 + c3 + c6 + c7 = 0,
c4 + c5 + c6 + c7 = 0. So c⊥ = 〈(1010101), (0110011), (0001111)〉. So

H =

1010101
0110011
0001111


and Hy = z = (z1z2z4).

In general we have Hamming codes: let d ≥ 1, n = 2d − 1. Let H be the d× n
matrix whose columns are the non-zero elmeents of F d2 . The hamming (n−n−d)
linear code is the linear code with parity check matrix H (original is d = 3).

Lemma. (2.23)
Let C be a linear code with parity check matrix H. Then w(C) = d iff
(i) any (d− 1) columns of H are linearly independent;
(ii) some d columns of H are linearly dependent.

Proof. Suppose C has length n. Then C = {x ∈ Fn2 : Hx = 0}. If H has
columnts v1, ..., vn. Then

(x1, , ..., xn) ∈ C ⇐⇒
n∑
i=1

xivi = 0

i.e. code words are dependence relations between columns.

2 ERROR CONTROL CODES 27

Lemma. (2.24)
The Hamming (n, n− d) linear code has minimum distance d(C) = 3, and is a
perfect 1-error correcting code.

Proof. Any two columns of H are linearly independent (where H is the parity
check matrix of C, but there exists 3 that are linearly dependent. Hence
d(C) = 3 by (2.23). And (2.4) says C is a 1-error correcting code. To be perfect:
|C| = 2n

V (n,e) , here n = 2d − 1, e = 1, so 2n

V (n,e) = 2n

1+2d−1
= 2n−d = |C|.

New codes from old:

The following construction is specific to linear code.

Definition. Let C1, C2 linear codes of length n with C2 ⊆ C1, i.e. C2 is a
subcode of C1. The bar product is

C1|C2 = {(x|x+ y) : x ∈ C1, y ∈ C2}

is a linear code of length 2n.

Lemma. (2.25)
Let C1, C2 be as above.
(i) rk(C1|C2) = rank(C1) + rk(C2);
(ii) w(C1|C2) = min{2w(C1), w(C)2)}.

Proof. (i) Let x1, ..., xk be basis for C1. Let y1, ..., yl be basis for C2. Then
{(xi|xi) : 1 ≤ i ≤ k} ∪ {(0|yi) : 1 ≤ j ≤ l} is a basis for C1|C2, hence
rank(C1|C2) = rank(C1) + rank(C2).
(ii) Let x ∈ C1, y ∈ C2 not both zero. If y 6= 0: w(x|x + y) = w(x) + w(x +
y) ≥ w(y ≥ w(C2). If y = 0 (so x 6= 0), w(x|x) = 2w(x) ≥ 2w(C1). So
w(C1|C2) ≥ min{2w(C1), w(C2)}. But there exists 0 6= x ∈ C1 s.t. w(x) =
w(C1), so w(x) = 2w(x) = 2w(C1); So w(0|y) = w(y) = w(C2). So w(C1|C2) =
min{2w(C1), w(C2)}.

2.6 Reed-Muller Codes

Let X = F d2 = {p1, ..., pn} where n = 2d (chosen an ordering). For A ⊆ X, we
get a vector 1A ∈ Fn2 by the rule (1A)i = 1 ⇐⇒ pi ∈ A, i.e. 1A is the indicator
function of A.

For x, y ∈ Fn2 , we have x + y = (x1 + y1, ..., xn + yn), x ∧ y = (x1y1, ..., xnyn),
then (Fn2 ,+,∧) is aring.

For A,B ⊆ X we have 1A + 1B = 1A4B where 4 is the symmetric difference:
A4B = A ∩B \A ∪B, and 1A ∪ 1B = 1A∪B .
w(1A) = |A|.

Let v0 = 1x = (1, ..., 1) (multiplicative identity).

For 1 ≤ i ≤ d, let vi = 1Hi
where Hi = {p ∈ X : pi = 0}.

2 ERROR CONTROL CODES 28

Definition. Let 0 ≤ r ≤ d. The Reed-Muller code RM(d, r) of order r and
length 2d is the vector subspace of Fn2 spanned by v0 and wedge products of at
most r of the vi.
Convention: the wedge product with zero terms is v0.

For example, consider d = 3. We have v0 = 11111111, v1 = 11110000, v2 =
11001100, v3 = 10101010, and we can calculate their wedge products corre-
spondingly. We have RM(3, 0) is spanned by v0. It is the repetition code of
length 8; RM(3, 1) is spanned by v0, v1, v2, v3. Deleteing the 1st component
gives Hamming’s (7, 4)-code, i.e. the last 7 digits of vi are generator matrix for
Hamming’s (7, 4)−code. Note also that all vi have even weight. So RM(3, 1) is
equivalent to the partiy check extension of Hamming’s (7, 4)−code.

RM(3, 2) is spanned by v0, v1, v2, v3, v1 ∧ v2, v2 ∧ v3, v3 ∧ v1. These are linearly
independent (see next theorem), so RM(3, 2) is a (8,)7-code. Each codeword
has even weight, so RM(3, 2) is the simple parity check code of length 8.

Lastly, RM(3, 3) is the trivial code.

Theorem. (2.26)
(i) The vectors vi1 ∧ ... ∧ vis for 1 ≤ i1 < ... < is < d and 0 ≤ s ≤ d are a basis
for Fn2 .
(ii) RM(d, r) has rank

∑r
s=0

(
d
r

)
.

