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1 Introduction and Definitions

1.1 Electric charges and currents

The charge of a particle is an intrinsic property (like mass) determining the
strength of the EM forces it experiences. Charge is quantized (discrete), always
being a multiple m ∈ Z of the electron charge q = −e, where

e = 1.60217662(1)× 10−19C

where C is Coulomb (SI unit of charge).

Charge can be positive, negative or zero (natural). Examples: electrons (q = −e),
positrons (q = e), proton (q = e), neutron (q = 0).

The charge density ρ(x, t) describes charge per unit volume.

For a single particle q at positron x′, we have

ρ(x, t) = qδ(x− x′) (1.1)

While for N particles,

ρ(x, t) =

N∑
i=1

qiδ(x− xi) (1.2)

where qi, xi are charge and position for the ith particle, and δ satisfying

δ(x− x′) = 0∀x 6= x′ (1.3)

∫
V

δ(x− x′)d3x =

{
1 x′ ∈ V
0 else

(1.4)

Also, ∫
f(x)δ(x− x′)d3x = f(x′) (1.5)

We will also consider continuous distributions ρ(x, t) because N is large (and in
QM particles are described by continuous wave functions ψ(x, t).

The total charge Q in a volume V is

Q =

∫
V

ρ(x, t)d3x (1.6)

Electric current, I describes the coherent motions of electric charge. We have

I =
dQ

dt
(1.7)
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across some surface S.

Like fluid flow, we define a current density J(x, t), the rate charge passes across
the surface element dS = m̂dS with normal m̂, that is, dI = J · dS = J · m̂dS.

The total current across S is then

I =

∫
S

J · dS (1.8)

Base SI unit of current is Ampere(A, = Cs−1).

Example. Current in a wire.

Assume 1A current in 1mm diameter copper wire (lying in z−direction).
Uniform charge density: ρ = ne;
Electron density of Cu: n = 8× 1028m−3;
Current density J = ρv = −envẑ.

So the total current density is dS = ẑdS. So

I =

∫
A

J · dS

= −
∫
envẑ · ẑdA

= −envπR2

= −104vCm−1

But I = 1A. So v = 10−4ms−1.
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1.2 Forces and Fields

The Lorentz force
F = q(E + v ×B) (1.9)

describes how a particle of charge q moves under the influence of an electric
field E(x, t) and a magnetic field B(x, t). SI unit for E are force per unit charge
(NC−1 = kgms−2C−1).

The ratio [E/B] = [V ] means units for B, Tesla, are linked to particle motion (or
currents in a wire) (T = NC−1m−1s = N/(Am) = N/(Cms−1) = 104Gauss).

Conversely, particles create EM fields, e.g. a static charge Q at r = 0 has

E(r) =
1

4πε0

Q

r2
r̂ (1.10)

where the electric constant ε0 = 8.83×10−11C2kg−1m−3s−2 (C2N−1m−2). Also
note ε0 = 1

µ0c2
(c is the speed of light) derives from the magnetic constant, where

µ0 = 4π × 10−7C−2kgm

≈ 125× 10−6C−2kgm.

Charge conservation is observed in every physical process. Charge Q in a volume
V can only change by moving across a closed surface S, i.e.∫

S

J · dS =

∫
V

∇ · Jdx3

= −dQ
dt

(*)

The negative sign is because outward normals imply current flows out of V .

But from definition 1.6,

dQ

dt
=

d

dt

∫
V

ρd3x =

∫
v

∂ρ

∂t
d3x (†)

So for arbitrary V , equation (*) and (†) must imply a local conservation law

∂ρ

∂t
+∇ · J = 0 (1.11)
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1.3 Maxwell’s equations

All knowledge about the interplay between EM fields and particles is encoded in
Maxwell’s equations:

∇ ·E =
ρ

ε0
(Gauss’ Law, 1.12)

∇ ·B = 0 (Gauss’ Law for magnetism, 1.13)

∇×E = −∂B

∂t
(Faraday’s law of induction, 1.14)

∇×B = µ0J +
1

c2
∂E

∂t
(Ampere-Maxwell Law, 1.15)
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2 Electrostatics

Consider time-independent charge distribution ρ(x, t) with J = 0 (allowing us to
set B = 0 in equation (Gauss’ Law for magnetism, 1.13) - (Ampere-Maxwell Law, 1.15)).
Given ρ, we seek solutions of

∇ ·E =
ρ

ε0
(2.1)

and
∇×E = 0. (2.2)

2.1 Gauss’ Laws

Integrate (2.1) over a volume V in R3 bounded by surface S:∫
V

∇ ·Ed3x =

∫
S

E · dS

=
1

ε0

∫
V

ρd3x

=
Q

ε0

by divergence theorem, (2.1) and (1.6) respectively.

