GRM

Lent 2016/2017



CONTENTS

Contents
1 Groups
R

1.2 Actions and Permutations . . . . . . ... ... ... ... ..
1.3 Conjugacy classes, centralisers and normalisers . . . . . ... ..
1.4 p-groups . . . . . ..o
1.5 Finite abelian groups . . . . . . . .. .. L oo

1.6 Sylow’s Theorems . . . . . . . . . ... .. ..

2 Rings

2.1 Definitions . . . . . ... o
2.2  Homomorphisms, ideals, quotients, and isomorphisms . . . . . .
2.3 Integral domains, field of fractions, maximal and prime ideal

2.4 Factorisation in integral domains . . . . . . . ... ... ... ..
2.5 Factorisation in polynomial rings . . . . . ... ... .. .....
2.6 Gaussian integers . . . . . . . ... oo
2.7 Algebraic integers . . . . . .. .. ...

2.8 Hilbert basis theorem . . . ... ... ... ... ... ......

3 Modules
3.1 Definitions and examples . . . . . . .. ... Lo
3.2 Direct sums and free modules . . . . . ... ..o
3.3 Matrices over Euclidean domains . . . . . . .. ... .. ... ..
3.3.1 Structure theorem for finitely-generated abelian groups
3.3.2  Primary decomposition theorem . . . .. ... ... ...
3.4 Modules over F[X], andnormal forms for matrices . . . ... ..

3.4.1 Rational canonical form theorem . . . . .. ... ... ..



1 GROUPS 3

1 Groups

1.1 1.2

Definition. A homomorphism is called an isomorphism if it is a bijection. Say
groups G and H are isomorphic if there exists an isomorphism ¢ : G — H
between them, write G = H.

Exercise: If ¢ is an isomorphism, then the inverse function ¢! : H — G is also
a homomorphism (so an isomorphism).

Theorem. (First isomorphism theorem)
Let ¢ : G — H be a homomorphism. Then ker(¢) < G, im(¢) < H, and

G/ ker(¢) = im(g).

Proof. We've done the first two parts.

Let f: G/ker(¢) — im(¢) by gker(¢) — #(g).

f is well-defined: if g ker(¢) = g’ ker(¢) then g~1g’ € ker(¢). Soeny = ¢(g71g') =
P(g7") - d(g") = d(g)"'e(g'). So d(g) = ¢(g'). So we have f(gker(¢)) =
f(g ker(9)).

[ is a homomorphism: f(gker(¢) - g'ker(¢)) = f(gg'ker(¢)) = é(g9g') =
P(9)0(g") = f(gker(9)) - f(g"ker(¢)).

f is surjective: Let h € im(¢), i.e. h = ¢(g) for some g. So h = f(gker(o)).

f is injective: Suppose f(gker(¢)) = en, i.e. ¢(g) = ey. Then g € ker(¢). So
gker(¢) = eq ker(¢). O

Example. Consider ¢ : C — C\{0} by z — e*. Then ¢ is a homomorphism
from (C,+,0) to (C\{0}, x,1). ¢ is onto because log exists (principal value).
We have

ker(¢) = {z € Cle* = 1} = {27ik € C|k € Z} = 2miZ
So from first isomorphism theorem we get (C/27iZ,+,0) = (C\{0}, x, 1).

Theorem. (Second isomorphism theorem)
Let H < G, K<G. Then

HK ={x=hkeGlhe H ke K}
is a subgroup of G, HN K < H, and

HK/K>~H/HNK
Proof. Let hk, k' € HK. Then
RE (hk) ™ =WEE*h™t = VR thk' kAt

h'h=' € H, and hk'k~'h~! € K since K<G. So W'k'(hk)™1 € HK. So HK < G.
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Then consider ¢ : H — G/K by h — hK. This is a homomorphism (composition
of H— G — G/K). Then

ker(¢p) ={h € HIhK =eK}=HNK
so H N K is normal in H by first isomorphism theorem. Also
im(¢) = {gK € G/K|gK = hK for some he€ H} = HK/K
So by first isomorphism theorem, H/H N K = HK/K as required. O

Theorem. (Subgroup correspondence)

Let K <« G. There is a bijection between subgroups of G/K and subgroups of G
that contain K by:

+—: L/K <G/K + K<L <G and

- U<G/K - {g€G|gK € U}.

The same maps give a bijection between normal subgroups of G/K and normal
subgroups of G that contain K.

Theorem. (Third isomorphism theorem)

Let K<L, L<G. Then (G/K)/(L/K) = G/L.

Proof. Let ¢ : G/K — G/L by gK — gL.

¢ is well-defined: if gK = ¢'K then g7'¢g’ € K < L. So gL = g(g~'¢')L = ¢'L.
¢ is clearly surjective, and ker(¢) = {gK € G/K|gL =eL <— g€ L} =L/K.
So by first isomorphism theorem, (G/K)/(L/K) = G/L. O
Definition. A group G is simple if its only normal subgroups are {e} and G.
Lemma. An abelian group is simple iff it is isomorphic to C), for prime p.
Proof. In an abelian group, every subgroup is normal. Now let g € G be non-
trivial and consider H = {...,g~!,e,g,...}. This is a subgroup of G, so a normal

subgroup of G. If G is simple, then since g is non-trivial, this must be equal to
G. So G is a cyclic group.

If G is infinite, then it is isomorphic to (Z,+,0). But 2Z < Z. So this is not
simple.

So G = C, for some n. If n = a-b for some a,b € Z and a,b # 1, then G
contains < ...,g7% e, g% ... >= ()} as a proper subgroup. Contradiction.

So n must be a prime number.

Finally, note that C,, for prime p is indeed simple: by Lagrange theorem any
subgroup of €}, must have order 1 or p. O
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1.2 Actions and Permutations

Theorem. Let G be a non-abelian simple group, and H < G a subgroup of
index n > 1. Then G is isomorphic to a subgroup of A,, for n > 5.

Proof. We let G act on X = G/H, giving ¢ : G — Sym(G/H). Then ker(¢) <G,
so as G is simple, either ker(¢) = G or ker(¢) = {e}. But

ker(¢) = () g 'Hg< H
geG

a proper subgroup of Gj; so the first case cannot occur. So ker(¢) = {e}.

By 1st isomorphism theorem,

G = G/{e} =2im(¢) = G < Sym(G/H) = S,

Apply 2nd isomorphism theorem to A, <S,, GX < S,. Then GX N A4,, «G¥,
GX/GXNA, =GXA,/A,. As GX =G issimple, GXNA,<GX,s0 GXNA, =
{e} or GX N A,, = {e}. But if the first case holds, then G¥ = G¥A,,/A,, <
Sn/Apn = Cy, contradicting GX =2 G being non-abelian. Hence GX N 4,, = G¥,
ie. GX < A,.

n > 5 because As, A3, A4 have no non-abelian simple subgroups.

Corollary. If G is non-abelian simple, H < G is of index n, then |G| | %‘
Definition. If G acts on X, the orbit of x € X is

G rz={y=gx*z € X|ge G}
and the stabiliser of x € X is

G, ={g9€Glgxz=12} <G

Theorem. (Orbit-stabiliser).
If G acts on X, then for any € X, there is a bijection between G -z and G/G,
by gxx — 9G4, gG, <+ y =g * x.

1.3 Conjugacy classes, centralisers and normalisers

There is an action of G on the set X =G viag*xz:=g-x-g~ L

This gives amap ¢ : G — Sym(G). Note ¢(g)(x-t) = g-x-t-g~+ = grg~lgtg™! =
o(g)(z) - d(g)(t), i.e. #(g) is a group homomorphism. Also it’s a bijection (in

Sym(G)), so it is an isomorphism.

Let Aut(G) = {f : G — G|f is a group isomoprhism } < Sym(G), called the
automorphisms of G.
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We have shown that ¢ : G — Sym(G) has image in Aut(G) < Sym(G).

Definition. The conjugacy class of x € G is G - x = Clg(x) = {gzg~t|g € G}.
The centraliser of x € G is G, = Cg(z) = {g € Glgzg™' =z < gz = zg}.
The centre of G is Z(G) = Gx = ker(¢) = {g € G|grg~! = aVzx € G}.

The normaliser of H < G is Ng(H) = {g € G|gHg™! = H}.

By Orbit-stabiliser theorem, there is a bijection between Clg(z) and G/Cq(z).
So if G is finite, then |Clg(z)| equals the index of Cg(z) < G which divides |G|.

Recall (from TA groups) that in S,
(i) everything can be written as a product of disjoint cycles;
(ii) permutations are conjugate iff they have the same cycle type.

Theorem. A, is simple for n > 5.

Proof. First, claim A,, is generated by 3—cycles.

Need to show that a product of two transposition is a product of 3—cycles. We
have (ab)(bc) = (abc), (ab)(cd) = (ach)(acd).

Let H < A,,. If H contains a 3—cycle, say (abc).

In S, there is a o so that (abc) = 071(123)0. If o € A, then (123) € H.
Otherwise, let 0/ = (45)0 € A,,. Then 0(123)c = (abc).

So all 3—cycles are in H if one of them is in H. In that case we know H = A,,.
So it is enough to show that any {e} # H < A4,, contains a 3—cycle.

Case 1: H contains o = (123...r)7 in disjoint cycle notation for some r > 4. Let
§ = (123) and consider 6~16~1¢d. This is in H. Evaluate it and we get

ot os = 7 (r...21)(132)(12...7)7(123)
= (r...21)(132)(12...r)(123)
=(23r)e H

is a 3—cycle.

Case 2: H contains o = (123)(456)7 in disjoint cycle notation. Let § = (124)
and calculate

o 16 od = (132)(465)(142)(123)(456)(124) = (12436)
So we’ve reduced to the first case.

Case 3: H contains o = (123)7, and 7 is a product of 2—cycles. Then o2 =
(132) € H.

Case 4: H contains o = (12)(34)7, and 7 is a product of 2—cycles. Let 6 = (123),
then
u=o"'5"tos = (12)(34)(132)(12)(34)(123) = (14)(23)
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Now let v = (152)u(125) = (13)(45). We have u-v = (14)(23)(13)(45) = (12345).
So we’ve reduced to the first case.

So H contains a 3—cycle.

1.4 p-groups

A finite group G is a p-group if |G| = p™ for some prime number p.

Theorem. If G is a finite p-group, then Z(G) # {e}.

Proof. The conjugacy classes partition G, and
|Cl(2)| = |G/Ca(2)| | |G
by Orbit-Stabilizer and Lagrange’s Theorem. So |Cl(x)]| is a power of p.

We know |G| is the sum of sizes of conjugacy classes. We can write |G| = number
of conjugacy classes of size 1 + size of all other conjugacy classes (which is
divisible by p). Since p | |G|, the number of conjugacy classes of size 1 is divisible
by p. In particular, |Cl(e)| = 1, so there is at least p of such conjugacy classes.

Now note that Z(G) consider all the elements that commutes with all the elements
in the group, i.e. they have conjugacy classes of size 1. So |Z(G)| > p. O

Corollary. A group of order p™, n > 1, is never simple.
Lemma. For any group G, if G/Z(G) is cyclic, then G is abelian.
Proof. Let the coset gZ(G) generate the cyclic group G/Z(G). Then every coset

is a of the form ¢"Z(G), r € Z. So every element of G is of the form ¢ - z for
z € Z(G). Now take

(972) (g"2)=g"g 22 =g g2 =g"2g"2
So G is abelian. O

Corollary. If |G| = p?, p is prime, then G is abelian.