(iii) RM(d, r) = RM(d− 1, r)|RM(d− 1, r − 1).
(iv) RM(d, r) has weight 2d−r.

Proof. (i) We have a set of
∑d
s=0 = 2d = n vectors, so it suffices to show they

span Fn2 , equivalently R(d, d) = Fn2 . Let p ∈ X. Let yi = vi, if pi = 0, or v0 + vi
if pi = 1. Then 1{p} = y1 ∧ y2 ∧ ... ∧ yd. Expanding using distributive law gives
that 1{p} ∈ RM(d, d). But these indicator functions form a spanning set.
(ii) By definition, RM(d, r) is spanned by the vectors vi1 ∧ ...∧ vis with 1 ≤ i1 <
... < is ≤ d and 0 ≤ s ≤ r. By (i) those are LI, so is a basis. Then just count
the number of vectors.
(iii) We order X = F d2 s.t. vd = (0...011...1), and vi = (v′i|v′i) for 1 ≤ i ≤ d− 1.
Let z ∈ RM(d, r). It is a sum of wedge products of v0, ..., vd, so z = x+ (y ∧ vd),
where x and y are sums of wedge products of v0, ..., vd−1. We have (x = (x′|x′)
for some x′ ∈ RM(d − 1, r), y = (y′|y′) for some y′ ∈ RM(d − 1, r − 1). So
z = (x′|x′)+(y′|y′)∧(000...0|1...1) = (x′|x′+y′) ∈ RM(d−1, r)|RM(d−1, r−1).
Also, ranks same by (2.25) and (ii).
(iv) RM(d, 0) is the repetition code of length 2d, it has weight 2d. RM(d, d) = Fn2
by (i), it has weight 1 = 2d−d. If 0 < r < d we use (iii) and induction on d. By
indcution, RM(d − 1, r) has weight 2d−1−r, and RM(d − 1, r − 1) has weight
2d−r.
(2.25) implies that RM(d, r) has weight min{2× 2d−1−r, 2d−r} = 2d−r.

Remark: (i) A different ordering gives an equivalent code.
(ii) You can define the Reed-Muller code recursvively using the bar product,

starting with RM(d, d) = F 2d

2 and RM(d, 0) = {1, ..., 1, 0, ..., 0}.

2 ERROR CONTROL CODES 29

Cyclic codes:

Definition. C ⊂ Fn2 is a cyclic code if it is linear and (a0, ..., an−1) ∈ C =⇒
(an−1, a0, ..., an−2) ∈ C.

We identify Fn2 with F2[x]/(xn − 1) via π : (a0, a1, ..., an−1)→ a0 + a1X + ...+
an−1X

n−1 (mod ()xn − 1).

See printed sheet for lemma 2.27 and lemma 2.28 (some facts in grm).

Lemma. (2.29)
A code C ⊂ Fn2 is cyclic iff C = π(C) satisfies:
(i) 0 ∈ C;
(ii) f, g ∈ C =⇒ f + g ∈ C;
(iii) f ∈ C, g ∈ F2[x] =⇒ gf ∈ C.

Proof. (i) and (ii) by linearity of C.
(iii) if f(x) = a0 +a1x+ ...+an−1x

n−1, then xf(x) = an−1 +a0x+ ...+an−2x
n−1.

So C cyclic if f(x) ∈ C =⇒ xf(x) ∈ C, i.e. (iii) holds if g = X. Repeating gives
Xrf(x) ∈ C, then use (ii) to get gf ∈ C for g ∈ F2[x].

Remark. So, C is a cyclic code of length n iff C is an ideal in F2[x]/(xn − 1).
From now on identify C with C.

Definition. A generator polynomial g(x) for a cyclic code C is a polynomial
g(x)|Xn − 1 s.t. C = {f(x)g(x) (mod xn − 1)|f(x) ∈ F2[X]}.

Theorem. (2.30)
Every cyclic code has a generator polynomial.

Proof. C is an ideal in F2[x]/(xn − 1). By (2.27) (ideal correspondence), C =
J/(xn − 1) for some (Xn − 1) ⊆ J ⊂ F2[x] for J an ideal. But F2[x] is a PID,
so we can write J = (g(x)) for some g(x) ∈ F2[x]. Then (xn − 1) ⊆ (g(x)) =⇒
g(x)|xn − 1.

Note: generator polynomials are unique if we insist they are monic (automatic if
we are working over Fn2).

Corollary. There is a bijection between cyclic codes of length n and factors of
Xn − 1 in F2[x].

If cyclic codes C1 and C2 have generator polynomials g1 and g2, and C1 ⊃
C2 ⇐⇒ g1(x)|g2(x).

Also, if n is odd, f(x) = xn − 1 has no repeated roots, so xn − 1 = f1(x)...fr(x)
where f1(x), ..., fr(x) are distinct irreducible polynomials in F2[x]. So number
of cyclic codes of length n is 2r.

2 ERROR CONTROL CODES 30

Lemma. (2.31)
C cyclic code of length n with generator polynomial g(x),

g(x) = a0 + a1X + ...+ akX
k(ak 6= 0)

Then g(x), xg(X), ..., xn−k−1g(x) is a basis for C.