This implies Gauss’ Laws

Φflux =

∫
S

E · dS =
Q

ε0
(2.3)

where the middle is flux through S and the right is total charge in V .

For example, in the diagram below, we have ΦS = ΦS′ since they both enclose
the charge.

While in the diagram below ΦS′′ = 0 since the total charge in V is 0.
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Gauss’ Law can be used to find solutions for E in situations of spherical symmetry.

2.1.1 Application: Coulomb’s Laws

Suppose we have spherically symmetric charge distribution ρ(r) = ρ(r) with
r = |r|, ρ(r) = 0 for r > R.

Here, ∫ R

0

ρ4πr2dr = Q

By symmetry, E = E(r)r̂ (so ∇×E = 0). Gauss Law yields∫
S

E · dS =

∫
S

E(r)r̂ · dS

= E(r)4πr2

=
Q

ε0

(Note dS = r2 sin θdθdφr̂).

This implies Coulomb’s Law (1.10),

E(r) =
1

4πε0

Q

r2
r̂, r > R (2.4)

Interior solution(r < R): Suppose uniform distribution in sphere, i.e.

ρ(r) =

{
ρ0 r ≤ R
0 r > R
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where ρ0 is some constant. Then the total charge is

Q =
4π

3
R3ρ0 (*)

So ∫
S

E · dS = E(r)4πr2

=

∫ r

0

ρ0
ε0

4πr2dr

=
1

ε0

4π

3
r3ρ0

=
Q

ε0
(
r3

R3
)

using (*). So

E(r) =
1

4πε0

Qr

R3
r̂ (r < R) (2.5)

So the solution E looks like

Example. (Charged Line)
Consider a wire with constant charge η per unit length.
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By symmetry in cylindrical polars,

E(r) = E(r)r̂

where r =
√
x2 + y2.

Take a cylinder of length L with dS = r̂rdφdz while upper and lower disks with
dS = ±ẑrdrdφ – do not contribute as ẑ · r̂ = 0. So∫

S

E · dS = E(r)2πrL

= η
L

ε0

Hence we have our solution

E(r) =
η

2πε0

1

r
(2.5)

i.e. slower 1
r fall-off.

Example. (Surface charge and matching conditions)
Suppose we have a charged plane at z = 0. Charge density per unit area σ(x, y).

By symmetry, we must have

E(r) = E(z)ẑ

and E(z) = −E(−z).

Consider a small cylinder S enclosing an area A of the charged surface.

The surface integral becomes∫
E · dS = E(z0)A (top disk)− E(−z0)A (bottom disk) + ẑ · r̂ (=0)

= 2E(z0)A

=
σA

ε0
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by Gauss’ Law ((2.3)) charge inside S.

Hence
E(z) =

σ

2ε0
(z > 0) (2.6)

which is independent of z− perpendicular distance.

So as we approach the surface (z → 0), there is a discontinuity

E(z → 0+)− E(z → 0−) =
σ

ε0
(2.7)

This result is easy to generalize to an arbitrary surface S (with normal n̂) with
inhomogeneous σ:

n̂ · [E+ −E−] =
σ

ε0
(2.8)

This is the matching condition for the normal component of E.

Aside: Any field E on S decomposes into normal E⊥ and tangential E//:

E = E⊥ + E// = (E · n̂)n̂ + E− (E · n)n̂ = (E · n̂)n̂ + n̂× (E× n̂)

We can show that the tangential component E// on S has to be continuous:

n̂× [E+ −E−] = 0 (2.9)
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This can be shown using the line integral∮
E · dl =

∫
S

∇×E · dS

= 0

(2.10)

By Stokes’ Theorem and (2.2) respectively (see David Tong’s lecture notes).

Example. Consider empty shell of radius R with surface charge σ with Q =
4πR2σ.

This has the Coulomb solution

E =

{
1

4πε0

Q
r2 r̂ = r

ε0

(
R
r

)2
r > R

0 r < R

So r̂ · (E+ −E−) = σ
ε0

at r = R on surface S satisfying (2.6) - (2.7).

2.2 Electrostatic potential

The scalar field is curl-free, i.e. ∇×E = 0, so it can be expressed as the gradient
of a scalar potential φ(x):

E = −∇φ (2.11)

(Helmholtz decomposition: every differentiable vector field F can be decomposed
into a curl-free and a divergence-free part, i.e. F = −∇φ+∇×A).