Proof. We know {e} < Z(G) < G, so |Z(G)| = p or p%. If it’s p? then G = Z(G)
is abelian.
If |Z(G)| = p, then |G/Z(G)| = p. So G/Z(G) is cyclic. So G is abelian. O

Theorem. If |G| = p?, then G has a subgroup of order p® for any 0 < b < a.
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Proof. Prove by induction on a. If @ = 1 then done. For a > 1, have {e} < Z(G).
Let e # « € Z(G). Then « has order a power of p, so we can take some power
of p that has order p, say z. Let C' = (z), a normal subgroup of G (since this is
inside centre). Now G/C has order p®~!. By induction hypothesis, we may find
a subgroup H < G/C of order p’~!. Now by subgroup correspondence, this H
gives some L < G that contains C' (by H = L/C), and |L| = p°. O

1.5 Finite abelian groups

Theorem. If G is a finite abelian group, then
G =Cy4 X gy X ... x Cq,
with d7;+1|di for all 7.

We will prove this later, by considering an abelian group as a Z-module.

Example. If |G| = 8 and G is abelian, then G is either Cs, or Cy x Ca, or
CQ X CQ X CQ.

Lemma. (Chinese Remainder Theorem)

If n, m are coprime, then C,,,,, = C,, x Cp,.

Proof. Let g € Cy, have order n, h € Cy, has order m. Consider = (g, h) in
Cy, X Cypy. Clearly 2™ = (e, e).

Now if (e,e) = 2" = (¢",h"), then n | r and m | r. So nm | r. So the order of
is nm. So (z) = Chy. Then by size we get the desired result. O

Corollary. If G is a finite abelian group, then
G=Cph xChy x ... xCp,

with each n; a power of a prime number.

Proof. If d = p1a'...p,a” for distinct prime p;, the lemma shows
Ca = Cpiar X Cpyg2 X oo X Cpgr

Apply this to the theorem. O

1.6 Sylow’s Theorems

Theorem. (Sylow’s)

Let |G| = p* - m, with (p, m) = 1, where p is prime. Then

(i) The set Syl,(G) ={P < G| |P| = p} of Sylow p-subgroup is not empty.
(ii) All elements inf Syl,(G) are conjugate in G.

(iii) The number n, = |Syl,(G)| satisfies n +p =1 (mod p) and n, | |G| (ie.
n, | m).
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Lemma. If n, = 1, then the unique Sylow p-subgroup is normal in G.

Proof. If g € G, P < G the Sylow subgroup, then ¢g~! Pg is a subgroup of order
p®. But P is the only such subgroup. O

Note that this tells that, if G is simple, then n, # 1; or conversely, if n, =1 for
some p, then G is not simple.

Example. Let |G| =96 =2°-3. Sony =1 (mod 2) and ny | 3. So ny =1 or 3.
Also, ng =1 (mod 3) and ns3 | 32. So n3 = 1,4, 16.

G acts on the set Syl,(G) by conjugation. So (ii) of the theorem says that
this action has 1 orbit. The stabilizer of P € Syl,(G), i.e. the normalizer
Ng(P) < @, is of index n, = |Syl,(G)].

Corollary. If G is non-abelian simple, then
(np)!
G .

G|

and n, > 5.

Proof. Ng(P) has index n,. So apply the general result about subgroups of
non-abelian simple groups (see section 1.2). O

Now in the above example, |G| 1 %, so the group G cannot be non-abelian simple.
Also it cannot be abelian simple as 96 is not a prime.

Example. Suppose G is a simple group of order 132 = 22 x 3 x 11.

We know n1; =1 (mod 11) and n31|12. As G is simple we can’t have ny; = 1,
SO N1 = 12.

Each Sylow 11-subgroup has order 11, so is isomorphic to Ci;, so contains
10 = (11 — 1) elements of order 11. Such subgroups can only intersect in the
identity element, so we have 12410 = 120 elements of order 11. We know ng =1
(mod 3) and n3|44, so ng = 1,4 or 22 but similarly n3 # 1. If ng = 4 then we
need |G| | 4| which is impossible. So nz = 22. But then by counting the number
of elements we get a contradiction.

Proof of Sylow’s Theorems. Let |G| = p" - m.
i) Let © be the set of subsets of G of order p™, and let G act on Q via g *

{gl, "’vgp"} = {gglv "'79917"}'
Let e C Q be an orbit for this action. If {g1, ..., gy } = ¢, then

(991 ") * {91, 9pn } =€ = {9,991 "92, -, 997 "gpn }

So for any g € G, there is an element of ¢ which contains g. So |e| > ﬁl m.
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If there is some orbit ¢ with |e| = m, then the stabilizer G, has order % =

p mo =p", so G, is a Sylow p—subgroup. To show this happens, we must show

that it is not possible for every orbit of G' acting on 2 to have size > m.

By orbit-stabilizer, for any orbit ¢, |e||p™ - m, so if |¢| > m, then p||e|. So if all
orbits of G acting on 2 has size > m, then p divides all of them, so pl||Q|.

Let’s calculate |€2|. We have

o= ()T

The largest power of p dividing p"m = j is the same as the largest power of p
dividing j, which is the same as the largest power of p dividing p™ = j. So || is
not divisible by p.

???

ii)Let’s show something stronger: if p € Syl,(G) and @ is a p—subgroup, then
there isa g € G s.t. g7'Qg € P.

Let G act on G/P by g+ gP = qgP. By orbit-stabilizer, the size of an orbit divides
|Q| = p™, so is either 1 or divisible by p.

On the other hand, |G/P| = % = m is not divisible by p. So ther must be an

orbit of size 1, say {g?}, i.e. for every ¢ € Q, qg” = g* i.e. g~'qg € P Vq € Q,
ie g lQg < P.

(iii) By (ii), G acts on Syl,(G) by conjugation with one orbit, so by orbit-
stabilizer, n, = |Syl,(G)| | |G|, which is the second part of (ii).

Example. Consider GLo(Z/p). It has order (p*> —1)(p? —p) =p(p+1)(p — 1)%.
Let I be an odd prime dividing p — 1 once only. Then [t p. But also I {p+ 1. So
12 is the largest power of [ dividing |G'Lo(Z/p)|, i.e. there is at least a subgroup
of order 2. We have

(Z/p)* ={z € Z/p|3g € Z/p st. zy =1€ Z/p}
— {z € Z/pls £0}

has size p — 1. As a group under multiplication, (Z/p)* = C,_1. So there is a
subgroup C; < C,_1, i.e. we can find a 1 # z € (Z/p)* so that 2! = 1.

Now let
H = {(0 b) | a,b € (Z/p)™* has order l} ~ (O x O
< GLy(Z/p)

is a Sylow [—subgroup (order ?).

Example. Consider

SLy(Z/p) = ker(det : GLo(Z/p) — (Z,)™*}
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The determinant homomorphism is onto, so SL2(Z/p) < GL2(Z/p) has index
(p—1). So |SLy(Z/p)| = (p— Dp(p + 1)
Now consider

PSLy(Z/p) := SLy2(Z/p)/ { (6\ ?\) € SLz(Z/P)}

It (6\ g\) € SLy(Z/p) then \2 =1 € (Z/p)X =2 C,_;. Aslong as p > 3, there

are two such A, +1 and —1. So |[PSLy(Z/p)| = 3(p — )p(p + 1).
Let (Z/p)oo = Z/p U {o0}. Then PSLy(Z/p) acts on (Z/p)ss by Mébius maps:

a b *Z__aerb
c d T ez+d

with the usual convention that if cz + d = 0 then we get co.

Example. Let p = 5, then this action gives a homomorphism ¢ : PSLy(Z/p) —
Sym ((Z/5)00) = Se.

We have |PSLy(Z/5)] = 3 -4-5-6 = 60.

Claim. ¢ is injective.

Proof. If ?jis =2Vz € (Z/p)so, set z =0 we get b = 0. Set z = co we get

¢=0.Set z =1 we get a = d. So {i Z} = {(1) (ﬂ € PSL,y(Z/p). O

Claim. ¢ lands in Ag < Sg.

Proof. Consider the composition

Y : PSLa(Z/5) — Sym((Z/5)s0) =2 Se — {£1}

by ¢ and sgn respectively. We need to show that (Ccl Z) = +1.

We know that elements of odd order in PSL2(Z/5) have to be sent to +1.

Note that H = {B )\01} , [_)(\)1 g\} € PSLy(Z/5) | X € (Z/5)X} has order

4 (note that A\ and —\ represent the same equivalence class as we are in PSL, so
there are 2 of each kind), so is a Sylow 2—subgroup of PSLy(Z/5). Any element
of order 2 or 4 is conjugate to an element in H. We’ll show that ¢(H) = {+1}.

H is generated by B _02} , [_01 (1)] Now consider

b 5
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acting on (Z/5)c. This sends

so is an even permutation. Then

KNl

sends

@)

is also even. So they are both in Ag.

12
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2 Rings

In this course we only consider commutative rings with a multiplicative identity.
Many of the things we are going to prove in this course will not hold without
these two properties.

2.1 Definitions

Definition. A ring is a quintuple (R, +,-,0g,1g) s.t.

(R1) (R,+,0g) is an abelian group;

(R2) The operation ——: RX R — R is associative, and satisfies 1g-r =r = r-1g.
R3)r-(ri4+mr2)=7r-r1+r-ro,and (ry +r2) - =ry -7+ re-r (Distributivity).

A ring is commutative if in addition a-b=10-a Va,b € R.

From now on every ring we discuss will by default be commutative and has a
multiplicative identity.

Definition. If (R,+,,0r,1r) is a ring ans S C R is a subset, then it is called
a subring if Or,1r € S and +, - make S into a ring in its own right.

Example. We have Z < Q <R < C as rings with the usual 0,1, +, -.

Example. Z[i] = {a +ib € C | a,b € Z} < C is the subring called Gaussian
ntegers.

Example. Q[v2] = {a+Vv2-b€R|a,be Q} <R is a subring.
Definition. An element r € R is a unit if there is a s € R s.t. sr = 1g.

Note that this depends not only on the element but only on which ring we are
talking about: 2 € Z is not a unit, but 2 € Q is.

If every » € R with r # Og is a unit, then R is called a field.

Notation. If z € R, write —x € R for the inverse of z in (R, +,0r). We will
write y —x =y + (—x).

Example. Og + 0 =0g, sor-(0g + 0g) =7 -0g, i.e. r-Og +7-0g =7 0g,
sor-0p =0g. So if R # {0}, then Or # 1g, and Op is never a unit.

However, ({0}, +,+,0,0) is a valid ring.

Example. If R, S are rings, then R x .S has the state of a ring via componentwise
addition and multiplication, with 1 = (1g,1g), 0 = (Og, Os.

Note that in this ring, e; = (1g,0g), e2 = (Og, 15, then e? = e; and €3 = es,
and e +eg = 1.

Example. Let R be a ring. A polynomial f over R is an expression

f=ao+a X +aX?>+ ... +a, X"



2 RINGS 14

with a; € R. X' is just a symbol.
We will consider f and
ap+ a1 X + ... +ap, X" +0p - X"

as equal. The degree of f is the largest n s.t. a, # 0.
If in addition, a,, = 1g, then we say f is monic.
We write R[X] for the set of all polynomials over R.

If g="by+ ...+ b, X™, then we define addition and multiplication by the usual
way:

f+g9=> (ai+b)X’

=0

IEDY (2;: ajb,»_j> X

Now consider R as a subring of R[X], given by the polynomials of degree 0. In
particular, 1 € R gives the multiplicative identity element of R[X].