Proof. LI: suppose f(x)g(x) ≡ 0 (mod ()xn − 1) for some f(x) ∈ F2[x] with
deg(f) ≤ n− k − 1. As deg(fg) ≤ n− 1, f(x)g(x) = 0, so f(x) = 0.
Spanning: let p(x) ∈ F2[x] represent an element of C, wlog deg(p) < n. Then
p(x) = f(x)g(x) for some f(x) ∈ F2[x], with deg(f) = deg p−deg g < n−k =⇒
p(x) is in the span of g(x), xg(x), ..., xn−k−1g(x).

Corollary. C has rank n− k.
The generator matrix is

G =


a0 a1 ... ak 0 ... 0
0 a0 a1 ... ak ... 0
0 0 a0 ak 0
...
0 0 ... a0 a1 ... ak


a n× (n− k) matrix.

Definition. The parity check polynomial h(x) is defined by g(x)h(x) = xn − 1.

——20160223——

Lecture is on strike today, so no lecture today!

——————–

Last time we introduced cyclic codes and parity check codes polynomial h(x)
that satisfies g(x)h(x) = Xn − 1. Suppose g(x) = a0 + a1x + ... + akx

k,
h(x) = b0 + b1x+ ...+ bn−kx

n−k, with bn−k 6= 0. Then

H =

bn−k bn−k−1 ... b0 0 ... 0
0 bn−k bn−k−1 ... b0 ... 0
... 0 ... 0 bn−k ... b0


Since rows of G are orthogonal to the rows of H, e.g. 1st row of G · 1st row of
H gievs coefficients of Xn−k in g(x)h(x).

In general, ith row of G · jth row of H gives coefficients of Xn−k+(j−i) in
g(x)h(x).

As bn−k 6= 0, rank(H) = k = rank(C⊥).

Lemma. (2.32)
The parity check polynomial is the generator polynomial for the reverse of C⊥

(i.e. reverse all codewords).

2 ERROR CONTROL CODES 31

BCH codes (Bose, Ray-Chavdhun; Hocqienghem)

Definition. Let K ⊃ F2, A ⊂ {x ∈ K : xn = 1}. The cyclic code of length n
defined by A is

C = {f(x) (mod Xn − 1) : f(α) = 0∀α ∈ A}

Note f(x) ≡ 0 ∈ C. If f, g ∈ C, (f + g)(α) = f(α) + g(α) = 0 =⇒ f + g ∈ C.
f ∈ C =⇒ f(α) = 0 =⇒ αf(α) = 0 =⇒ Xf ∈ C, so C is cyclic.

Definition. Let K ⊃ F2, n odd and α ∈ K a primitive nth root of unity. The
cyclic code with defining set A = {α, α2, ..., αδ−1} is called a BCH code with
design distance δ.

Remark. (i) The minimal polynomial for α over F2 is the polynomial of least
degree satisfied by α.
(ii) The generator polynomial g(x) for BCH code C is lcm({m1(x), ...,mδ−1(x)},
where mi(x) is the minimal polynomial for αi over F2.

Theorem. (2.35)
The minimum distance of a BCH code is at least the design distance.

Lemma. This lemma is about the determinant of Van der Monde determinant,
but I think we all know that so I won’t waste time copying the formula. To
prove it just notice that xi = xj is a factor of the determinant, then compare
degree and coefficient we get the desired results.

Proof of (2.33):
Consider the (δ − 1)× n matrix

H =


1 α α2 ... αn−1

1 α2 α4 ... α2(n−1)

...
1 αδ−1 α2(δ−1) ... α(δ−1)(n−1)


Using VDM (pulling out factors in columns as required) gives that any δ − 1
columns of H are LI. But a codeword in C is a dependence relation between the
columns of H, so w(C) ≥ δ.

Remark. H is not a parity check matrix in usual sense: (entries in K rather
than F2).

Example. (i) n = 7. We have x7 − 1 = (1 + x)(1 + x + x3)(1 + x2 + x3) in
F2[x]. Suppose g(x) = 1 +x+x3, then h(x) = 1 +x+x2 +x4. The parity check
matrix is 1011100

0101110
0010111


which are columns of F 3

2 \ {0}. So code generated by g(x) is precisely the
Hamming’s (7,4)-code.

2 ERROR CONTROL CODES 32

(ii) K ⊃ F2 splitting field of x7 − 1. Let α ∈ K be a root of g(x) = x3 + x+ 1,
then α is a primitive 7th root of unity. Note g(α) = 0 =⇒ α3 = α + 1
=⇒ α6 = (α + 1)2 = α2 + 1, so g(α2 = 0. Also, g(α3) 6= 0, but g(α4) = 0.
The BCH code of length 7 and design distance 3 with defining set {α, α2} has
generator polynomial g(x).

By (i), this is Hamming’s original code. By (2.33), the weight of this code is at
least 3.

Decoding BCH codes:

Recall, K ⊃ F2, n odd, α ∈ K a primitive nth root of unity, C defined by
{α, α2, ..., αδ−1, i.e. C = {f(x) (mod xn − 1) : f(αi) = 0, 1 ≤ i ≤ δ − 1}. By
(2.33) can correct r = b δ−1

2 c errors.

Definition. The error-locator polynomial is

σ(x) =
∏
i∈ξ

(1− αix)

Problem: assuming deg(σ) = |ξ| ≤ r (ξ is number of errors I think?), recover
σ(x) from r(x).

