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0 MISCELLANEOUS

0 Miscellaneous

Some introductory speech
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1 Propositional logic

Let P denote a set of primitive proposition, unless otherwise stated, P =
{p17p27 }

Definition. The language or set of propositions L = L(P) is defined inductively
by:

(1) pe LVpe P

(2) Le L, where L is read as false’;

(3) If p,q € L, then (p = q) € L. For example, (p1 = L), (pn =
p2) = (p1 = p3)).

Note that at this point, each proposition is only a finite string of symbols from
the alphabet (,), =, L, p1,p2, ... and do not really mean anything (until we
define so).

By inductively define, we mean more precisely that we set Ly = PU{L}, and
Loy1=L,U{(p = q):p,q€ Ly}, and then put L =L; ULy U ....

Each proposition is built up uniquely from 1) and 2) using 3). For example,
((pn = p2) = (p1 = p3)) came from (p; = p2) and (p1 = p3). We
often omit outer brackets or use different brackets for clarity.

Now we can define some useful things:

e —p (not p), as an abbreviation for p = 1;

e pV g (por q), as an abbreviation for (—p) = g¢;

e p A g (p and g), as an abbreviation for -(p = (—q)).

These definitions 'make sense’ in the way that we expect them to.

Definition. A valuation is a function v : L — {0, 1} s.t.
(1) v(L) = 0; (2)

= { =

Vp,q € L

Remark. On {0,1}, we could define a constant 1 by 1= 0, and an operation
= bya = b=0ifa=1,b =0 and 1 otherwise. Then a valuation
is a function L — {0,1} that preserves the structure (L and = ), i.e. a
homomorphism.

Proposition. (1) If v,v" are valuations with v(p) = v'(p) Vp € P, then v =’
(on L).

(2) For any w : P — {0,1}, there exists a valuation v with v(p) = w(p) Vp € P.
In short, a valuation is defined by its value on p, and any values will do.

Proof. (1) We have v(p) = v'(p) Vp € L;. However, if v(p) = v'(p) and
v(g) = v'(q) then v(p = ¢q) = v'(p = q), so v = v’ on Ly. Continue
inductively we have v = v’ on L, Vn.

(2) Set v(p) = w(p) Vp € P and v(L) = 0: this defines v on L;. Having defined
v on Ly, use the rules for valuation to inductively define v on L, 1 so we can
extend v to L. O
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Definition. We say p is a tautology, written F p, if v(p) = 1 V valuations v.
Some examples:

(1) p = (¢ = p): a true statement is implies by anything. We can verify
this by:

v(p) v(g) v(g = p) v(p = (¢ = p))
11 1 1
1 0 1 1
0 1 0 1
0 0 1 1

So we see that this is indeed a tautology;
(2) (- p) = p,ie. ((p = L) = 1) = p, called the "law of excluded
middle”;

Blp=l¢g=r=Ilp=49d = @p=r)

Indeed, if not then we have some v with v(p = (¢ = 1)) =1, v( =
(p = ¢ = (p = r))=0. Sov(p = ¢q)=1,v(p = r)=0. This
happens when v(p) = 1, v(r) = 0, so also v(¢) = 1. But then v(¢ = r) =0,
sov(p = (¢ = r))=0.

Definition. For S C L, t € L, say S entails or semantically implies t, written
SEtifu(s)=1Vs €S = v(t) = 1, for each valuation v.
(”Whenever all of S is true, ¢ is true as well.”)

For example, {p = ¢,¢q = r} E (p = r). To prove this, suppose not: so
we have v with v(p = ¢)=v(¢ = r)=1bwtv(p = r)=0. Sov(p) =1,
v(r) =0, so v(g) =0, but then v(p = ¢) = 0.

If v(t) = 1 we say ¢ is true in v or that v is a model of ¢.

For S C L, v is a model of S if v(s) =1 Vs € 5. So Sk t says that every model
of S is a model of ¢t. For example, in fact F ¢ is the same as ¢ F ¢.
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2 Syntactic implication

For a notion of 'proof’, we will need axioms and deduction rules. As axioms,
we’ll take:

L.p = (¢ = p) Vp,q€L;

2p= (@@= = [p= a = (p = 1]Vpqrel

3. (——p) = pVpe L.

Note: these are all tautologies. Sometimes we say they are 3 axiom-schemes, as
all of these are infinite sets of axioms.