Example. Write R[[z]] for the ring of formal power series, i.e.
f = Qg +a1X+a2X2 +

with the same addition and multiplication.

Consider Z/2[X] and an element f = X + X?2. Then
f(0)=0+0=0,f(1)=1+1=0
But definitely f # 0. So we see the reason why we don’t think f as functions
despite that they do give functions. They are just elements in a particular ring.
Example. The Laurent polynomials R[X, X 1] is the set of
F=Yax
i€
s.t. only finitely many a,; are non-zero.
Example. The ring of Laurent series are those expressions
= Z a; X
i€’
with only finitely many ¢ < 0 s.t. a; # 0 (i.e. formal power series in the positive

part and polynomial in the negative part). This is to make the sum in each
coeflicient a finite sum, as we didn’t even define infinite sums in rings.

Example. If R is a ring and X is a set, the set RX of all functions f: X — R
is a ring, with operations
(f +9)(X) = fF(X) + 9(X),
(fo)(X) = f(X) - g(X).
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The multiplicative identity element is the function 1(X) = 1g for all X, and the
same for the zero element.

Observe R® D set of continuous f : R — R D polynomials R — R = R[X]. So
R[X] € RR.

2.2 Homomorphisms, ideals, quotients, and isomorphisms

Definition. A function ¢ : R — S between rings is a homomorphism if

(H1) ¢(r1 +72) = ¢(r1) + ¢(r2), i.e. ¢ is a group homomorphism between the
additive groups of R and S;

(H2) ¢(r17m2)¢(r1)d(r2);

(H3) ¢(1r) = 1s.

If in addition, ¢ is a bijection, then we say it is an isomorphism.
The kernel of ¢ : R — S is
ker(¢) = {r € R|¢(r) = 0}
Lemma. ¢: R — S is injective if and only if ker(¢) = {0}.
Proof. Note that ¢ : (R,+,0r) — (S,+,0s) is a group homomorphism, and its

kernel as a group homomorphism is also ker(¢). So by theorems in groups we
get the desired result. O

Definition. A subset I C R is an ideal, written I < R, if

(11) I is a subgroup of (R, +);

(I12) If x € I, r € R, then z - r € I (strong multiplicative closure).
We say I < R is proper if I # R.

Lemma. If ¢ : R — S is a homomorphism, then ker(¢) < R.

Proof. (I1) holds for ker(¢) since ¢ is a group homomorphism.
Now let x € ker(¢), r € R. Then
o(r - 2) = B(r) - 6(x) = 6(r) - 05 = O
So 7 - x € ker(¢). O
Example. If I <R and 1 € I, then for any r € R, we have
r=r-1¢el,
so I = R. In short, proper ideals never include 1, so are never subrings.

Example. If R is a field, then {0} and R are the only ideals. This is reversible:
If {0} and R are the only ideals, then R is a field.
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Example. In the ring 7Z, all ideals are of the form nZ for some n € Z, where

nZ={...,—2n,—n,0,n,2n, ...}

Proof. nZ is certainly an ideal. Let I <Z be an ideal. Let n € I be the smallest
positive element. Then nZ C I. If this is not an equality, choose m € I\nZ.
Then m =n-q+r for some 0 <r <n—1. If r =0 then m € I, a contradiction.
So

r=m-—-n-qg<n

is in the ideal I. Contradiction. O
Definition. For an element a € R, write
(a) ={a-r|r € R}

the ideal generated by a. More generally, for a list a1, ..., as, write

(a1,...,as) = {Zaﬂ”ﬂ?‘i € R}

which somewhat resembles the linear combinations in a vector space.

Even more generally, if A C R is a subset, then the ideal generated by A is

(A4) = {Z a-rq|re € R, only finitely many r, # 0} :

a€A

since we have no definition of infinite sums in rings.

If an ideal I < R is of the form (a), then we say that I is a principal ideal.

Example. In Z we have
nZ = (n)<Z

is principal.

Example. In C[X], the polynomials with constant coefficient 0 forms an ideal,
which is just (X) (check). This is also principal.

Proposition. Let I<R be an ideal. Define the quotient ring R/I to be the set of
cosets r + I (i.e. (R,+,0)/normal subgroup I), with addition and multiplication
given by

oe(ri+I)+(ro+1)=r1+ra+1,

oe(ri+1)+(ro+1)=rira+1,

and OR/I = 0R+I7 1R/I = 1R+I

This is a ring, and the quotient map R — R/I by r — r + I is a ring homomor-
phism.

Proof. We already know that (R/I,+,0) is an abelian group. And addition
as described above is well-defined. If 1 + I =7r} + I, ro + I = 74, + I, then
rm—ri=a €I, rh—rg=as€l. So

!l
T™Tre = (7“1 + al)(Tz + a2) =7riro +r1a2 + a1y +aj1a2 =rire +a
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for some a € I, i.e. rirh, + 1 =rira + I. So multiplication is well-defined. The
ring axioms for R/I then follow from those of R. O

Example. nZ < Z, so have a ring Z/nZ. This has elements 0 + nZ, 1 + nZ,2 +

nZ,...,(n — 1) + nZ, and addition and multiplication are modular arithmetic
(mod n).

Example. (X)<C[X], so we have a ring C[X]/(X). Then
ap+ a1 X +asX? 4+ ...+ an X" + (X) = ap + (X).
If ag + (X) = bo + (X), then ag — bg € (X). So Xl|ag — by, i.e. ag = bp.

So consider
¢:CX]/(X)+— C

a+ (X)+— a
is surjective and injective. So ¢ is a bijection.
Observe that ¢ is a ring homomorphism. The inverse is f + (X) — f(0).

Proposition. (Euclidean algorithm for polynomials)
Let F be a field and f, g € F[X], then we may write

f=9-q+r
with deg(r) < deg(g).
Proof. Let

deg(f)=n,s0 f =ap+ a1 X + ... + ap, X" with a, # 0;
deg(g) =m, so g =bg + 01 X + ... + b, X™ with b, # 0.

Ifn<m,let q=0andr=f.

Suppose n > m, and proceed by induction on n, Let
fi=f—g X" agby)

we can do this because F' is a field, so b, has an inverse.

This has degree smaller than n.

If n = m, then f = gX" "a,b,! + fi where deg(f1) <n =m.

If n > m, by induction on degree, we have f1 = g - ¢1 + r with deg(r) < deg(g).
So f=gX""a,+bl+g-q +7r=g(X""™b, !+ q)+r as required. O

Example. Consider (X2 + 1) <R[X], and R = R[X]/(X? + 1). Elements of R
are of the form f+ (X2 +1). By Euclidean algorithm we have f = ¢-(X2+1)+7r
with deg(r) < 2. So f+ (X?+1)=r+ (X?+1). So every coset is represented
by a polynomial r of degree at most 1.

Ifa; + 01 X + (X2 +1) = as + b X + (X2 + 1), then

X2 +1|(ag + b1X) — (az + by X)
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But by degree we know that (a3 + b1X) — (az + b2 X) = 0. So take
¢:R[z]/(X*+1) = C
a+bX + (X?+1) — a+bi
This is a bijection. It sends addition to addition, and multiplication satisfies
P((a+bX + (X?+1)) - (c+dX + (X*+1)))
= p(ac + (be + ad) X +bdX? + (X? + 1))
= ¢(ac+ (be+ ad) X + bd(—1) + bd(X* + 1) + (X% + 1))
= ¢((ac — bd) + (be + ad) X + (X? + 1))
= (ac — bd) + (bc + ad)i
= (a +1b)(c+ id)
So ¢ is a homomorphism. So R[z]/(X? + 1) = C.

We also have Q[z]/(X? —2) = Q[v2] C R.

Theorem. (First isomorphism theorem)
Let ¢ : R — S be a ring homomorphism. Then ker(¢) < R, im(¢) < .S, and
R/ ker(¢) =im(¢) by r + ker(¢) — o(r).

Theorem. (Second isomorphism theorem)
Let RC S, J<S. Then RNJ<R, (R+J)/J ={r+Jre R} <S/J, and
R/RNJ=(R+J)/J.

Theorem. (Subring correspondence)

We have a bijection between subrings of R/I and subrings of R containing I by:
S/IIT<R/I+I<S<R

L <R/I — {r € Rlr+1I € L}, and the same map gievs a bijection between
ideals of R/I and ideals of R containing I by

J/IAR/I + I<1J<R.

Theorem. (Third isomorphism theorem)
Let I,J<R, I CJ. Then J/I<R/I and (R/I)/(J/I)= R/J.

Example. Consider the homomorphism ¢ : R[X] — C by substituting in X =,
which is onto. We know

ker(¢) = {f € R[z]| (i) = 0} = (X* +1)

because real polynomials with 7 as a root also have —i as a root. So are divisible
by (X —i)(X +4) = (X2 +1). Then by first isomorphism theorem,

RIX]/(X*+1)=C
(Compare with the previous proof).
Definition. For any ring R, there is a unique homomorphism
t:7Z—R
1—1pg
n>0—>1g+1gr+ ...+ 1g (n times)
n<0— —(1g+1g+ ...+ 1g) (—n times)
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Note that ker(:) < Z, so ker(i) = nZ for some n > 0. This n > 0 is called the
characteristic of the ring R.

Example. Z < Q < R < C all have characteristic 0, while Z/n has characteristic
n.

2.3 Integral domains, field of fractions, maximal and prime
ideal

One thing to remember:

Field = ED — PID — UFD = ID.

The interesting bits start here.

Definition. A non-zero ring R is called an integral domain (ID) if for all a,b € R,
a-b=0 = a=0o0rb=0.

We call x a zero divisor in R if x # 0 but Jy # 0 s.t. zy = 0.

Example. All fields are integral domains. If zy = 0 with y # 0, then zyy~! =0
ie. x = 0.

A subring of an integral domain is an integral domain, so Z < Q and Z[i]| < C
are integral domains.

Definition. A ring R is a principal ideal domain (PID) if it is an integral
domain and every ideal is principal.
For example, Z is a principal ideal domain.

Lemma. A finite integral domain is a field.

Proof. Let a # 0 € R, and consider

a-—:R—R
b— ab
This is a homomorphism of abelian groups and its kernel is {b € R|ab = 0} = {0}.

So a - — is injective. But R is finite. So a - — is bijective. In particular, 3b € R
s.t. ab=1. So R is a field. O

Lemma. Let R be an integral domain, then R[X] is also an integral domain.
Proof. Let f =" ja;X"and a, #0, g=>_ ", b:; X" and b, # 0 be non-zero

polynomials. Then the largest power of X in fg is X"*™ and its coefficient is
anbm # 0 as Ris an ID. So fg # 0. O
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Tterating this, we have
R[Xy, ..., Xn] = ((R[X1])[X2])-.[Xn])
is an integral domain.

Theorem. Let R be an ID. There is a field of fractions F' of R with the following
properties:

(i) F is a field;

(ii) R < F;

(iii) every element of F is of the form a-b~! for a,b < R < F.

Proof. Consider
S ={(a,b) € R x R|b# 0}

with the equivalence relation (a,b) ~ (¢,d) <= ad = bc € R. This is reflexive
and symmetric. For transitivity, if

(¢,d) ~ (e, f)

Then (ad)f = (be)f = b(cf) = bled) = d(af —be) = 0. But d # 0. So
af —be=0.

Let F' = S/ ~. Write [(a,b)] = § and define

_ad+be

+

<
d bd
ab

e

a. ¢
b d cod

==

andO:%,l:

If  #0thena-1#0-b,ie. a#0. ThengEF,SO%'g:l. So 7 has an
inverse, so F' is a field.