Theorem. (3.4)
σ(x) has constant term 1, and satisfies

σ(x)

2r∑
j=0

r(αj)xj ≡ w(x) (mod x2r+1)

where w(x) is a polynomial of degree ≤ r. Moreover, σ(x) is the unique
polynomial of least degree satisfying the above.

Application: Taking coefficeints of Xi for r + 1 ≤ i ≤ 2r allows us to solve for
the coefficients of σ(x). Then

ξ = {0 ≤ i ≤ n− 1 : σ(α−i) = 0}

This determines e and we decode as r − e (remember σ(x) =
∏
i∈ξ(1− αixi).

Proof of (2.34):
Let w(x) = −xσ′(x) =

∑
i∈ξ α

ix
∏
j 6=i(1 − αjx). So w(x) is a polynomial of

degree = deg(σ). We work in K[[x]] the ring of formal power series
∑∞
i=0 βix

i,

2 ERROR CONTROL CODES 33

βi ∈ K. Note 1
1−αix =

∑∞
j=0(αix)j ∈ K[[x]], so

w(x)

σ(x)
=
∑
i∈ξ

αix

1− αix

=
∑
i∈ξ

∞∑
j=1

(αix)j

=

∞∑
j=1

(
∑
i∈ξ

(αj)i)xj

=

∞∑
j=1

e(αj)xj

So

w(x) = (

∞∑
j=1

e(αj)xj)σ(x)

By definition of C we have c(αj) = 0 for 1 ≤ j ≤ δ − 1, so for 1 ≤ j ≤ 2r, so
r(αj) = e(αj) for 1 leqj ≤ 2r. Thus

σ(x)

2r∑
j=1

2r∑
j=1

r(αj)xj ≡ w(x) (mod x2r+1)

Now to show uniqueness, note σ(x) has distinct, nonzero roots, so σ(x) and
w(x) = −xσ′(x) are coprime. Suppose σ̃(x) and w̃(x) are another solution.

Assume deg(σ̃) ≤ deg(σ). Then

σ(x)w̃(x) ≡ ˜σ(x)w(x) (mod x2r+1)

But these four polynomials have degree ≤ r, so LHS and RHS are actually equal.
Since σ(x) and w(x) are coprime, we must get σ(x)| ˜σ(x). But deg(σ̃) ≤ deg(σ),
so σ̃ is a scalar multiple of σ. Both have constant term 1, so they are equal.

2.7 Shift registers

Definition. A general feedack shift register is a function f : F d2 → F d2 of the
form

f(x0, ..., xd=1) = (x1, ..., xd−1, c(x0, ..., xd−1))

where c : F d2 → F d2 is a function.

Definition. A linear feedback shift register is a function f : F d2 → F d2 as abovev
with c linear in x0, ..., xd−1.

The stream associated to the initial fill y0, ..., yd−1 is the sequence y0, y1, ... wher
yn = ad−1yn−1 + ...+ a0yn−1 ∀n ≥ d or more generally, yn = c(yn−d, ..., yn−1).

2 ERROR CONTROL CODES 34

The stream produced by a LFSR is a recurrence relation (difference relation).
The feedback (auxilary) polynomial is p(x) = xd + ad−1x

d−1 + ...+ a0.

Definition. A sequence of elements in F2 has generating function G(x) =∑∞
j=0 xjX

j ∈ F2[[x]].

Theorem. (2.35)

The stream comes from a LFSR with feedback polynomial P (x) iff G(X) = B(x)
A(x) ,

where A(X) is the reverse of P (X) and B(X) a polynomial of degree less than
d.

Proof. Suppose P (X) = anx
d + an−1x

d−1 + ...+ a0 with ad = 1. Then A(X) =

a0x
d + a1x

d−1 + ...+ ad. So A(x)G(x) = (
∑d
i=0 ad−iX

i)(
∑∞
j=0 xjX

j).

So A(X)G(X) is a polynomial of deg < d iff coefficients of Xr in A(X)G(X) = 0

∀r ≥ d, iff
∑d
i=0 ad−1xr−1 = 0 ∀r ≥ d ⇐⇒ (xn)n≥0 comes from a LFSR with

feedback polynomial P (X).

Remark. The problems:
(i) Recover the LFSR from its sequence output;
(ii) Decoding BCH codes;
Both involve recognisigin a power series as a quotient of polynomials.

2.8 Berlekamp-Massey algorithm

Let x0, x1, ... be thutput of a binary LFSR. We can find the unknown d and
a0, ..., ad−1 s.t.

xn +

d∑
i=1

ad−ixn−i = 0∀n ≥ d

we look successively at the matrices

A0 = (x0),

A1 =

(
x1 x0

x2 x1

)
,

A2 =

x2 x1 x0

x3 x2 x1

x4 x3 x2


Starting at A5, if you happen to know d ≥ 5.

For each Ai, compute det(Ai):
If det(Ai) 6= 0, then d 6= 1;
if det(Ai) = 0, we solve (*) on the assumption d < i.

We then check our candidate for a0, ..., ad−1 over as many terms of the sequence
as we wish. If this fails, we know that d > 1, start again with Ai+1.

2 ERROR CONTROL CODES 35

Remark: it’s easier to use Gaussian elimination rather than expanding along
rows/columns.