The electrostatic equation (2.1) ∇ ·E = ρ
ε0

becomes the Poisson equation

∇2φ = − ρ

ε0
(2.12)

If ρ = 0, the homogeneous form is the Laplace equation

∇2φ = 0 (2.13)
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Both (2.12),(2.13) are linear, so we can use the superposition of solution (e.g.
ρ = ρ1 + ρ2, φ = φ1 + φ2 and E = E1 + E2) notably by employing summation
over Green’s functions.

2.2.1 Point charge revisited

Consider (1.1) ρ(r) = qδ(r), a point q at r = 0.

∇2φ = − q

ε0
δ(r) (2.14)

The symmetric solution must have

φ(r) = φ(r)

so use Gauss’ Law on the interior of a sphere S2 centred at r = 0. (normal
n̂ = r̂): ∫

V

∇2φd3r =

∫
S2

∇φ · n̂(=
dφ

dr
)dS

=
−q
ε0

from (2.14) with (1.4).
Hence, 4πr2 dφdr = − q

ε0
, dφ
dr = −q

4πε0
1
r2 yielding

φ =
1

4πε0

q

r
+ const (2.15)

Assuming boundary conditions φ→ 0 as r →∞, then this is free-space Green’s
function (check Methods).

As before (1.10), the electric field is

E = −∇φ =
1

4πε0

q

r2
r̂.

2.2.2 The Dipole

Consider two particles with opposite charge with −q at r = 0 and +q at r = d.
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By superposition of (2.15), the solution is simply

φ(r) =
1

4πε0

(
−q
r

+
q

|r− d|

)
(2.16)

Expanding in Taylor series

f(r− d) = f(r)− d · ∇f(r) +
1

2
(d · ∇)2f(r) + ...

So
1

|r− d|
=

1

r
− d · ∇

(
1

r

)
+

1

2
(d · ∇)2

(
1

r

)
+ ...

=
1

r
+

d · r
r3
− 1

2

(
|d|2

r3
− 3(d · r)2

r5

)
+ ...

So the dipole solution as |r| → ∞

φ =
q

4πε0

(
−1

r
+

1

r
+

d · r
r3

+ ...

)
≈ q

4πε0

d · r
r3

.

Defining the dipole moment p = qd pointing from the negative to the positive
charge, we have

φ =
p · r̂

4πε0r2
(2.17)

The dipole electric field is

E = −∇φ = − 1

4πε0

(
(p · r)∇

(
1

r3

)
+
∇(p · r)

r3

)
=

1

4πε0

(
3(p · r)r̂− p

r3

) (2.18)
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2.2.3 General Green’s function solution

Recall that the Laplacian ∇2G(r; r′) = δ(r − r′) has the free-space Green’s
function

G(r, r′) =
−1

4π|r− r′| (2.19)

If we take charge distribution ρ(r) 6= 0 only in a compact region V ⊂ R3.

Then the general solution for the Poisson equation (2.12) is

φ(r) =
−1

ε0

∫
G(r; r′)ρ(r′)d3r′

=
1

4πε0

∫
ρ(r′)

|r− r′|
d3r′

(2.20)

with electric field

E(r) = −∇φ = − 1

4πε0

∫
ρ(r′)∇r

(
1

|r− r′|

)
d3r′

=
1

4πε0

∫
ρ(r′)(r− r′)

|r− r′|3
d3r′

(2.21)

Aside: If instead, Dirichlet boundary conditions imposed in the near(?) domain,
then

G(r; r′) = − 1

4π|r− r′|
+H(r, r′)

where H is harmonic and chosen so that G = 0 on the boundary of V (see
Methods).

At far distances beyond V (i.e. r� r′,∀r′), the solution (2.20) becomes

φ(r) =
1

4πε0

∫
d3r′ρ(r′)

(
1

r
+

r · r′

r3
+ ...

)
=

1

4πε0

(
Q

r
+

R · r̂
r2

+ ...

) (2.22)

where total charge is (1.6)

Q =

∫
d3r′ρ(r′)

and the average dipole moment is

p =

∫
d3r′r′ρ(r′) (2.23)

We can continue to expand to quadruple and higher moments.
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2.2.4 Equipotentials and field lines

Move particle (charge q) along path l from r to r′ in a potential φ(r). Potential
energy U given by work done against force F = qE = −q∇φ:

U = −
∫ r′

r

F · dl

= −q
∫ r′

r

E · dl

= q

∫ r′

r

∇φ · dl

= q[φ(r′)− φ(r)]

(2.24)

i.e. the potential difference between r and r′.

Recall that any line integral
∫

E · dl along a closed curve is 0 since E is conser-
vative.

Suppose that φ(r) = φ(r′) = φ0 along the path l from r to r′, field satisfies

φ(r) = φ0 (2.25)

which is a constant, thus defining a set of equipotential surfaces.