We make R< F by ¢: R— Fbyr— 1. O

Example. The field of fractions of Z is Q, and that of C[z] is the rational
polynomial fractions in z.

Note: the ring {0} is not afield.

Lemma. A (non-zero) ring is a field iff its only ideals are {0} and R.

Proof. If I<4R is a non-zero ideal, then it contains a # 0. But an ideal containing
a unit must be the whole ring. On the other hand, let z # 0 € R, Then (z) must
be R, as it is not the zero ideal. So Jy € R s.t. xy = 1g. So X is a unit. O

Definition. An ideal I <R is mazimal if there is no proper ideal which properly
contains I.

Lemma. An ideal T is maximal iff R/I is a field.
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Proof. R/I is a field <= I/I and R/I are the only ideals in R/] <=
I, R trianglele ft are the only ideals containing I by ideal correspondence. [

Definition. An ideal <R is prime if I is proper, and if a,b € R are s.t. a-b € I,
thenaelorbel.

Example. The ideal nZ<Z is prime if and only if n is zero and a prime number:
if p is prime and a - b € pZ, then pla - b, so pla or p|b, i.e. a € pZ or b € pZ.

Conversely, if n = wv is composite, u - v € nZ but u,v & nZ.

Lemma. I <R is prime iff R/I is an integral domain.
Note that this shows that every maximal ideal is prime since fields are integral
domains.

Proof. Suppose I is prime. Let a4+ I,b+1 € R/I bes.t. (a+1)(b+1)=0,ie.
ab+1=0,s0abe . But I is prime,soa € lorbel. Soa+I=0+1 or
b+ I =0+ 1I is the zero element in R/I. So R/I is an integral domain.

For the other direction, suppose R/I is an integral domain. Let ab € I. Then
ab+I=0,s0 (a+1)(b+1)=0.Soa+I=0+ITorb+I=0+1Iie a€lor
bel. O

Lemma. If R is an integral domain, then its characteristic is 0 or a prime
number.

Proof. Let +: Z — R with 1 — 1. Consider ker(¢) = nZ. By 1st isomorphism
theorem, Z/nZ = im(¢) < R as a subring of an integral domain is again an
integral domain, Z/nZ is an integral domain, so nZ < Z is prime. So n is zero or
a prime number. O

2.4 Factorisation in integral domains

Suppose throughout this section that R is an integral domain.

Definition. 1) An element a € R is a unit if there is b € R s.t. ab = 1. Equiva-
lently, (a) = R.

2) a divides b if there is ¢ € R s.t. b= a - c. Equivalently, (b) C (a).

3) a,b € R are associates if ¢ = b- ¢ with ¢ a unit. Equivalently, (a) = (b), or a|b
and bla.

4) a € R is irreducible if it is not 0, not a unit, and if a = 2 - y then x or y is a
unit.

5) a € R is prime if it is not 0, not a unit, and when a|z - y then a|x or a|y.

Note that 2 € Z is prime, but 2 € Q is not.
2z € Qlx] is irreducible, 2x € Z[z] is not irreducible.

Lemma. (a) is a prime ideal in R <= r =0 or r is prime in R.
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Proof. 1) let (r) be a prime, r # 0. As (r) # R, r is not a unit.

Suppose r|a-b. Then a-b € (r), but (r) is prime. So a € (r) or b € (r). So r|a
or r|b. So r is prime in R.

2) if r = 0 then (0) is a prime ideal since R is an integral domain.

Now let 7 # 0 and be prime in R.

Let ab € (r). Then r|ab. So r|a or r|b. So a € (r) or b € (r). So (r) is a prime
ideal in R. O

Lemma. if r € R is prime, then it is irreducible.

Proof. let r € R be prime, and suppose 7 = a - b.

As r is prime, r|a or r|b.

Suppose rla. Soa=r-c. Thenr=7r-c-b.

As R is an integral domain,

rc-b—1)=0 = c-b=1.

So b is a unit. So r is irreducible. O

Example. Let R = Z[v/=5] = {a + by/=5la-be Z} C C.
C is a field and R is a subring, so R is an integral domain.
Consider the "norm”:

N:R—>7Z2>0
a4+ bv/=5 = a® 4 5b
z— 27 = |2)°.

This satisfies N (zw) = N (2) - N (w).
Ifr-s=1then1=N(1)=N(r-s)=N(r)-N(s).

So N (s) = N (r) = 1. So any unit has normal 1.

i.e. a®2 +5b> = 1. Then a = £1,b = 0: only 1 € R are units.

Claim: 2 € R is irreducible:

Suppose 2 = ab. Then 4 = N (a) N (b).

Note that nothing in R has norm 2. So WLOG N (a) =1,N (b) =4. Soais a
unit. So 2 is irreducible.

Similarly 3,1+ /=5,1 — /=5 are irreducible (no r with N (r) = 3).

Note that (14 +v/=5) (1—+/~=5)=6=2-3.

Claim: 2 does not divide 1 ++/—5 = 2 is not prime:

if 2|1 + v/=5, then N (2) [N (14 +/=5), i.e. 4]6, contradiction.

Lessons: 1) irreducible doesn’t imply prime in general.

2) (1 + Jj5) (1 — Jj5) = 2. 3. So factorisation into irreducibles might not be

unique.

Definition. an integral domain R is a Fuclidean domain(ED) if there is a
function ¢ : R\ {0} — Z > 0, a "Euclidean function”, such that:

1) ¢ (a-b) > ¢ (b) for all a,b # 0;

2) if a,b € R with b # 0, there are ¢, € R s.t. a="b-q+r, such that r =0 or
(1) < p(b) (r is "strictly smaller than” b).

Example. 1) Z is a Euclidean domain with ¢ (n) = |n|.

2) Flz] with F a field is a Euclidean domain with ¢ (f) = deg (f).
3) Z[i] = R is Euclidean domain, with ¢ (z) = N (2) = |2|* = 2%:
i) ¢ (zw) = ¢ (2) p (W) 2 ¢ (2), as ¢ (w) € ZT for w # 0;
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ii) let a,b € Z[i]. Consider ¢ € C.

We know that 3¢ € Z[i] s.t. [ —q| < 1jie. ¢ =q+cwith |c| < 1.
Then take r =b-¢c,soa=b-q+b-c=b-q+r.

r =a —bq, so r is in the ring Z[i]; and ¢ (r) = N (be) = N (b) N (¢) < N (b) =
¢ (b) since N (c) < 1.

Proposition. (ED = PID)
if R is a Euclidean domain, then it is a principal ideal domain.

Proof. Let R have Euclidean function ¢ : R\ {0} — Z > 0. Let I <R be non-zero.
Let b € I\ {0} be an element with ¢ (b) minimal.

Then for a € I, write a = bg+r with r =0, or ¢ (r) < ¢ (b). But r =a—bqg € I,
so we can’t have ¢ (1) < ¢ (b). So r = 0.

Thus a € (b). Since a is arbitrary, I C (b). But (b) € I as well, so I = (b). So R
is a principal ideal domain. O

Example. Z,F[X](F field) are Principal ideal domains.

Z[i] is a PID. In Z[X], (2,2) <Z[X] is not a principal ideal.

Otherwise suppose (2,x) = (f), then 2 = f - g for some g. Then f has to have
degree zero, so a constant, so f £ lor + 2.

If f = £1 a unit, then (f) = Z[z], but 1 ¢ (2,z). Contradiction. If f = £2,
x € (2,z) = (f) so £2|x, a contradiction.

Example. Let A € M, «,, (F) be an n X n matrix over a field F.
1= {f € FIX]|f (4) = 0}.
Itf-geI(f+9)(A) = f (4) +
It} € 1,9 € FIX] then (f-g) (4) = / (A)
So I is an ideal.

So F[X] is a PID, have I = (m) for some m € F[X].

Suppose f € F[X] s.t. f(A) =0. Then f € I so f =m-g. So m is the minimal
polynomial of A.

g(A)=0+0=0.
.g =

(A) =0

Definition. An integral domain is a unique factorization domain (UFD) if:

1) every non-unit may be written as a product of irreducible elements;

2) if p1p2...pn = q192..-Gm With p;, ¢; irreducible, then n = m, and they can be
reordered such that p; is an associate of g;. (they generate the same ideal)

Goal: want to show that PID = UFD.

Lemma. Let R be a PID. If p € R is irreducible, then it is prime.
(prime = irreducible in any integral domain)

Proof. Let p € R be irreducible. Suppose p|a - b. Suppose p 1 a.
Consider the ideal (p,a) < R, a PID so (p,a) = (d) for some d € R.
So d|p,so p = q1 - d for some ¢.

We must have ¢; a unit or d a unit.

If ¢1 a unit then d = qfl - p divides a. So a = ¢; - p - =, contradiction.
Thus d is a unit, so (p,a) = (d) = R.
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So we have 1, =v - p+ s-a for some r,s € R.
Sob=r-p-b+s-a-b. So plb. O

Lemma. Let R be a PID, let Iy € I € ... be a chain of ideals. Then there is a
N € Ns.t. I, = I,4+1Vn > N.(this is called the ascending chain condition(ACC),
a ring satisfying this condition is called Noetherian.)

Proof. Let I = U I,, again an ideal. As R is a PID, I = (a) for some a € R.
Thisa € I = U;’L":Otfm so a € I,, for some n.

Thus (a) < I, < I = (a).

So they are all equal. So I,, = (a) =1, so I,, = INVn > N. O

Proposition. PID = UFD.

Proof. 1) Need to show any r € R is a product of irreducibles.

Let r € R. If r is irreducible then we are done.

Suppose not, then r = r1s; with 71, s; both non-units.

If both 1, s1 are reducible then we are done. Suppose not, WLOG write r; = roso

with r9, s5 non-units.

Continue in this way. If the process doesn’t end, (r) < (r1) < ... < (ry,) < ...

So by the ACC property, (r,) = (rn41) = ... for some n.

So 1y = Tpa1 - Snt1, and (1) = (Tpe1) = Spy1 is a unit. Contradiction.

2) Let p1pa...pn = q1¢2...gn With p;, g; irreducible.

So p1]¢1---Gn. In a PID, irreducible <= prime. So p; divides some g;, reorder

to suppose p1|q1. So g1 = p1 - a. But as ¢ is irreducible, a must be a unit. So

prandq; are associates.

Cancelling p; gives:

p2ps...pn = (agz) gs...q, and we continue.

This also shows n = m, else if n = m + k then get px41...p, = 1 a contradiction.
O

Definition. d is a greatest common divisor of ay, as, ..., a, if d|a; for all 4, and
if d’|a; for all ¢ then d’|d.

Lemma. If R is a UFD then the ged exists, and is unique up to associates.

Proof. Every a is a product of irreducibles, so let pi,p2, ..., pn be a list of all
the irredcibles which are factors of a;, none of them is associate of each other.
Write a; = uiH;’;lp?” for u; units and n;; € N.

Let m)j = min; (n;;) and d = H;”zlp;nj. As m; < n;;Vi, dla; for all 4.

If d'|a; Vi, let d' = oI py’.

Then we must have ¢; < n;;Vi so t; < m;Vj. Then d'|d.

2.5 Factorisation in polynomial rings

For F a field, we know F'[z] is a Euclidean Domain(ED), so a PID, so a UFD. So
1) I<«F[z] = I=(f).
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2) f € F[z] irreducible <= f prime.

3) Let f € F[z] be irreducible, and (f) < J < F[z]. Then J = (g) and (f) C (g)
so f =g-h. But f is irreducible, so g or h is a unit.