3 CRYPTOGRAPHY 36

3 Cryptography

Idea: modify message to make them unintelligible to all but the intended
recipient.

Terminology: plain text = unencrypted message;
cipher text = encrypted message.

Before transmission, the parties share some secret information called the key.

We let M be the set of all possible unecrypted message, e be the encrypted ones,
and k be the keys.

Some examples:
Let’s have M = e = {A,B, ..., Z} = Σ.
(1) Simple substitution: K is a set of permutation of Σ. Each letter of the
message is replaced by its image under the permutation.
(2) Vigenere Cipher: K = Σd. Identify Σ = Z/26Z. Write out the key repeatedly
below the message and add mod 26.

Note if d = 1, this is a substitution cipher. If d > 1, a given letter is encrypted
differently depending on its place in the message, so simple frequency analysis
doesn’t work.

What does it mean to break a cryptosystem?

We assume the enemy may know:
the functions d and e;
probability distributions on M and K;
but not the key.

The attacker seeks to read messages from intercepted ciphertext.

We consider 3 possible levels of attack:
1. Cipher text only: The enemy only knows some piece of cipher text;
2. Known plain text: The enemy has a (considerable length) of ciphertext and
corresponding plain text;
3. Chosen plaintext: The enemy can generate ciphertext corresponding to any
plaintext s/he chooses.

Remark. (i) Examples (1) and (2) encryption above fail at level 2 if plaintext
is ’sufficiently random’. However, if message is in English (say) and sufficiently
long, then thes systems also fail at level 1 (and enemy will find key and can read
all future messages).
(ii) For modern ’industrial scale’ applications, level 3 is desirable. Note that
exhaustive searches are always possible (systems are finite), but we want time
taken to be prohibitively large.
Also, note good cryptosystems require not just good maths but good engineering,
good management and an ability to leanr from mistakes.

Unicity distance:

3 CRYPTOGRAPHY 37

Let (M,K, e) be a cryptosystem. Let m, k be random variables taking values in
M and K, and let c = e(m, k).

Definition. (i) The key equivocation is H(K|C);
(ii) The message equivocation is H(M |C).

Lemma. (3.1)
H(M |C) ≤ H(K|C).

Proof. Since M = d(C,K), we know H(M |K,C) = 0. Then

H(K|C) = H(K,C)−H(C)

= H(M,K,C)−H(M |K,C)−H(C)

= H(M,K,C)−H(C)

= H(K|M,C) +H(M,C)−H(C)

= H(K|M,C) +H(M |C) ≥ H(M |C)

Remark. 〈M,K, e〉 has perfect secrecy if H(M |C) = H(M).
Suppose, we send a sequence of messages M (n) = (m1,m2, ...,mn) using the
same key.

Definition. The unicity distance U is the least n ≥ 0 s.t. H(K|C(n)) ≤ 0.

We have
H(K|C(n)) = H(K,C(n))−H(C(n))

= H(K,M (n), C(n))−H(C(n))

= H(K,M (n))−H(C(n))

= H(K) +H(M (n))−H(C(n))

We assume:
• all keys are equally likely so H(K) = log(K); • H(M (n)) = nH, where
H = H(M) entropy for single message;
• all assumed cipertext is equally likely, so H(C(n)) = n log |Σ|, where e = Σ∗.

So H(K|C(n)) = log |K|+ nH − n log |Σ|, and U = log |K|
log |Σ|−H .

In words,

Definition. The unitary distance U of a cryptosystem is the least length of
ciphertext required to uniquely deduce key.

Remark. (i) To make U large, we can make key space large, or send messages
with little redundancy;
(ii) To be secure, we should not use a single key for more messages than the
unicity distance.

3 CRYPTOGRAPHY 38

3.1 Stream Ciphers

We consider streams (sequences) in F2. Plain text: p0, p1, ..., key stream:
k0, k1, ..., cipher text: zn = pn + kn (mod 2).

One time pad: take a random key stream i.e. k0, k1, k2, i.e. a sequence i.i.d.
random variables with P (kj = 0) = 1/2. Then zj = pj + kj gives a sequence
z0, z1, ... of i.i.d. random variables with P (Zj) = 0 = 1/2. Without knowledge
of the key stream, deciphering is impossible. A one time pad has perfect secrecy.

Problems: (i) How do we construct a random sequence?
(ii) How do we share knowledge of the key streams?

It turns out that (i) is surprisingly tricky, and (ii) is the same problem that we
started with. So this doesn’t really help.

In most applications one time pad is not practical. Instead, we’ll share k0, ..., kd−1

and construct the rest of the key stream using a general feedback register of
length d.

Lemma. (3.2)
Let x0, x1, ... be a sequence produced by a LFSR of length d. Then ∃M,N ≤ 2d−1
s.t xr+N = xr ∀r ≥M .

Proof. Let vi = (xi, xi+1, ..., xi+d−1). So f : Fd2 → Fd2 by vi → vi+1. If some
vi = 0, 0 ≤ i ≤ 2d − 1, then sequence is eventually all zeros, so lemma is true.
So assume vi 6= 0, 0 ≤ i ≤ 2d − 1, then v0, ..., v2d−1 are 2d elements in Fd2 \ {0},
which 2d − 1 values. So va = vb for some 0 ≤ a < b ≤ 2d − 1.