Since
∫

E · dl = 0, this implies E = 0 or E is normal to the surface. Electric field
lines are continuous lines drawn tangent to E(r) with density proportional to
|E|.

Example. Point charges field lines begin at the positive charge and end at the
negative charge.

and similarly for the negative charge.

Example. Consider a pure dipole (2.17).
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where φ = ρ cos θ
4πε0r2

, r ∼ (cos θ)1/2, E = 1
4πε0r2

[2 cos θr̂ + sin θθ̂].

Example. The actual dipole is a combination of the above two.

2.3 Electrostatic energy

How much electrostatic energy do N charged particles have?

Place first particle (charge q1, position r) which creates potential

φ1(r) =
q1

4πε0|r− r1|

but we do no work W = 0, i.e. we ignore the rest mass energy E = mc2 of all
particles (self energy).

Bring second particle from r =∞ to r = r2 yielding potential energy

W2 = q[φ1(r2)− φ1(∞)] = q2φ1(r2) =
q1q2

4πε0|r2 − r1|
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Bring third particle from r =∞:

W3 = q3[φ2(r2) + φ1(r1)]

= q3

(
q2

|r3 − r2|
+

q1
|r3 − r1|

)
etc.

Summing over all particles, the total PE is

U =

N∑
i=1

Wi

=
1

4πε0

n∑
i=1

N∑
j>i

qiqj
|ri − rj |

=
1

8πε0

n∑
i=1

n∑
j 6=i

qiqj
|ri − rj |

=
1

2

N∑
i=1

φi(ri)

(2.26)

where we define φi(ri) = 1
4πε0

∑
j 6=i

qj
|ri−rj | .

Now consider the continuous limit of electrostatic energy (2.26):

U =
1

2

∫
V

d3rρ(r)φ(r) =
ε0
2

∫
V

d3r(∇ ·E)φ

by Maxwell’s equation (2.1). This is then equal to

ε0
2

∫
V

d3r[∇(Eφ)−E · ∇φ] (*)

using ∇ · (Eφ) = ∇ ·E φ+ E · ∇φ.

But by divergence theorem∫
V

∇ · (Eφ)d3r =

∫
S

φE · dS→ 0

as r → ∞, since on surface S, φ,E → 0 as r → ∞ (for isolated charges
φ ∼ 1

r , E ∼
1
r2 , A ∼ 4πr2, so

∫
S
→ 1

r3 rπr
2 → 0).

Using E = −∇φ, we find that (*) becomes

U =
ε0
2

∫
d3rE ·E (2.27)

i.e. equivalent to the energy of the electric field.
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2.4 Conductors

There are broadly 3 types of electrical materials: • Insulators have bound
electrons with a large energy gap to the conduction band;
• Semiconductors have limited numbers of absent electrons (’holes’) which can
move;
• Conductors have many free electrons in a conduction band and current flows
freely.

For electrostatics conductors have spherical properties:
• Any interior electric field must vanish: E = 0, otherwise electrons would move.
• Since interior E = 0, from E = −∇φ we know φ =constant inside (equipoten-
tial).
• By ∇ ·E = ρ/ε0, there is no interior charge, i.e. ρ = 0 (despite there are many
free electrons).
• Where have all the charges gone? They must all reside on the surface S (with
normal n̂.
• describe with surface charge density σ.
• Any electric field E must be normal to conductor surface S (any tangential
field E// would move charges).

By matching conditions ((2.8)), the exterior field is

E = σ/ε0n̂ (2.28)

i.e. Conductors define boundary conditions for the Poisson and Laplace’s equa-
tions ((2.12),(2.13)).

2.4.1 Electrostatic shielding (Faraday cage)

The potential is constant inside the conductor φc =constant, so true also in the
cavity (region V ).

Since the potential satisfies Laplace’s equation ∇2φ = 0 we have E = 0 inside
cavity and no surface charge.
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Exercise. Place charge Q inside and show that it will be shielded by equal
opposite charge on S.

2.5 Method of images

Conductors provide equipotential boundary conditions which, if sufficiently
symmetric, can be satisfied instead by adding additional image or mirror charges.
The uniqueness theorem for solutions of Poisson’s equation given ρ and boundary
conditions on V means that any solution that satisfies these is the unique solution.

Example. Consider a point charge q, a distance z0 from a conducting plane at
z = 0 which is grounded or earthed (i.e. is held at φ = 0).

Now instead of the conductor, place an image charge at z = −z0.