If ¢ is a unit, then (g) = Flx];

If h is a unit, then (f) = (g).

So (f) is a maximal ideal.

4) (f) prime ideal = f prime impliesf reducible = (f) is maximal.

So in F[x], prime ideals are the same as maximal ideals.

5) f is irreducible if and only if F[z]/ (f) is a field.

Definition. Let R be a UFD and f = ag+a1 X +...+a,X™ € R[x] with a,, # 0.
Let the content c¢(f) of f is the ged of all the coefficients in R, unique up to
associates. Say f is primitive if ¢ (f) is a unit, i.e. the a; are coprime.

Lemma. (Gauss’) Let R be a UFD, f € R[z] be a primitive polynomial. Then
f is irreducible in R[z] <= f is irreducible in F[z], where F is the field of
fractions of R.

Example. Consider f = 23 + 2 + 1 € Z[x]. This has content 1 so is primitive.
Suppose f is reducible in Q[z]. Then by Gauss’ lemma f is reducible in Zx]
too, so 23 +x + 1= g- h for g,h € Z[z], both g and h are not units. Neither g
nor h can be constant, so they both have degree at least 1. So WLOG suppose
g has degree 1 and h as degree 2.

Sog=by+bz, h=co+ciz+ci2.

Multiplying them gives bocyg = 1, coby = 1 so by and by are both £1. So g is
l4+zorl—xor —1+xor —1—uz,sohas +1 as a root. But f doesn’t have £1
as a root. Contradiction.

Note that from this we can know that f has not no root in Q.

Lemma. Let R be a UFD. If f, g € R[x] are primitive, then f - g is primitive
too (Note that we don’t know whether R[z] is a UFD or not).

Proof. Let f =ag+ ayx + ... + apx™ with a, # 0,

g=>by+bix+ ...+ bypx™ with b, # 0 be both primitive.

Suppose f - g is not primitive. Then ¢ (fg) is not a unit, so let p be an irreducible
which divides ¢ (fg).

By assumption ¢ (f) and ¢ (g) are units, so pfc(f) and ptc(g).

Suppose plag, plai, ..., plax—1, but pt ax;

p|b03"'5p|bl—1;but p Jf bl~

Look at coefficient of ¥t in f - ¢:

v+ app1bi—1 +apb +ag—1bj41 + ... = Zi+j:k+l agb;.

As ple(fg), we have p[ 3, ;. aib;.

We see that the only term that might not be divisible by p is ab;.

So plagb;. p is irreducible (so prime), so p|a, or pp|l. Contradiction.

So f - g is primitive. O

Corollary. let R be a UFD. Then for f,g € R[z] we have that ¢(f - g) is an
associate of ¢ (f)c(g).
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Proof. We can always write f = ¢ (f) f1,9 = c(g) g1 with f1, g1 being primitive.
Then f-g=c(f)c(g) (f1-g1)- Soc(f)c(g) is a ged of coefficients f - g, so is
¢(fg) (up to associates). O

Proof. (Gauss’ lemma)
We will show that a primitive f € R[z] is reducible in R[x] <= it is reducible
in Flz].
1) Let f = g - h be a product in R[x], g, h not units. As f is primitive, so are g
and h. So both have degree at least 1.
So g, h are not units in F[z] either, so f is reducible in F[x].
2) Let f =g¢g-hin F[z], g and h not units. So g and h have degree at least 1.
We can find a,b € Rs.t. a-g € R[z] and b- h € R[z] (clear the denominators).
Thena-b- f=(a-g)(b-h) is a factorisation in Rx].
Let (a-g) =c(a-g) g1 with g; primitive, (b-h) = ¢ (b- h)-hy with hq primitive.
So
a-b=c(a-b-f)
=c((a-g)(b-h))
=u-c(a-g)-c(b-h)

by the previous corollary, where v € R is a unit.
But alsoa-b-f=c(a-g)-c(b-h)-g1-h.
So cancelling a - b gives f = u~'g1hy € R[z], so f is reducible in R[z]. O

Proposition. Let R be a UFD, g € R[z] be primitive.

Let J = (g) < R[z], I = (g9) < Flx].

Then J = I N R[z].

(More plainly, if f = ¢g-h € R[x] with h € F[z] then f = g - k' with A’ € R[z].

Proof. Certainly J C I'N R[x]. Let f € INR[x], so f = ¢g-h with h € F[z].
Choose b € R s.t. b-h € R[z] (clear denominators).

Then b- f =g - (bh) € R|x].

Let (b-h) =c(b-h)-hy for hy primitive. Then

b-f=c(-h)-g-hy. Soc(bf)=wu-c(bh) for u a unit since g - hy is primitive.
But ¢(b- f) =b-c(f). So blc(bh).

c(bh)=b-ceR.

Sob-f=10b-cghy, cancelling b gives f = g (chy). So g divides f in R[x]. O

Theorem. If R is a UFD, then R[z] is a UFD.

Proof. Let f € R[x]. We can write f = c(f) - f1 with f; primitive.

Firstly, As R is a UFD, we may factor ¢ (f) = p1p2...pn for p; € R irreducible,
(so also irreducible in R[z]).

If f1 is not irreducible, write f; = f3f3 with fo and f3 both not units, so fo and
f3 must both have non-zero degree(since f; is primitive, they can’t be constant).
Also deg (f2) ,deg (f3) < deg (f1).

If fo, f3 are irreducible then done. Else continue factoring. At each stage the
degree of factors strictly decreases, so we must finish: f; = ¢1¢2...g,, with ¢;
irreducible.

So f = pip2...-Pnq1q2...qm is a product of irreducibles.
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For uniqueness, first note that ¢ (f) = pip2...pn is a unique factorisation up
to reordering and associates, as R is a UFD. So cancel this off to obtain f; =
q1---Gm-S0 SUPpOse ¢1q3...Gm = T1732...7; is another factorisation of f;.

Note that each ¢; and each r; is a factor of the primitive polynomial fi, so each
of them must be also primitive.

Let F be the field of fractions of R, and consider g;,r; € F[z] instead. Now F'[x]
is a ED, hence PID, hence UFD. By Gauss’ lemma, the ¢; and r; are irreducible
in Flz]. As F[z] is a UFD we find that [ = m; and after reordering r; = u;¢;
with u; € F[z] a unit.

Firstly u; € F since it is a unit.

Clear denominators of u;, we find that a;r; = b;q; € R[z].

So taking contents shows that a; and b; are associates. So b; = v;a; with v; € R
a unit.

Cancelling a; gives r; = v;q; as required. O

Example. Z[z] is a UFD.
Risa UFD = R[z1,2,...,2,] is a UFD.

Theorem. (Eisenstein’s criterion) Let R be a UFD, let
f=ao+a1z+ ...+ ayz" € R[z]

have a, # 0 and f primitive. Let p € R be irreducible (=prime, since R is a
UFD) such that:

1) p 'f QAn;

2) pla; for 0 < i <mn—1;

3) p? 1t ao.

Then f is irreducible in R[z], so also irreducible in F[z] by Gauss’ lemma.

Proof. Suppose f=g - h with

g=r0+ 1+ ...+ rz with r, #0,

h=sy+ s+ ...+ szt with s; # 0.

Now rgs; = an, and pta, so ptry and pts;.

Also rgsg = ag, and plag but p? { ag. So WLOG let p|ro but p 1 so.

Let j be such that p|ro, p|ri,...,p|rj—1,p 175

Then a; = rosj +7r15j—1 + ... + rj_151 +7;50. All but the last term are divisible
by p, and r;sg is not divisible by p since both 7; and s¢ are not divisible by p.

So p1a;. By condition (1) and (2) we must have j = n. Also we have j <k <n,
so j = k =n. That means [ =n — k =0, so h is a constant.

But f is primitive, it follows that A must be a unit. So f is irreducible. O

Example. Consider 2" — p € Z[z] for p prime. Apply Eisenstein’s criterion
with p, we find that all the conditions hold. So z™ — p is irreducible in Z[z], and
so in Q[z] as well by Gauss’ lemma.

This implies that ™ — p has no roots in Q. So /p ¢ Q.

Example. Consider f = 2P~! + 2?2 + .. + 2% + 2 + 1 € Z[z] with p a prime
number.

Note f = f”::ll, so let y = — 1. Then

fly) == =g ()9 o+ (1),
Now p|(?) for 1 <i <p—1,but p>{ (,”,) =p.
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So by Eisenstein’s criterion, f is irreducible in Z[z].
Now if f(z) = g(z) - h(z) € Z[z], then get f(y) = g(y+1) -h(y+1) a
factorisation in Z[y]. So f is irreducible.

2.6 Gaussian integers

Recall Z[i] = {a + bila,b € Z} < C is thexswq Gaussian integers.

The norm N (a + ib) = a® + b? serves as a Euclidean function for Z[i]. So it is a
ED, so a PID, so a UFD.

The units are precisely +1 and =+i.

Example. 1) 2 = (1 + 1) (1 — ), so not irreducible, so not prime.

2) 3: N(3) =9, s0if 3 =u-v with u,v not units, then 9 = N (u) N (v) with
N (u) #1%# N (v). So N (u) = N (v) = 3. But 3 = u? + v? has no solutions
with a,b € Z. So 3 is irreducible, so a prime.

3) 5= (14 2i) (1 — 2i) is not irreducible, so not prime.

Proposition. A prime number p € Z is prime in Z[i] <= p # a® + b* for
a,b € Z\ {0}.

Proof. If p = a? + b® = (a + ib) (a — ib) then it is not irreducible, so not prime.
If p= u-v, then p?> = N (u) N (v). Soif u, v are not units, then N (u) = N (v) =p
since p is prime in Z. Writing u = a + ib, this says a? + b% = p. O

Lemma. Let p be a prime number, F, = Z/pZ a field with p elements.
Let F;y = F,\ {0} be the group of invertible elements under multiplication.
Then F; = Cp1.

Proof. Certainly F has order p — 1, and is abelian.

Know classification of finite abelian groups, it follows that if F} is not cyclic,
then it must contain a subgroup C,, x C,, for m > 1.

Consider the polynomial X™ — 1 € Fp[z]|, a UFD. At best this factors into m
linear factors, so X — 1 has at most m distinct roots.

If €y x Cpy, < F;, then we have m? elements of F, which are roots of X™ — 1.
But m? > m, contradiction. So F is cyclic. O

Proposition. The primes in Z[i] are, up to associates,
1) prime numbers p < Z < Z[i] s.t. p =3 mod 4;
2) z € Z[i] with N (z) = 2z = p for p prime, p =2 or p=1 mod 4.

Proof. 1) If p=3 mod 4 then p # a® + b?.

By the previous proposition, p € Z][i] is prime.

2)If N(z) =pand z =uv, then N (u) N (v) =p. So N(u)=1or N (v) =1, so
u or v is a unit.

Let z € Z[i] be irreducible (also prime). Then Z is irreducible, so N (z) = 2Z is
a factorisation of N (z) into irreducibles.

Let p € Z be a prime number dividing N (z). (N (z) # 1 so such p exists).
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e Case 1: p =3 mod 4. Then p € Z[i] is prime by the first part of the proof.
p|N (2) = 2Z so p|z or p[Z. So perhaps conjugating, get p|z. But both are
irreducible, so p and z are associates.

e Case 2: p=2or p=1 mod 4.

If p=1 mod 4 then p — 1 = 4k for some k. As Fj = C},_1 = Cy, there is a
unique element of order 2, which must be [-1] € F,.

Let [a] € F;y be an element of order 4. Then [a*] = [—1].

So a? + 1 is divisible by p. So p| (a + i) (a —9).