As deduction rules, we’ll take just modus ponens: from p, and p = ¢, we can
deduce gq.

For S C L,t € L, a proof of t from S cosists of a finite sequence t1, ..., ¢, of
propositions, with ¢, = ¢, s.t. Vi the proposition ¢; is an axiom, or a member of
S, or there exists j, k < i with ¢t; = (tx, = t;).

We say S is the hypotheses or premises and t is the conclusion.

If there exists a proof of ¢ from S, we say S proves or syntactically implies t,
written S I ¢.

If ¢ - t, we say t is a theorem, written F ¢.

Example. {p = ¢,q = r}tp = r.

we deduce by the following:

M= (@=r] = [p = 9 = (p = r)]; (axiom 2)
(2) ¢ = r; (hypothesis)

(3) (¢ = r) = (p = (¢ = r)); (axiom 1)

(4)p = (¢ = r); (mpon 2,3)

(5) (p = ¢q¢) = (p = r) (mp on 14);

(6) p = ¢; (hypothesis)

(7) p = r. (mp on 5,6)

Example. Let’s now try to prove - p = p. Axiom 1 and 3 probably don’t
help so look at axiom 2; if we make (p = ¢) and p = (¢ = r) something
that’s a theorem, and make p = r to be p = p then we are done. So we
need to take p = p,q = (p = p),r = p. Now:

W= ((p=p =p == p=rp)= =D

(p = p)) = (p = p); (mponl2)
p = p); (axiom 1)
p. (mp on 3,4)

Ly

Proofs are made easier by:

Proposition. (2, deduction theorem)
Let SCL,p,q€ L. Then S+ (p = ¢) if and only if (SU {p}) - q.
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Proof. Forward: given a proof of p = ¢ from S, add the lines p (hypothesis),
g (mp) to optaion a proof of ¢ from S U {p}.

Backward: if we have proof ty,...,t, = ¢ of ¢ from S U {p}. We’ll show that
Sk((p = t;)Vi,sop = t, =q.

If ¢; is an axiom, then we have Ht; — (p = t;),s0bp = t;;

Ift; € S, write down t;, t; = (p = t;),p = ; we get a proofof p = ¢;
from S

If t; = p: we know - (p = p), so done;

If t; obtained by mp: in that case we have some earlier lines ¢; and t; = ;.
By induction, we may assume S (p = t;) and SF (p = (t; = t;)).
Now we can write down [p = (t; = t;)] = [(p = t;) = (t;)] by
axiom 2, p = (t; = t;),p = t;) = (p = t;) (mp),p = ¢t;,
p = t; (mp) to obtain S+ (p = ;).

These are all of the cases. So SF (p = ¢). O

This is why we chose axiom 2 as we did — to make this proof work.

Example. To show {p = ¢,¢ = r}+ (p = r), it’s enough to show that
{p = q,q9 = r,p}+ r, which is trivial by mp.

Now, how are - and F related? We are going to prove the completeness theorem:
Skt < SEt.

This ensures that our proofs are sound, in the sense that everything it can prove
is not absurd (S + ¢ then S F t), and are adequate, i.e. our axioms are powerful
enough to define every semantic consequence of S, which is not obvious (S F ¢
then S F t).

Proposition. (3)
Let SCL teL. Then Skt — SET.

Proof. Given a valuation v with v(s) =1 Vs € S, we want v(t) = 1.

We have v(p) = 1 Vp axiom as our axioms are all tautologies (proven earier);
v(p) = 1 Vp € S by definition of v; also if v(p) =1 and v(p = ¢) = 1, then
also v(q) = 1 (by definition of = ). So v(p) = 1 for each line p of our proof of
t from S. O

We say S C L consistent if S t/1. One special case of adequacy is: S F1l —
S k1, ie. if S has no model then S inconsistent, i.e. if S is consistent then
S has a model. This implies adequacy: given S F ¢, we have SU {—t} EL, so
by our special case we have SU {—-t} FL,ie. SF ((-t) = t) by deduction
theorem, so S+ ——¢. But S+ ((——t) = t) by axiom 3, so S+t (mp).

Theorem. (4)

Let S C L be consistent, then S has a model.

The idea is that we would like to define valuation v by v(p) =1 <= p€ S, or
more sensibly, v(p) =1 <= St p.