The mirror solution is

φ =
1

4πε0

(
q√

x2 + y2 + (z − z0)2
− q√

x2 + y2 + (z + z0)2

)
for which it is clear that φ = 0 on the plane z = 0.
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Thus we also have the unique solution for z > 0. Normal field Ez is given by

Ez = −∂φ
∂z

=
q

4πε

(
z − z0

(x2 + y2 + (z − z0)2)
3
2

− z + z0

(x2 + y2 + (z + z0)2)
3
2

)
(2.29)

This induces a surface charge at z = 0 from (2.28) E = σ
ε0

n̂ given by

σ = ε0Ez|z=0 =
q

2π

z0

(x2 + y2 + z20)
3
2

(2.31)

Exercise. Show that the total induced surface charge

Q =

∫
dxdyσ = −q

i.e. the same as the image charge.

Example. (Conducting sphere in an electric field)

Initially uniform field E = −E0ẑ plus a conducting sphere (radius S, centre
r = 0, grounded φ = 0).

Cylindrical symmetry E(r) = E(r, θ) in 3D polar coordinates.

Instead of image charge, try adding image dipole field at r = 0,

φ(r, θ) = −E0ẑ +
p · r

4πεr2

by (2.17). By syymetry, take p = p0ẑ. So r̂ · ẑ = cos θ.

We require φ = 0 at r = |r| = R, satisfied if

φ(R, θ) = −E0R cos θ +
p cos θ

4πε0R2
= 0
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So
p = 4πε0R

3E0

Solution for r > R (by uniqueness) is

φ(r, θ) = −E0r cos θ +
E0R

3 cos θ

r2

the first term is a uniform field, while the second term is a dipole field.

Exercise. Find E = −∇φ.

2.6 Capacitors

These are usually closely spaced conductors which store electrical energy. A
potential difference V caused by opposite charges ±Q accumulating, with capac-
itance defined by

C =
Q

V
(2.32)

Consider two parallel conductor plates with area A, charges ±Q, positined at
z = 0, d (with d�

√
A).

E = −E0ẑ = − σ
ε0

ẑ is a constant with σ = Q/A.

Since E = −dφdz , we must have φ(z) = E0z + c, and potential difference V =

φ(d)− φ(0) = E0d = Qd
Aε0

.

Hence, the capacitance is

C =
Aε0
d

(2.33)

The electrical energy (2.27) stored by a capacitor is

U =
1

2

∫
d3xE ·E =

ε

2
Ad

(
Q

Aε0

)2

=
Q2d

Aε
= Q2C (

Q2

2C
??)
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by (2.33).

Exercise. Spherical capacitor with ±Q at R1 < R2 with

φ =
Q

4πε0r

for R1 < r < R2. Show that

C =
4πε0R1R2

R2 −R1
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3 Magnetostatics

We will now solve Maxwell’s equations sourced by steady currents J 6= 0 which
gives rise to magnetic fields B. We will take ρ = 0, E = 0, and ∂J

∂t = 0, so
(Gauss’ Law, 1.12) - (Ampere-Maxwell Law, 1.15) become

∇×B = µ0J (3.1)

∇ ·B = 0 (3.2)

The continuity equation (1.11), ∂ρ
∂t +∇ · J = 0 implies that

∇ · J = 0 (3.3)

3.1 Ampere’s Law

3.1.1 Straight wire with steady current

Suppose we have a steady current flowing through a surface S with boundary
curve C, element dl.

By Stokes’ theorem, ∫
S

∇×B · dS =

∮
C

B · dl

= µ0

∫
J · dS

This is Ampere’s Law ∮
B · dl = µ0I (3.4)

where I is the current through S.
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Consider cylindrical coordinates (r, ϕ, z) with wire along z−axis and current I.

By symmetry, we have B(r) = B(r)φ̂. This is the right hand rule - thumb points
along current, fingers around B field lines.

Check (3.2):

∇ ·B =
1

r

∂B(r)

∂ϕ
= 0

Around z =constant circle, we have∮
B · dl =

∫ 2π

0

B(r)rdϕ = 2πrB(r) = µ0I

by Ampere’s Law. So we have

B(r) =
µ0I

2πr
ϕ̂ (3.5)

Compare with line charge (2.6).

3.1.2 Surface currents and matching conditions

Suppose z = 0 plane has a steady current with current density K = kx̂ (current
per unit length).

By symmetry,

B =

{
−B(z)ŷ z > 0
B(−z)ŷ z < 0
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Now integrate about loop of length L in the x =constant plane, we have∮
B · dl = LB(z)− LB(−z)

= 2LB(z)

= µ0kL

So we have

B(z) =
mu0k

2
(3.6)

which is a constant field (compare with (2.7)).

Note the discontinuity across the surface B(z → 0+)−B(z → 0−) = µ0k.

This can be generalized to the following matching conditions

n̂× [B+ −B−] = µ0k (3.7)

and
n̂ · [B+ −B−] = 0 (3.8)

Note the duality with E, see (2.8) -(2.9).