Also 2| (1 +14) (1 —1).

So deduce that p (or 2) is not prime, so not irreducible, as it clearly does not
divide a + ¢ or a — 1.

So p = z129 for 21, 25 € Z[i]. So

p*=N(p) =N (21) N (22).

So as z; are not units, N (z1) = N (22) =p. So p = 2152 (= 2241). So Z1 = 2.
So p = 2121|N (2) = 2z. So z is an associate of z; or Zj, as z and 2; are
irreducible. O

Corollary. An integer n € Z* may be written as z? + y? (the sum of two
squares) if and only if, when we write n = p{''py?...p* as a product of distinct

primes, if p; =3 mod 4 then n; is even.

Proof. Let n = 22 +y? = (x +iy) (v —iy) = N (v +iy). Let z = x + iy, so
z = a1a...0 & product of irreducibles in Z[3].

By the proposition, each «; is either a; = p prime number with p =3 mod 4,
or N (a;) = p a prime number which is either 2 or =1 mod 4.

n=a>4+y*=N(z) = N (1) N (as)...N (a)

Each N («;) satisfies: either

e N (a;) = p? with p =3 mod 4 prime, or

o N(a;) =pwithp=2orp=1 mod 4 prime.

So if p™ is the largest power of p dividing n, we find that m must be even if
p=3 mod 4.

Conversely, let n = p]*p5>...pp* be a product of distinct primes.

i
pi=2or p; =1 mod 4, then p; = N (a;) for some «; € Z[i]. So p}* = N (o).
So n is the norm of some z € Z[i], son = N (z) = N (z +iy) = 22 +y? is a sum
of squares. O

For each p;, either p; =3 mod 4 and n; is even, so p;¢ = (pf) 2= N (pi%), or

Example. 65 =5-13.

Then 5 = (2+41) (2 —1)

13 = (24 34) (2 — 34).

So65=N((2+1i)(2+3i) = N (1 +8i) =12 + 8%
Also 65 = N ((2+1) (2 —3i)) = N (7 — 4i) = 7% + 42,
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2.7 Algebraic integers

Definition. a € C is called an algebraic integer if it is a root of a monic
polynomial in Z[x], i.e. 3 monic f € Z[z] s.t. f(a) = 0.

Write Z]a] < C for the smallest subring containing «.

In other words,Z[a]=Im (¢) where ¢ is defined as:

¢ :Zjx] = C
9—g(a)
So also Zla] = Z[z]/I, I = ker (p).

Proposition. If o € C is an algebraic integer then

RS EN

is a principal ideal and is generated by a monic irreducible polynomial f, € Z|x],
called the minimal polynomial of c.

Proof. By definition there is a monic f € Z[x] s.t. f(a) =0. So f € I so I #0.
Let f, € I be a polynomial of minimal degree. We may suppose that f, is
primitive by dividing by its content.

We want to show that I = (f,) and that f, is irreducible.

Let h € I. In Q[z] we have a Euclidean algorithm, so we may write h = fo,-q+r
with 7 = 0 or deg (r) < deg (fa)-

We may multiply by some a € Z to clear denominators and get

a-h=fa-(ag)+ (ar)

with aq and ar in Z[z].
Evaluate at o gives

ah(a) = fa (a) (aq) (@) + (ar) (@)

= 0= (ar) ()

So (ar) € I.
As f, € I has minimal degree, we cannot have deg (r) = deg (ar) < deg (f«). So
instead must have r = 0.
So ah = fo - (aq) € Zlx].
Take contents of everything, get

a-c(h) = c(ah) = c(fu (aq)) = c(aq)

as f, is primitive.
So alc (aq), so ag = ag with ¢ € Z[z] and cancelling a shows g = § € Z[z].
So h = fo-q€ (fa)9Zz]. So I = (fa).

Now we want to show that f, is irreducible. We have

Zlz]/ (fa) = Z[z]/ ker (¢) = Im (p) = Z[a] < C
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C is an integral domain, so Im(p) is an integral domain, so Z[z]/ (fa) is an
integral domain.
So (fa) is prime. So f, is prime, so irreducible. O

Example. o =i is an algebraic integer with f, = 2% 4 1.

a = /2 is an algebraic integer with f, = z? — 2.

o= % (1 + JTS) is an algebraic integer with f, = 22 — 2 + 1.

The polynomial % — 2 +d € Z[x] with d € Z has precisely one real root «, which
is an algebraic integer.

Remark. (Galois theory)
This « cannot be constructed from Z using +, —, x, /, /-

Lemma. If a € Q is an algebraic integer, then o € Z.

Proof. Let f, € Z[x] be the minimal polynomial, which is irreducible.

In Q[z], z—a must divide f,, but by Gauss’ lemma, f, € Q[z] must be irreducible.
So must have f, = x — a € Z[x] (else there is a proper decomposition). So
a € Z. O

2.8 Hilbert basis theorem

A ring R satisfies the ascending chain condition (ACC) if whenever
LCcl C..
is an increasing sequence of ideals, then we have

I, = nt+l = dn42 = ...

for some n € N.
A ring satisfying this condition is called Noetherian.

Example. Any finite ring, any field, and Z or any other PID is Noetherian (see
next proposition).
Consider Z[z1, z2, ...]. Note that

(1) C (z122) C (T17273) C ...
while none of the ideals are equal. Thus Z[z1, 22, ...] is not Noetherian.

Proposition. A ring R is Noetherian <= every ideal of R is finitely generated,
ie. I =(ry,...,myn) for some rq,...,r, € R for every ideal I C R.

Proof. Suppose every ideal of R is finitely generated. Given I C Iy C ...,
consider the ideal
I=LUlU..

We have I = (rq,...,7y), with WLOG r; € Ij,.
Now let k = maz (k1, ..., kn).
Then 74, ...,7, € I, hence I, = I.
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On the other hand, suppose an ideal I is not finitely generated.
Choose r; € I. Then (r;) # I as I is not finitely generated. Then choose
ro € I\ (r1). Then (r1,72) # I. Then choose 73,1y, ... similarly. But now we get
a chain of ideals

(7‘1) C (7“1,7"2) C ...

while none of them is equal to any other. Contradiction. So I must be finitely
generated.

Alternative proof for second part (2017 Lent): conversely, suppose R is Noethe-
rian. Let I be an ideal.

Choose a1 € I. If I = (ay) then done, so suppose not. Then choose ag € I'\ {a1};
if I = (a1, a2) then done, so suppose not... If we can’t be finished by this process,
then we get

(a1) € (a1,a2) € (a1,a2,a3) < ...

which is impossible as R is Noetherian. So I = (a1, as, ..., a,.) for some r. O

Theorem. (Hilbert’s basis theorem)
R is Noetherian = R|[z] is Noetherian.
(hence e.g. Z[xz] is Noetherian, whence Z[z,y| is Noetherian, etc.)

Proof. (Lent 2017)

Let J<R[z]. Let fi € J be a polynomial of minimal degree. If J = (f1) then done,
else choose fo € J\ (f1) of minimal degree. If J = (f1, f2) then done... Suppose
this never terminates, i.e. we have (f1) C (f1, f2) € ... € (f1, f2, f3) S ...

Let 0 #£ a; € R be the coefficient of the largest power of X in f;, and consider
the chain of ideals (a1) C (a1,a2) C (a1,a2,a3) C ... <R. As R is Noetherian,
this chain stabilizes, i.e. there exist m s.t. all a; lie in aq, ..., a,,. In particular,
Amt1 = > iy a;b; for some b; € R.

Let ¢ = Y00, b;fiXdee(fmr1)=des(fi) has top term Y i | bia; XdeelFm+1) e,
aerleeg(ferﬂ .

Note that f,,+1 — ¢ has degree strictly smaller than that of f,,+1. But g €

(flv sty fm), while fm+1 ¢ (fla ) fm) So fmfl -9 g (fla ey fm)7 contradicting
with the fact that we have chosen f,,, 11 to be the minimal degree each time. O

Proof. (Lent 2016)
Let I be an ideal in R[z]. For n =0,1,2, ..., let

I, ={reR:3f € I with f =ra"+ ..} U{0}

Then each I,, is an ideal of R.

Also I, C I,;1Vn since f € I = xf € I (as I is an ideal in R]x]).
Thus Iy = Iny41 = ... for some N since R is Noetherian.

For each 0 < n < N, we have

I, = (r%n),rén), ...,r,&?}l))
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As R is Noetherian.

For each rl(n)7 choose a fi(n) with fi(n) = rgn)x” + ..

e Claim: The polynomials fi(n) (0<n<N,1<i<k(n)) generate I.

Proof of claim: Suppose not. Then choose g € i of minimum degree that is not
generated by the above polynomials fi(").

elfdeg(g) =n < N:haveg=ra"+....Butrel, Sor=>, /\irgn) for some
i € R.

So Y, )\Z-fi(n) =ra" + ..., whence g — >, )\Z—fi(") has smaller degree than g(or it’s
zero) and is also not in I, contradicting with the fact that g has the minimum
degree.

elfdeg(g)=n>N: Haveg=rz"+ ... Bt r€ I, = Iy, sor = ZiAirEN)
for some \; € R.

So 2" Ny, )\irl(N) = rz" + ... is in the ideal, whence g — 2"~V 3", )\iTEN) has
smaller degree than g (or it’s zero) and is also not in I. Contradiction. O

Does R Noetherian imply every subring of R is Noetherian?

The answer is NO — e.g. take Z[z1, 22, ...] (an integral domain) and let R be its
field of fractions, while the latter is a field so Noetherian, but the first one isn’t
Noetherian.

Proposition. Let R be Noetherian, I be an ideal in R. Then R/T is Noetherian.

Proof. Let
p:R— R/I

z—x+1

Given an ideal J in R/I, have ¢! (I) an ideal in R (by ideal correspondence).

So o=t = (ry,...,rp) for some ry,...,7, € R (since R is Noetherian so I is finitely

generated).

Thus J = (¢ (r1),¢ (r2), ..., (1)) is finitely generated. So R/I is Noetherian.
O

What about Z[z]? (recall that it’s not a pid since (2, z) is not principal)

Remark. Let F C F[z1, 2, ..., Z,] be any set of polynomial equations.
Consider (E) < Flz1, 2, ..., T,]. By Hilbert’s basis theorem, there is a finite list

f1, ;fk s.t. (E) = (f1, ...,fk).

Given (a1, ag, ...ay,) € F™, consider

( Flz1,...,z5] —F
Pa T; — Q4

a ring homomorphism.
(a1, ...an) € F™ is a solution to the equations E <= (FE) C ker (py) <=
(f1, .oy fn) <ker (pa) <= (a1,...,ay) is a common solution to f1,..., fk.
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3 Modules

3.1 Definitions and examples

Definition. Let R be a commutative ring. A quadruple (M,+,05;,-) is a
R—module if:

e (M1) (M,+,0ps) is an abelian group;

e (M2) The operation — - — : R x M — M satisfies

(ri+m12) - m=_(r1-m)+ (ro-m)
r-(my+mg)=(r-my)+ (r-ms)
ri-(rg-m) = (ri-r2)-m
lp-m=m
Example. 1) Let F be a field. An F—module is precisely the same as a vector

space over F.
2) For any ring R, R® = R X R X ... X R is a R—module via

(11, Te, ey ) = (P71, 7 Py e T Ty)
3) If I <R is an ideal, then it is an R—module via
rMa=Tr-ga
Also, R/I is a R—module via
r-(a+I)=r-a+1
4) A Z—module is precisely the same as an abelian group. For A an abelian

group,

ZxA — A
a+a+ ...+ a (n times) a>0
(nya) —49 0 a=0
(—a)+ (—a)+ ...+ (—a) (ntimes) a <0

5) Let F be a field, V' a vector space on F', and a: V' — V be a linear map.
Then V is a F[z]—module via

(F[m]XV -V >
(f,v) = (f (@) (v)

i.e. Substitute « in the polynomial f, then act on wv.