Let M = A, N = b−a. Show by induction vr+N = vr ∀r ≥M . By construction,
vM+N = vM , then vr+1+N = f(vr+N) = f(vr) = vr+1 =⇒ xr+N = xr
∀r ≥M .

Remark. (i) Same result with N,M ≤ 2d holds for a general feedback register.
(ii) Berlekamp-Massey Method gives that stream ciphers using LFSR are unsafe
at level 2 (known plaintext).
(iii) Stream ciphers still get used: it’s cheap and easy and encryption/decryption
on the fly.

New key streams from the old:
Recall a stream produced by a LFSR of form (x0, ..., xd−1)→ (x1, ..., xd−1, a0x0+
...+ ad−1xd−1) has feedback polynomial P (x) = xd + ad−1x

d−1 + ...+ a0. The
solutoins of this recurrence relation are linear comibnations of the powers of the
roots of P (x).

Lemma. (3.3)
Let xn (resp. yn) be the output of a LFSR with feed back polynomial P (x)
(resp Q(x)). Say P (x), Q(x) has roots α1, ..., αM , β1, ..., βN respectively in some
K ⊃ F2.
(i) (xn + yn) is the output from a LFSR with feedback polynomial P (X)Q(X);

3 CRYPTOGRAPHY 39

(ii) (xnyn) is the output from a LFSR with feedback polynomial

M∏
i=1

N∏
j=1

(X − αiβj)

Sketch proof:
Assume (for simplicity) that P and Q have distinct roots. Then xn =

∑M
i=1 λiα

n
i ,

yn =
∑N
j=1 µjβ

n
j for some λi, µj ∈ K.

(i) xn + yn =
∑M
i=1 λiα

n
i +

∑N
j=1 µjβ

n
j , (xn + yn) is a solution to a difference

equation with polynomial P (X)Q(X).

(ii) xnyn =
∑M
i=1

∑N
j=1 λiµj(αiβj)

n, (xnyn) is a solution to difference equation

with polynomial
∏M
i=1

∏N
j=1(X − αiβj). (Need to check this polynomial has

coefficients in F2).

So if (xn) output from a LFSR of length M , (yn), (xn + yn), (xnyn) ... of length
N,M +N,MN respectively.

Conclusion:
(i) Adding output streams gives no advantage over computing the same stream
with a single register.
(ii) Multiplying output streams gives xnyn = 0 on 75% of the time. This is not
a desirable property for a key stream.

Example: suppose streams xn, yn, zn produced by LFSRs. Let kn = xn if zn = 0,
and = yn if zn = 1. Then kn = ynzn + (1 + zn)xn = xn + (xn + yn)zn (mod 2).
So by (3.3) (kn) is till the output of a LFSR.

Stream ciphers are examples of symmetric cryptosystems, i.e. the decryption
algorithm is the same as, or easily deduced from, the encryption algorithm.

3.2 Public key cryptosystems (asymmetric cryptosystems)

We divide the key in two:
• public key used for encryption;
• private key used for decryption.

Aim: given you know the encryption/decryption algorithm and the public key, it
should still be hard to find the private key and decrypt messages. If we achieve
this aim, we get security at level 3 (chosen plaintext attack).

Note, we avoid the problem of key exchange.

Idea: base such crptosystems on mathematical problems which are believed to
be hard.

(1) Factoring: let N = pq be the product of two primes. Given N , find p and q.
(2) Discrete Logarithm: let p be a large prime, and g a primitive element mod p
(i.e. generates F ∗p). Given x, find a s.t. x ≡ ga (mod p).

3 CRYPTOGRAPHY 40

Suppose N is written in binarry with B digits, then the algorithm for factorizing
N has input size B = log2N . Some algorithms that run in polynomial time:
operations of arithmetic on integers, i.e. addition, subtraction, multiplication,
division with remainders;
Computing gcds using Euclid’s algorithm; modular exponentiation; testing
primality (AKS, 2002).

However, there’s no polynomial time algorithms known for (1) and (2) above.

Rabin-Willimans Cryptosystem (1979):
Private key: p, q large, distinct primes with p ≡ q ≡ 3 (mod 4). Public key:
N = pq. m = e = {0, 1, ..., N − 1}. We encrypt m ∈ M as c = m2((mod N)).
The ciphertext is c (we should avoid m <

√
n and gcd(m,N) > 1).

Lemma. (3.4)
Suppose p = 4k − 1 is a prime and d an integer. If x2 ≡ d (mod p) is soluble,
then a solution is given by x ≡ dk (mod p).

Proof. If d = 0 then done. Otherwise we have

d2k−1 ≡ (x2)2k−1 ≡ xp−1 ≡ 1 (mod p)

by Fermat’s Little theorem. So (dk)2 ≡ d (mod p).

So if we know p and q and we receive c, then we can find x1, x2 such that x2
1 ≡ c

(mod p), x2
2 ≡ c (mod q). Then by CRT we can find x s.t. x ≡ x1 (mod p) and

x ≡ x2 (mod q), so x2 ≡ c (mod N).

Indeed, we can run Euclid’s algorithm on p and q to find integers r, s such that
rp+ sq = 1, then x = (sq)x1 + (rp)x2.

Lemma. (3.5)
(i) p an odd prime, d ≡ 0 (mod p). If x2 ≡ d (mod p) is soluble, then there are
exactly 2 solutions.
(ii) Suppose N = pq, p, q distinct odd primes and gcd(d,N) = 1. If x2 ≡ d
(mod N) is soluble, then there are exactly 4 solutions.