3.1.3 Solenoid

By wrapping wire continuously around a cylinder, we can create a circular surface
current (infinite length).

By symmetry, B = b(r)ẑ with r =
√
x2 + y2.

Away from surface J = 0, so by (3.1), ∇×B = 0, so dB
dr = 0 =⇒ B(r) =constant.

Consider the curve C: Outside r > R we must have B ≡ 0, since physically
B → 0 as r →∞. Apply Ampere’s law,∫

B · dl = BL+ 0 + 0 + 0 = BL

= µ0INL
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where I is the current in each wire the N is the number of winding per unit
length. So we have

B = µ0IN. (3.9)

Check (3.7):

B =

{
µ0IN ẑ r < R
0 r > R

So n̂×∆B = µ0K, where K = IN ẑ which is consistent.

3.2 Vector potential

Recall from Methods the Helmholtz theorem, that any vector field F can be
decomposed as

F = ∇φ+∇×A (3.10)

i.e. a curl-free (irrotational) part and a divergence-free (solenoidal) part, where
F→ 0 as r →∞,

φ(r) =
1

4π

∫
∇r · F(r′)

|r− r′|
d3r′

and

A(r) =
1

4π

∫
∇r′ × F(r′)

|r− r′|
d3r′.

For magnetostatics ∇×B = 0, we can describe it with a vector potential A,

B = ∇×A (3.11)

Now applies (3.1),

∇×B = ∇× (∇×A) = −∇2A +∇(∇ ·A)

so
−∇2A +∇(∇ ·A) = µ0J. (3.12)

3.2.1 Gauge transformations

Note that B is unique, but A is not. Consider

A′(r) = A(r) +∇χ(r) (3.13)

for some arbitrary smooth function χ.

Clearly ∇×A′ = ∇×A.
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3.2.2 Coulomb gauge

It is often convenient to choose χ s.t. ∇ ·A′ = 0.e In other words, we fix to the
Coulomb gauge. Can we always do this?

Consider gauge transformation A′ = A + ∇x yielding identical B = ∇ × A.
Suppose ∇ ·A = ψ(r) 6= 0, then

∇ ·A′ = ∇ ·A +∇2ξ = ψ(r) +∇2ξ = 0

if ξ satisfies Poisson’s equation ∇2ψ = ψ(x) for which there is always a unique
solution.

Exercise For the straight wire (3.5), verify that

A(r) =
−µ0I

2π
ln rẑ

and reproduces the correct magnetic field

B(r) =
µ0I

2πr
ϕ̂ =

µ0I

2πr

(
−y
r
x̂ +

x

y
ŷ

)
(and is in the Coulomb gauge ∇ ·A = 0).

3.3 Biot-Savart Law

Consider (3.12) in Coulomb gauge ∇·A = 0, so Maxwell equation (3.1) becomes

∇×B = ∇× (∇×A) = −∇2A +∇(∇ ·A) = µ0J

So
∇2A = µ0J (3.16)

or in components, for i = 1, 2, 3

∇2Ai = −µ0Ji

which are 3 copies of Poisson equations. We’ve solve this already with Green’s
functions (2.20), implying

Ai(x) =
µ0

4π

∫
V

d3x′
Ji(x

′)

|x− x′|
or

A(x) =
µ0

4π

∫
V

d3x′
J(x′)

|x− x′| (3.17)

The magnetic field is then (using ∇× (ψD) = ψ∇×D +∇ψ ×D),

B(x) = ∇×A(x) =
µ0

4π

∫
V

d3x′∇x ×
(

J(x)

|x− x′|

)
=
µ0

4π

∫
d3x′

[
∇x × J(x′)

|x− x′|
+∇x

(
1

|x− x′|

)
× J(x′)

]
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The first term is 0 as there is no x−dependence, and the second term is equal to
−(x−x′)
|x−x′|3 . Hence, we have Biot-Savart Law,

B(x) =
µ0

4π

∫
d3x′

J(x′)× (x− x′)

|x− x′|3 (3.18)

For localized current along a curve C (by straight wire with J(x) = Iδ(x)δ(y)ẑ),
then (3.18) becomes

B(x) =
µ0I

4π

∮
C

dx′ × (x− x′)

|x− x′|3 (3.19)

Aside: verify A(x) in (3.17) is in Coulomb gauge ∇ ·A = 0:

∇x ·A(x) =
µ0

4π

∫
V

d3x′J(x′) · ∇x

(
1

|x− x′|

)
=
−µ0

4π

∫
d3x′J(x′) · ∇x′

(
1

|x− x′|

)
since if we interchange x↔ x′,

∇x

(
1

|x− x′|

)
= −∇x′

(
1

|x− x′|

)
and the above then equals

−µ0

4π

∫
V

d3x′
[
∇x′

(
J(x′)

|x− x′|

)
− ∇x′ · J(x′)

|x− x′|

]
= 0

by (3.3) the continuity equation.