Different choices of a make V into different F[z]—modules, so this is a module
structure.

6) If ¢ : R — S is a ring homomorphism, then any S—module M may be
considered as a R—module via

(i,?f)w :f(r).m)



3 MODULES 35

Definition. If M is a R—Module, a subset N C M is a R—submodule if it is a
subgroup of (M, +,0x) and if n € N and r € R then r-n € N.
We write n < M.

Example. A subset of the R is a submodule of the R—module R precisely if it
is an ideal.

A subset of an F'—module V for F' a field is a submodule precisely if it is a
vector subspace.

Definition. If N C M is a R—submodule, the quotient module M /N is the set
of N—cosets in the abelian group (M, +,05s) with

r-(m+N)=r-m+N

This is well defined as, if any two different m represent the same coset then they
differ by some n € N.

Definition. A function f : M — N between R—modules is an R—module
homomorphism if it is a homomorphism of abelian groups, and satisfies

frem)=r-f(m)

Example. If F' is a field and V, W are F'—modules (vector spaces over F), then
an F'—module homomorphism is precisely an F'—linear map.

Theorem. (First isomorphism theorem)
Let f: M — N be a R—module homomorphism. Then

ker (f) = {m € M|f (m) = 0} < M
(submodule),
Im(f)={neN|3me Mstn=f(m)} <N

Moreover, M/ ker (f) = Im(f).

Theorem. (Second isomorphism theorem)
Let A, B < M. Then

A+B={meM|Fac AbeBst. m=a+b} <M

(a submodule), and
ANB<M

and
A+ B/A~ B/(ANB).

Theorem. (Third isomorphism theorem)
If N <L< M, then
M/L = (M/N)/(L/N).

In addition, there is a submodule correspondence between submodules of M /N
and submodules of M which contain N.
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Definition. Let M be a R—module, m € M. The annihilator of m is
Ann (m) = {r € R|r-m =0}
The annihilator of M is

Ann (M) = m Ann (m)={r € Rlr-m=0Vm € M}
meM

Remark. Ann (m) is an ideal of R (so Ann (M) is too).
Definition. If M is a R—module and m € M, the submodule granted by m is

R, ={r-me M|r € R}
Consider the R—module homomorphism
(R =M
"\ r Ssreom

R, = Im ()
Ann (m) = ker (p)

Here

So
R, = R/ Ann (m)

Definition. Say an R—module M is finitely generated if there are elements
my,...,mg S.t.

M=R,, +Rn,+ ...+ R,
= {rimi +rams + ... + remg|r1, 72, ..., 75 € R}

Lemma. A R—module M is finitely generated if and only if there is a surjective
R—module homomorphism
f:RF s M

Proof. f M = Ry, + ... + Ry, , define

£ R* — M
' (T17"'7rk) — 1y +7’2m2—|—...—|—rkmk

This is a R—module map. This s surjective by the definition of M.
Conversely, given a surjection f : RF — M, let

M; = £(0,0,...,0,1,0,...,0)

where the 1 is in the " position.
Let m € M. As f is surjective, m = f (ry,7a, ..., 1) for some rq, ..., 7g.
Then write

flri, e re) = f((r1,0,...,0) + (0,72,0,...,0) + ... + (0,0, ...,0,7%))
= F(r1-1,0,00) 4 £ (0,79 1,0,y 0) o+ £ (0, o0y 0,75 - 1)
= 1 (1,0,.,0) + 72 (0,1,0,..,0) + ... + 74 (0, ..., 0, 1)
=1rimyi +1romo + ... +rpmg

So the m;’s generate M. O
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Corollary. If N < M and M is finitely generated, then M /N is finitely gener-
ated.

Proof. m is finitely generated
— there is a surjection f: RF — M

= RF - M — M/N (by m — m + N) (surjection) O
Example. A submodule of a finitely generated module need not be finitely
generated.

Let

R= C[Z’l, T2,T3, ]

Let M = R be finitely generated (by 1). The submodule I = (21, z2,...) < R is
not finitely generated (because finitely generated as a module implies finitely
generated as an ideal, which it isn’t).

Example. For a € C, Z[a] is a finitely generated Z-module <= « is an
algebraic integer (see example sheet).

3.2 Direct sums and free modules

Definition. If My, Ms, ..., M; are R—modules, the direct sum
Ml@MQ@--.@Mk

is the set
My x My X ... x M,

with addition
(m1, ma...,my) + (m7,mb,....m}) = (my +mf,...,mp +mj)
and R-module structure
re(my,...,mg) = (r-my,r - mg, .., 7 mg)
Example. What we have been calling R” is RO R D ... ® R (n times).

Definition. Let mq,ma,...,m; € M. The set {my,...,my} is independent if

m
E rimi=0 = ri=ro=..=1r,=0
i=k

Definition. A subset S C M generates M freely if

1) S generates M;

2) Any function ¢ : S — N to a R—module extends to a R—module map
0:M— N.

If 0, and 0 are two of such extensions, consider 6y — 05 : M — N. Then
S C ker (6 — 03) < M. So the submodule generated by S lies in ker (61 — 65)
too. But 1) says S generates M. So M = ker (81 — 62). So 61 = 0s.

A R—module freely generated by some subset S C M is called free, and S is
called a basis.
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Proposition. For a subset {m1, ma,...,m;} C M, the following are equivalent:
1) S generates M freely;

2) S generates M and the set S is independent;

3) Every element of M is uniquely expressible as

rimy + romo + ... + rpmyg
for some r; € R.
Proof. ¢ 1) = 2):
Let S generate M freely.
If S is not independent, we have
O0=rimy+ ... +remg

with some r; # 0.

Let
S— R
(U m; — 1r
m; — 0 (i # j)
a function.

As S generates M freely, this extends to a R—module homomorphism 6 : M — R.

Thus
0=20 (O) =40 (T‘1ml + romg + ... + rkmk)

=r0(mq) + ... + rgf (my)
=T1j- 1r € R

a contradiction as we supposed 7; # 0.

The remaining steps are just as in Linear Algebra. O

Example. The set {2,3} € Z generates Z, but not freely, as 3-2+(—=2)-3 = 0.
So S is not independent. So S doesn’t generate Z freely. Also {2} and {3} do
not generate Z.

Example. The Z-module Z/2 is not free.

Generating set: {1}, {0,1}.
1) for {1}: Let
({1 —Z
v 1 —1
Z7]2 — 7

0: 1 —1
0=1+1 —1+1

this extends to

which is a contradiction since it’s not a homomorphism.
For the second case is generally the same.

Lemma. If S = {my,...,mp} C M is freely generated, then M = RF as an
R—module.
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Proof. Let f : R¥ — M by (r1,...,m) — >.rim; as R—module map. It is
surjective as {m;} generate M, and is injective as the m; are independent. [J

Definition. If M is a finitely generated R—module, we have shown that there
is a surjective R—module homomorphism ¢ : R¥ — M.

We call ker (¢) the relation module for these generators.

Now As M = RF/ker(f), knowing M is equivalent ot knowing the relation
module.

We say M is finitely presented if, in addition, ker () is finitely generated.
More precisely, if {mi,ma,...,my} generate M and {ni,ns,...,n;} generate
ker (o), then each n; = (1,72, ..., 7ik) corresponds to the relation

Ti1M1 4+ Tioma + ...+ ripmy =0
in M.

Proposition. (Invariance of dimension (rank))
Let R be a non-zero ring. Then if R™ = R™ as a R—module, we must have
n=m.

Proof. We know this is true if R is a field (since they are vector spaces).
General construction: let I < R be an ideal and M a R—module. Define

IM={a-meMlacI,me M}

a submodule of M, so M/IM is a R—module.
Ifbelthenb-(m+IM)=b-m+IM=0+IM.
So M/IM is a R/I-module via

(r+I)-(m+IM)=r-m+IM

General property: every non-zero ring has a maximal ideal.

Observation: an ideal I < R is proper <= 1i & I.

So an increasing union of proper ideals is proper.

(Fact: (Zorn’s lemma applies) so there is a maximal ideal)

Back to the proof: choose a maximal ideal I < R.

If R* =2 R™, then R"/IR™ = R™/IR™, ie. (R/I)" = (R/I)™. But I is
maximal, so R/I is a field. So this is an isomorphism between vector spaces over
the spaces R/I. So n = m by usual dimension theory from linear algebra. [

3.3 Matrices over Euclidean domains

Until further notice, R is a Euclidean domain, and write ¢ : R\ {0} — Z > 0 for
its Euclidean function.

We know what ged(a,b) is for a,b € R and is unique up to associates. The
Euclidean algorithm using ¢ shows that ged(a, b) = ax + by for some z,y € R.

Definition. Elementary row operations on a m X n matrix A with entries in R
are
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(ER1) Add ¢ € R times the i*" row to the j**. This may be done by multiplying
A on the left by
1

Where c is in the 5" row and the i*" column.
(ER2) Swap the i** and the j*" rows. This is done using

1

Where the two 1 are in the (4, j) entry and the (j,¢) entry.
(ER3) Multiply the i*" row by a unit ¢ € R, using

1

Where c¢ is in the (7,) entry.

We have analogues for column operations, called (EC1),(EC2),(EC3).

Definition. A and B are equivalent if they differ by a sequence of elementary
row or column operations.

If A and B are equivalent, there are invertible (square) matrices P,Q s.t. B =
QAP

Theorem. (Smith normal form)
A m x n matrix A on a ED R is equivalent to Diag(d;,das, ...,d,,0,...,0) with
the d; all non-zero and

dq|dz|...|d,

The dy, are called invariant factors of A.

Proof. if A =0 we are done. So suppose A # 0.

So some entry A;; # 0. Swapping the it" and first row then j** and first column,
we arrange that A, # 0.

Try to reduce ¢ (A11) as much as possible:

Case 1) If there is a A;; not divisible by Aj1, use Euclidean algorithm to write

Ayj=q-An+r

with ¢ (1) < ¢ (A11).
Subtract ¢ times the first column from the j** column. In position (1,5), we
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now have r. Swapping ;7" and 1% columns puts 7 in position (1,1), and so
@ (r) <@ (An).

Case 2) If there is a A;; not divisible by Aj1, do the analogous thing to reduce
¢ (A11).

After finitely many applications of Case 1 and Case 2, we get that Ay divides
all Aij and all Ail-

Then subtracting appropriate multiples of the first column from all others makes
Aqj = 0 for all j apart from the first one. Do the same with rows. Then we have

00 .. 0

oS O Q.