Proof. (i) If x2 = y2 (mod p), then p|(x− y)(z + y), so x ≡ ±y (mod p).
(ii) Suppose x0 is a solution. By CRT, there are solutions with x = ±x0 (mod p),
x ≡ ±x0 (mod q).for any 4 choices of ± sign. By (i) these are all solutions.

To decrypt the Rabin-Williams code, we compute all 4 possible solutions. Our
message should inovlve sufficient redundancy that only one of these solutions
makes sense.

Theorem. (3.6)
Breaking the Rabin-Williams code is essentially as difficult as factoring N .

Proof. We have seen that if we can factor N , then we can decrypt the Rabin-
Williams code. Conversely, suppose we have an algorithm for extracting square

3 CRYPTOGRAPHY 41

roots (mod N) (which is decrpyting). We pick x (mod N) at random. We use
the algorithm to find y s.t. x2 ≡ y2 (mod N). Then Lemma 3.5 tells us that
with probability 1/2, y is not ±y (mod N). Then gcd(x− y,N) is a non-trivial
factor of N . If not then repeat with a new random x. Repeat.

3.3 RSA encryption

Suppose N = pq when p, q large distinct primes. Recall φ(n) is the number of
integers less than n that are coprime to n, so (p−1)(q−1). Euler-Fermat gives if
(x,N) = 1 then xφ(N) ≡ 1 (mod N). We pick an integer e s.t. gcd(e, φ(N)) = 1.
Solve for d s.t. de ≡ 1 (mod φ(N))).

So here the public key is (N, e), private key (N, d). Message m is encrypted as
c = me (mod N). Ciphertext is decrypted as m1 ≡ cd (mod N). Euler-Fermat
tells us m ≡ m1 (mod N). (the probability that (m,N) 6= 1 is small, so we
neglect that).

Notation: Op(x) is the order of x in F ∗p = (Z/pZ)∗.

Theorem. (3.7)
Let N = pq with p, q distinct odd primes. Suppose φ(N)|2ab for b odd.
Let 1 ≤ x ≤ N with gcd(x,N) = 1.
(i) If Op(x

b) 6= Oq(x
b) then ∃0 ≤ r < a s.t. gcd(x2rb − 1, N) is a non-trivial

factor of N .
(ii) The number of x satisfying (i) is at lesat φ(N)/2.

Proof. (i) Let y = xb (mod N). Euler-Fermat gives y2n ≡ 1 (mod p)N , so
Op(y) and Oq(y) are powers of 2.
We’re supposing Op(y) 6= Oq(y). Swapping p and q if necessary, we get y2r ≡ 1
(mod p), y2r 6≡ 1 (mod q) for some 0 ≤ r < a. So gcd(y2r − 1, N) = p as
required.
(ii) Recall (Z/NZ)∗ = {x+NZ : 1 ≤ x ≤ N, (x,N) = 1}. We want X to be the
number of x ∈ (Z/nZ)∗ s.t. Op(x

b) 6= Oq(x
b)} ≥ 1

2 |(Z/NZ)∗| = φ(N)/2. CRT
gives a bijection (Z/NZ)∗ ↔ (Z/pZ)∗ × (Z/qZ)∗. We show that if we partition
(Z/pZ)∗ into subsets according to the value of Op(x

b) then each subset has size
≤ 1

2 |(Z/pZ)∗| = 1
2 (p − 1). This suffices since if y ∈ (Z/pZ)∗ then number of

x ∈ (Z/pZ)∗ : Op(x
b) 6= Op(y

b) is at least 1
2 (p− 1), so X ≥ 1

2 (p− 1)(q − 1).

We exhibit a subset with size exactly 1
2 |(Z/pZ)∗|. Let g be a primitive root

(mod p). Then (gb)2a ≡ 1 (mod p), so Op(g
b) is a power of 2. If x = gδ, then

(xb) = (gb)δ, and Op(x
b) = Op(g

b) if δ is odd, or ≤ 1
2Op(g

b) if δ is even. So {gδ
(mod p)|δ odd} is the required subset.

Corollary. Finding the RSA private key (N, d) from the public key (N, e) is
essentially as difficult as factoring N : if we know how to factor N we can compute
φ(N) and then solve for d s.t. de ≡ 1 (mod φ(N)); conversely, if we know d and
e then de ≡ 1 (mod φ(N)), so φ(N)|de− 1. We write de− 1 = 2ab and use (3.7)
to factor N . The probability of failure after r random choice of x is less than
1/2r.

3 CRYPTOGRAPHY 42

We’ve shown that finding the private key from the public key is as hard as
factoring N ; however, it is not known whether decrypting messages sent using
RSA is as hard as that.

RSA avoids the issue of sharing a secret key, but it’s slow. Symmetric cryptosys-
tems are often faster, so we are still interested in sharing keys.

Shamir proposed the following analogy of the ’padlock example’:

A chooses a ∈ (Z/pZ)∗ computes a′ s.t. aa′ ≡ 1 (mod p− 1), and B chooses b
similarly and computes b′. Then we send messages as

m
A−→ ma B−→ mab A−→ maba′ B−→ maba′b′ ≡ m (mod p)

3.4 Diffie-Hellman Key Exchange

Parties A and B wish to agree a secret key for communication. Let p be a
large prime and g a primitive root (mod p). A chooses a nuber α and sends gα

(mod p) to B, and B chooses β and sends gβ (mod p) to A. Both parties now
compute K = (gαβ), and use this as secret key.