3.4 Current loop and magnetic dipole

Consider a circular loop, current I, radius R, lying in z = 0 plane. We could
solve (3.17) directly with

J = I sin θδ(cos θ)
δ(r −R)

R
× (− sinϕî + cosϕĵ)

but we will seek a far-field (|r| � |r′|| = R) solution only.
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The vector potential A(x) (3.17) expands as

A(r) =
µ0I

4π

∮
dr′

|r− r′|

=
µ0

4π

∮
dr′
(

1

r
+

r · r′

r3
+ ...

) (3.20)

under localized current. Also the integral involving 1
r vanishes around the loop.

So

A(r) =
µ0I

4πr3

∮
r · r′dr′ =

−µ0I

4πr3

∫
S

∇r′(r · r′)× dS

because of Green’s theorem ∮
C

fdr =

∫
∇f × dS.

The above is then equal to

−µ0I

4πr3

∫
S

r× dS =
µ0I

4πr3
r×

∫
dS

since r is juts a constant vector in this integral. Now the integral of dS is the
vector area S of surface S. So the above is equal to

−µ0I

4π

r× S

r3

Define a magnetic dipole moment by

m = IS (3.21)

and far field is

A(r) =
µ0

4π

m× r

r3
. (3.22)
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Exercise Show that the magnetic dipole field B(r) takes an identical form to
the electric dipole (2.18), i.e.,

B(r) = ∇×A(r) =
µ0I

4π

(
3(m · r̂)r̂−m

r3

)
(3.23)

3.4.1 General magnetic field solutions

For a general current distribution J(x), note the following identities (note
summation conventions)

∂

∂xi
(Jixj) =

∂Ji
∂xi

xj + Jiδij = Jj (*)

since the first term is zero by the continuity equation ∇ · J = 0. So J can be
expressed as a total derivative

∂

∂xi
(Jixjxk) =

∂Ji
∂xi

xjxk + Jjxk + Jkxj = Jjxk + Jkxj (†)

So the general solution (3.17) becomes

Ai(x) =
µ0

4π

∫
d3x′

Ji(x
′)

|x− x′|
=
µ0

4π

∫
d3x′ ×

(
Ji(x

′

r
+
Ji(x

′(x · x′)
r3

+ ...

)
=
µ0

4π

{
1

r

∫
d3x′

∂

∂xj
(Jjx

′
i) +

xj
r3

∫
d3x′

[
1

2
Jix
′
j +

1

2
Jix
′
i +

1

2
Jix
′
j −

1

2
Jix
′
i

]}
for the first term, by (*), the surface term

∼ 1

r

∫
S

x′iJidSj = 0

vanishes with V ⊂ V interior sources (r′ � r). And for the second term, by (†)
the surface term is 1

2
∂
∂xi

(Jkx
′
ix
′
j). So above is equal to

µ0

4πr3
xj
2

∫
d3x′(Jix

′
j − Jjx′i)

=
µ0

4πr3
1

2

∫
d3x′ [Ji(x · x′)− x′i(J · x)]

=
−µ0

4πr3
1

2

[
x×

∫
d3x′J(x′ × x′

]
Hence

A(r) =
µ0

4π

m× r

r3
(3.24)

where

m =
1

2

∫
d3r′(r′ × J(r′)) (3.25)
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3.5 Magnetic Forces

Ampere showed that one current-carrying wire (current I1) exerts a force on a
second wire (I2), so consider the force on the second wire in the B−field of the
first.

3.5.1 Two straight wires

Parallel to z−axis, distance d apart. So we have (3.5),

B1 =
µ0I1
2πr

ϕ̂.

Also, J2 = nqv, where n is the density of charge carriers and v is the average
velocity in the z−direction, and I2 = J2A, where A is the cross-sectional area of
wire.

From the Lorentz force F = qv ×B, we get a force law per unit length,

f = nAF = nAqv ×B1 = AJ2 ×B1 = µ0
I1I2
2πd

ẑ× ϕ̂ = −µ0
I1I2
2πd

x̂ (3.26)

where nA is the number of charge carriers per unit length.

If I1 and I2 have the same direction (I1I2 > 0), then the force is attractive.
Conversely, the force is repulsive.
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3.6 General case

First loop on curve C1 with current I1, and line element dr1 induces:

B1(r) =
µ0I1
4π

∮
C1

dr + 1× (r− r1)

|r− r1|3
.