C

0
Case 3) if there is an entry of C not divisible by d, say A;; with ¢ > 1,5 > 1.
Then write A;; = qd + r, with ¢ (r) < ¢ (d).
Now add column 1 to column j, subtract ¢ times row 1 from row i, swap row i
with row 1, and swap column j with column 1.Then the (1,1) entry is r, and

p(r) <¢(d).
But now the zeroes are messed up. So do case 1 and case 2 if necessary to get

d 0 0 .. 0
0
0
o
0
But now with ¢ (d') < ¢ (r) < ¢ (d).
Since case 3 strictly decreases ¢ (d), it can only happen for finitely many times.
Therefore, we arrive at
d 0 0 ... 0
0
0
C
0
Such that d divides every entry of C' (this is because case 3 stops only if there is

no entry of C not divisible by d, by the condition).
Now apply the entire process to C. We end up with a diagonal matrix with the

claimed divisibility. O
Example.
3 7 4 1 -1 2 1 0 0 1 0 0
1 -1 2] =13 7 4]—-1(3 10 2] >0 10 —-2| —
3 5 1 3 5 1 3 8 =5 0 8 =5
1 0 0 1 0 0 1 0 0 1 0 0
0 2 10)—-{(0 2 10}]—-1(0 1 -12) =10 1 O
0 5 8 0 1 -—12 0 2 10 0 0 34
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To study the uniqueness of the invariant factors (the dj’s) of a matrix A, we will
consider minors:

Definition. A kxk minor of a matrix A is the determinant of a k x k sub-matrix
of A (a matrix found by removing all but &k rows and all but k& columns).

For a matrix A, the k*" fitting ideal called Fity, (A) < R is the ideal generated by
the set of all £ x k& minors of A.

Lemma. If A and B are equivalent matrices, then
Fity (A) = Fitg (B)

for all k.

Proof. We just show that changing A by the elementary row operations (or the
column versions) doesn’t change Fity (A). We just need to consider the row
operations as Fity, (4) = Fit, (AT).
For (ER1): Fix C a k x k minor of A. Let B be the result of adding ¢ times the
it" row to the j** row.
If the j** row is outside of C, then the minor is unchanged.
If i*" and j'" row are in C, then the sub-matrix changes by a row operation. But
we know from linear algebra that a row operation doesn’t change the determinant.
If j** row is in C but the i*" row is not, then C' is changed to C’ with j** row
equal to

(Cj1 + cf1,Cj2 + cfay oy i + cf)
Where f1, fa, ... fi are the i" row.
Computing det (C”) using this row, we get det (C”) = det (C') a minor +c det(

matrix obtained by replacing the jth row of C with f1, fa, ..., fx) also a minor of
A.

So det (C') € Fity, (A).
(ER2) and (ER3) follow by standard properties of swapping rows or multiplying
rows on determinants.
So Fity (B) < Fity, (A). But this also follows in the opposite direction as row
operations are invertible. So they are equal. O

Remark. if B = Diag(d;,ds,...,d,,0,...,0) is a matrix in its Smith Normal

Form, then
Fity (B) = (d1dz...dy,)

Corollary. If A has Smith Normal Form Diag (d1, da, ..., d;, 0, ..., 0) then (d1dz...dx) =
Fity (A), so d is unique up to associates.

(6 3)=~

Example. Consider

Then

So d1 = :l:].,
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So
didy = 6 — dy = £6

)

Lemma. Let R be a Euclidean Domain. Any submodule of R™ is generated by
at most m elements.

is a Smith Normal Form for A.

Proof. Let N < R™ be a submodule. Consider the ideal
I={reR|(r,re,..,7m) €N for some rg,...,7,, € R}

As R is a ED, it is also a PID. So I = (a) for some a € R.
Choose a n = (a1, ag, ...,am) € N.
For a (r1,72,....,7m) € N, we know a|ry, so r; =r - ay, and

(r1,72, ey ™) — 7 (a1, a2,y ooy ) = (0,72 — a2, ooy Ty, — T

This lies in N’ = NN ({0} X Rm’l) < Rm—1,
Then by induction we can suppose that there are ns,...n,, € N’ generating N'.
Thus

(r1y s Tm)

lies in the submodule generated by n,ns, ..., n,. Since rq, ...,r,, are arbitrary,
we know that n,ns, ..., n,, generate N. O
(missing 0.5 lecture?)

Example. Let R = Z (a ED), and let A be the abelian group (=Z—module)
generated by a, b, ¢, subject to 2a +3b+c =10, a+ 2b =0 and 5a + 6b + 7c = 0.

Thus A = Z®/N where N < Z3 generated by (2,3,1)7,(1,2,0)7,(5,6,7)7.

2 1 5
Now put M = |3 2 6 | into Smith Normal form we get (1,1, 3). To show
107

that, we just have to calculate the fitting ideals: Fit, (M) = (1), Fito(M) = (1)
and Fits(M) = det(M) = 3.

After changing basis, N is generated by (1,0, 0), (0, 1,0),(0,0,3). So A = Z/3.

3.3.1 Structure theorem for finitely-generated abelian groups

Any f.g. abelian group is isomorphic to
Ca, X Cgy X ... X Cg, X Coo X Coo X .. X Cop

with dy|da|...|d,.
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Proof. Apply classification of f.g. modules to the ED R = Z, and note Z/(d) = Cy
and Z/(0) = Cwo. O

Lemma. Let R be a ED, a,b € R with ged(a,b) = 1. Then R/(ab) = R/(a) ®
R/(b).
Proof. Consider the R—module homomorphism

¢ :R/(a) ® R/(b) —R/(ab)
(r1 + (a),r2 + (b)) —(br1 + ars + (ab))

As ged(a,b) =1, (a,b) = (1). So 1 = xza + yb for some x,y € Z. So for r € R,
we get r = rxa + ryb. So

r+ (ab) = rxa + ryb + (ab) = ¢(ry + (a),rz + (b))
So ¢ is onto.
Now we also have to deal with injectivity (since R/(ab) is not necessarily finite).

If ¢(r1 + (a),r2 + (b)) = 0+ (ab), then bry; + ars € (ab). Thus albry + ars, so
albry, but ged(a,b) =1, so alry, so r1 + (a) =0+ (a). O

3.3.2 Primary decomposition theorem

Let R be a ED, M a f.g. R—module. Thus M = N; & ... & N; with each N;
either equal to R, or R/(p") for some prime p € R and some n > 1.

Proof. Note that if d = pi'*...p.* with p; € R distinct primes, then the previous
lemma shows that R/(d) = R/(p]*) @ ... ® R/(p.*). Plug this into the usual
classification of f.g. modules we get the result. O

3.4 Modules over F[X]|, andnormal forms for matrices

For any field F', F[X] is a ED. So the results of the last section apply.

If V is a vector space over F' and a: V — V an endomorphism, then we have
FIX]xV =V
(f,v) = f(@)(v)

which makes V into a F[X]—module, call it V,, (see section 3.1).

Lemma: if V is finite-dimensional, then V,, is finitely-generated as a F[X]|—module.

Example. 1) Suppose V,, = F[X]/(X") as a F[X]—module. This has F'—basis
1,X, X2, ..., X"1, and the action of a on V corresponds to multiplication by X.

So in this basis, o has matrix with A¢;41); = 1 and all other entries 0.
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2) Suppose V,, = F[X]/(X — A\)")is a F[X]—-module. Consider § = a — AId,
then

Ve = FIY]/(Y")
as a F[Y]—module. So by (1), V has a basis so that § is given by the above
matrix. So « is given by Diag(\) + A where A1), = 1.

3) Suppose v, = F[X]/(f) with f = ag + a1 X + ... + a,_1 X"~! + X". Then
1,X,..., X" ! is a F—basis, and in this basis, « is given by the A in example (1)
with an additional column —ag, —as, ..., —a,_1 added rightmost. This matrix is
called the companion matriz for fi and is written C(f).

3.4.1 Rational canonical form theorem

Let a : V — V be a linear map, V finite-dimensional vector space over F.
Regards V' as a F[X]|—module V,, we have

Vo 2 F[X]/(d1) & ... ® F[X]/(d,)

with dj |da|...|d,. This there is a basi sof V for which « is given by Diag(c(d1), c(da), ..., c(d;)).
To prove this we can simply apply classification of f.g. modules over F[X], an
ED, and note that is(?) copies of F[X] appear, as this has co dimension over F.

Observations:

1) If « is represented by a matrix A in some basis, then A is conjugate to
(Diag(c(dy), ..., ¢(dy)). 2) The minimal polynomial for « is d, € F[X].

3) The characteristic polynomial of « is dyds...d,.

Lemma. The primes in C[X] are X — X for A € C, up to associates.

Proof. If f € C[X] is irreducible, Fundamental theorem of algebra says that f
has a root A, or f is a constant. If it is constant it is 0 or a unit X, so X — Al f,

so f = (X — A)g. But f is irreducible. So g is a unit, so f is an associate of
X -\ O

The conjugacy classes in GLy(Z/3) are

0 2 0 1 0 1 A0 A0
1 0/°\1 2/)°\1 1)°\1 X)’\0 pu
for non-zero A and u.

Recall
|GLy(Z/3)| = (9-1)(9—3) =2*-3

so Sylow 2-subgroup has order 16 = 24, The first matrix among the above 5 has
order 4, the second and third have order 8, while for the fourth one, A =1 has
order 3 and A = 2 has order 6, and the diagonal matrices has order 2. So Sylow
2-subgroup cannot be cyclic (order 16).
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Now let A, B be the first and the second matrix respectively. Then

i (22
atpa= (3 0)

This have to be some power of B (since it’s in the same conjugacy class as B).
In fact it is equal to B3.

So (B) < (A, B) < GLy(Z/3), and (B) < (A, B).
A,B

(

By the second isomorphism theorem is i B>> = 4

= OB But

mn=((3 9)

is a group of order 2. But (A4) has order 4. So
(A, B) [ (B)| = [(A) /({A) N (B))| = 4/2 =2
so (A, B)| =2-8=16. So this is a Sylow 2-subgroup of GLy(Z/3). Tt is
(A,B|A*=1,B®=1,A"'BA = B®)
a semidihedral group of order 16.

Example. Let R = Z[X]/(X? +5), which we wish to show, that it is equal to
Z[-5] < C. Then

1+X)(1-X)=1-X?’=1+5=6=2-3
while 1+ X, 2,3 are all irreducible, so R is not a UFD. Let
L=(3,1+X),L=(31-X)
be ideals (submodules) of R. Consider

b: LBl — R
(a,b) > a+Db

an R—module map. Then
im(¢) =(3,1+ X,1 - X)
But 3—((1+ X)+ (1 — X)) =1. So this is the whole ring.
Also ker(¢) = {(a,b) € I ® IrJa+ b =0} = I; N I3 by sending = back to (z, —z).

Hence
(3) clhinli

Let s-3+t(1—2)€ (3,1 —X)C R=7Z[X]/(X?+5).
Working module (3) as well, get

t1+X)=(1-X)p (mod (3,X*+5)=(3,X>—1)=(3,(X - 1)(X +1)).
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Sol—Xlt,s0 (1+X)(1—-X)[t(1+X),s0t(1+X)=q(X>—1)=q(X>+5—6)
ie. t(14+ X) = 3(—2¢).

Therefore s -3+ ¢(1 + X) is divisible by 3, so I1 NIy C (3), so equality.

By Example sheet 4 Q1(iii), if we have module N < M and M/N = R", then
M= Ne@R"

So hence, I} @ I/ ker(¢) = im(¢) = R, s0 I & I = R D ker(¢) = R @ (3).
Consider
Y :R— (3)
T — 3z

ker(y)) = {x € R|3x = 0} = 0 as R is an integral domain. So v is an isomorphism.
SO Il@fg gR@R

We claim that I is not principal. If I; = (a + bX), then Is = (a — bX). Then
B)=LNI=((a+bX)(a—bX)) = (a® —bX?) = (a* + 5b%)

s0 3 € (a® +5b%), s0 3 = (a? +5b%)(c + dX), so a® + 5b?|3. Contradiction. So I
cannot be principal, so I cannot be as well. But now:

o I; need 2 eleemnts to generate it, but it is not the free module R?;
o I; is a direct summand of R2.
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