An eavesdropper is left with the problemn of computing gαβ from g, gα and gβ .
It is conjectured, but not proved, that this is as hard as the discrete log problem.

Authenticity and signatures:

A sends message to B. Possible aims include:
Secrecy: A and B can be sure that no third party can read the message;
Integirty: A and B can be sure that no third party can alter the message.
Authenticity: B can be sure A sent the message.
Non-repudiation: B can prove to a third party that A sent the message.

So far we have only considered secrecy.

Authenticity using RSA:

Suppose A has private key (N, d) and public key (N, e). A now uses the private
key (N, d) for encryption. Anyone can decrypt using the public key (N, e), but
cannot forge messages sent by A. If B send a random message µ and then
receives back a message from A which upon decryption ends in µ, then B knows
s/he is in communication with A.

Some examples to show integrity is important:

Homomorphism attack: A bank creates a message of the form (M1,M2) where
M1 is the client name and M2 is the amount to be credited to their account.
Messages are encoded using RSA as (z1, z2) = (Me

1 (mod N),Me
2 (mod N)). I

enter into a transaction which credtis 100 pounds to my account. I intercept
resulting (z1, z2)a and then send (z1, z

3
2), therefore earning 1 million without

breaking RSA.

3 CRYPTOGRAPHY 43

Copying: even if I didn’t know RSA was being used, I could still repeatedly
transmit (z1, z2) many times. We can stop this by time-stamping, i.e. add a
time-signature to our message.

Remark. We consider the signature of a message, not the signature of a sender.
We suppose all users have a private key and a public key. We have a map:
s : M × K → S, where M,K are all possible messages and keys, and S is
all possible signatures. A signs a message m with s(m, kA) where kA is A’s
private key. Then B checks the signature using A’s public key. s should be a
trapdoor function (one-way), i.e. no one can sign a message from A without A’s
private-key.

For example, using RSA, A has private key (N, d) and public key (N, e). A
signs message m with s = md (mod N). Anyone can verify that (m, s) is a valid
signed message using A’s public key.

Remark. (existential forgery)
Anyone can sign a message of the form (se (mod N), s), but we hope such a
message will not be meaningful. In practice, rather than sign a message m, we
sign h(m) where h : M → {1, ..., N − 1} is a collision-resistant hash function, i.e.
a publicly known function chosen so that it is easy to verify that some input data
maps to a given hash value, but if the input data is unknown it is deliberately
difficult to reconstruct it, or find another input that maps to same hash value.
Thus if the mssage is changed then it is very likely that the hash value wii also
change. So we can use the hash value to test the integirty of a message, e.g.
combat homomorphism attack.

The El-Gamal Signature Scheme:

Let p be a large prime, g be primitive root mod p. A chooses a random integer
1 < n < p.

Public key: p, g, ygu (mod p). Private key: u.

Let h : M → {1, 2, ..., p − 1} be a collision-resistant hash function. To send
a message, A chooses a random exponent k, with (k, p) = 1 and computes
1 ≤ r ≤ p−1 and 1 ≤ s ≤ p−2, satisfying (i) r ≡ gk (mod p); (ii) h(m) = ur+ks
(mod p− 1). (Note: (k, p− 1) = 1, so k has an inverse mod p− 1, so can solve
for s). S/he signs message m with (r, s).

B accepts the signature if gh(m) ≡ yrrs (mod p). Now,

gh(m) ≡ gyr+ks (mod p)

≡ (gn)r(gk)s

≡ yrrs (mod p)

It is believed that the only way to forge signatures is to find u from y ≡ gu

(mod p), i.e. by solving the discrete log problem.

Choice of k: It is essential that a different choice of k is used to sign each message,
otherwise messages m1,m2 are signed (r, s1), (r, s2) with h(m1) ≡ ur + ks1

3 CRYPTOGRAPHY 44

(mod p − 1), h(m2) ≡ ur + ks2 (mod p − 1), so h(m1) − h(m2) ≡ k(s1 − s2)

(mod p−1). Let d = (s1−s2, p−1). Put h′ ≡ h(m1)−h(m2)
d , s′ ≡ s1−s2

d , p′ ≡ p−1
d .

Then h′ ≡ ks′ (mod p′).

As (s′, p′) = 1, we can solve for k mod p′. So k ≡ k0 (mod p′) for some k0, then
k ≡ k0 + λp′ (mod p − 1), where 0 ≤ λ ≤ d − 1 which we can check through
each of them: just determine correct value of k using gk ≡ r (mod p). Similarly,
we can solve h(m) ≡ ur + ks (mod p− 1) for u, which is A’s private key.

	Miscellaneous
	Introduction to communication channels and coding
	Noiseless coding
	Mathematical entropy

	Error control codes
	Bound on codes
	Channel Capacity
	Conditional Entropy
	Linear codes
	Syndrome Decoding
	Reed-Muller Codes
	Shift registers
	Berlekamp-Massey algorithm

	Cryptography
	Stream Ciphers
	Public key cryptosystems (asymmetric cryptosystems)
	RSA encryption
	Diffie-Hellman Key Exchange