Integrated force on second loop

F =

∫
d3rJ2(r)×B1(r) (3.27)

= I2

∮
dr2 ×BB1(r)

=
µ0I1I2

4π

∮
C1

∮
C2

dr2 × (dr1 × (r2 − r1))

|r2 − r1|3
(3.28)

Suppose loops are well-separated (r = |r2 − r1| > R1, R2). Expand to find

F =
µ0

4π
∇
(

3(m1 · r̂)(m2 · r̂)−m1 ·m2

r3

)
(3.29)

(See D Tong’s EM notes – non-examinable).
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4 Electrodynamics

4.1 Faraday’s Law of Induction

Consider the time-dependent Maxwell’s equations (Faraday’s law of induction, 1.14),

∇×E = −∂B

∂t
(4.1)

This shows how varying magnetic fields induces electric fields (and, in turn, cur-
rents and further magnetic fields will be created, (Gauss’ Law, 1.12), (Ampere-Maxwell Law, 1.15)).

(missing 1 lecture)

Inductance (4.8) L = φ/I.

Solenoid (continued)

Field through single turn B = µ0IN and flux is φ0 = µ0INA and total flux is

φ = φ0NL = µ0IN
2Al = µ0IN

2ν

So self-inductance is
L = φ/I = µ0N

2ν (4.9)

Work must be done to create I but this is reversible.

4.1.1 Magnetostatic energy

How much energy is stored in wire curve C with current I? Build up from U = 0
and use inductance L to find the work done.

Change in current dI
dt induces EMF because of flux change (4.8)

ε = −dφ
dt

= −LdI
dt

(4.10)

The current must do work (recall dV/dt = P = V I)

δW = εIδt = −LI dI
dt
δt

So dW/dt = −LIdI/dt which integrates to

W =
1

2
LU2 =

1

2
Iφ (4.11)

Example. Consider solenoid with |phi = µ0IN
2ν, we have

W =
1

2
Iφ =

1

2
µ0I

2N2ν =
1

2µ0
B2ν
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The energy of steady current is stored in magnetic fields:

U =
1

2
Iφ =

1

2
I

∫
S

B · dS =
1

2
I

∫
S

∇×A · dS =
1

2

∮
C

A · dr

=
1

2

∫
V

d3rJ ·A

=
1

2µ0

∫
d3r∇×B ·A

=
1

2µ0

∫
d3r[∇ · (B×A) + B · ∇ ×A]

note that we’ve used Stoke’s theorem, Maxwell’s theorem (3.1) and the identity

∇ · (A×B) = A · ∇ ×B−B · ∇ ×A

So the above equals
1

2µ0

∫
d3rB ·B (4.12)

Also applies for several curves Ci, currents Ii. Combining this with electrostatic
energy (2.27) we have

U =

∫
d3r

(
ε0
2

E ·E +
1

2µ0
B ·B

)
(4.13)

4.2 Resistance and heat loss

Building up (or maintaining) current I also requires irreversible work because of
friction or resistance. Usually there is an effective EMF E proportional to the
speed of the charge carriers: Ohm’s law is

E = IR (4.14)

where R is the resistance of the circuit C.

For a wire of cross-sectional area A, length l the resistivity ρ is

ρ =
AR

l
(4.15)

while the conductivity σ is σ = 1/ρ. In general, Ohm’s Law is

J = σE (4.16)

4.2.1 Energy dissipation (Joule heating)

In the presence of resistance, work is required to maintain a current I. In a time
δt,

δW = EIδt = I2Rδt =⇒ dW

dt
= I2R (4.17)

This energy is lost as friction or heating.
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4.2.2 Moving wire example

Suppose we have a frictionless sliding bar (length d, mass m). Degrees of freedom
position x, current I. For position, the Lorentz force per unit length is

f = IBŷ × ẑ

so total force
F = IBdx̂

From F = mẍ we have mẍ = IBd (*) (we ignore B due to the current itself
here).

For current, we know total EMF is

E = −dφ
dt

= −Bdv = −Bdẋ

But Ohm’s Law (4.14) gives I = E/R = −Bdẋ/R. So we have

mẍ = −B2d2ẋ/R

which has the decaying solution

ẋ = −v0e−B
2d2t/mR (+)

where v0 is the initial velocity. Whichever way the bar moves by Lenz’s law acts
against the motion. Current obeys

I = E/R = −Bdẋ

so the energy dissipates
dW/dt = EI = I2R. (4.17)

With a battery with EMF E included a current I0 = ε0/R, the total EMF
becomes

E = E0 + Einduced = E0 −Bdẋ
Again using Ohm’s Law E = IR we have

mẍ = IBd = −Bd/R(Bdẋ− E0)

This is simple to solve exploiting the solution (+).
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