But maybe S/ p3, S I/ =ps, but a valuation maps half of L to 1, so we want to
‘grow’ S to contain one of p or —p for each p € L, while keeping consistency.
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Proof. Claim: for any consistent S C L, p € L, SU {p} or SU {—p} consistent.
Proof of claim. If not, then SU {p} L and SU{-p} L, then S+ (p = 1)
(deduction theorem), i.e. S+ p, so S F_L contradiction.

Now L is countable as each L, is countable, so we can list L as t1,to,.... Put
So = S; set S1 = s U {t1} or sgp U (—t1} so that Sp is consistent. Then set
Sy =51 U{ta} or S U{~ta} so that S is consistent, and continue likewise. Set
S=S,US;USyU... Then S O S, and S is consistent (as each S, is, and each
proof is finite). Vp € L, we have either p € S or (—p) € S. Also, S is deductively
closed, meaning that is S - p then p € S: if p ¢ S then (-p) € S, s0 S | p,
S+ () so S 1 contradiction.

Define v : L — {0,1} by p — 1 if p € S, 0 otherwise. Then v is a valuation:
v(L)=0as L¢S; forv(p = q):

If v(p) =1, v(q) = 0: Wehave pe S, ¢ ¢ S, and want v(p = ¢q) = 0, i.e.
(p = q¢S. Butif 9p = ¢q) € S then S I ¢ contradiction;

If v(q) = 1: have ¢ € S, and want v(p = ¢) = 1,ie. (p = ¢)[S. But
Fq = (p = ¢)so Sk (p = q); )

If v(p) = 0: have p € S, i.e. (-p) € S and want (p = ¢) € S. So we need
p = L)F(p = q),ie. p = L,pt q (deduction theorem). Thus it’s
enough to show that L ¢q. But (-—¢) = ¢, and - (L = (—-—¢q)) (axiom
3 and 1 — to see the second one, write — explicitly using = and 1), so
F(lL= gq),ie lkFgq. O

Remark. Sometimes this is called ’completeness theorem’. The proof used P
being countable to get L countable; in fact, result still holds if P is uncountable
(see chapter 3).

By remark before theorem 4, we have

Corollary. (5, adequacy)
Let SCL,te€ L. Then if S E ¢ then S+ ¢.

And hence,

Theorem. (6, completeness theorem)
Let SCL,te L. Then St < SE¢t.

Some consequences:

Corollary. (7, compactness theorem)
Let SC L,t e L with SF¢. Then 3 finite S’ C S with S’ F ¢.
This is trivial if we replace F by F (as proofs are finite).

Special case for t =1: If S has no model then some finite S’ C S has no model.
Equivalently,

Corollary. (7’, compactness theorem, equivalent form)

Let S C L. If every finite subset of S has a model then S has a model.

This isi equivalent to corollary 7 because S Ft <= S U {-t} has no model
and S’ Ft < S’ U (—t) has no model.
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Corollary. (8, decidability theorem)

There is an algorithm to determine (in finite time) whether or not, for a given
finite S C L and t € L, we have S I t.

This is highly non-obviuos; however it’s trivial to decide if S F ¢ just by drawing
a truth table, and F <= F.
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3 Well-Orderings and Ordinals

Definition. A total order or linear order on a set X is a relation < on X, such
that

(1) Irreflexive: Not z < z Vx € X;

(2) Transitive: z < y,y < z = = < z Vz,y,2 € X;

(3) Trichotomous: x <yorz =y ory <z Vz,y € X.

Note: two of (iii) cannot hold: if z < y, y < « then & < x by transitivity.
Write z <y ifz<yorxz=y,andy >z ifx <y.

We can also define total order in terms of <:

(1) Reflexive: z <z Vz € X;;

(2) Transitive: z < y,y <z = z € 2z Va,y,z € X;

(3) Antisymmetric: z <y,y <z = z =y Vz,y € X;

(4) *Tri’chotomous (although it’s only two): z <y ory <z Vz,y € X.

Example. N, Q,R with the usual orders are all total orders.

NT the relation ’divides’ is not a total order: for example we don’t have any of
2|3,3|2 or 2 = 3.

P(S) for some S (with |S| > 2 to be rigorous), with « < y if  C y is not a total
order for the same reason.

A total order is a well-ordering if every (non-empty) subset has a least element,
ie. VS CX,S#¢ = dxeSax<yvyes.

Example. 1.N with the usual < is a well ordering.

2.7Z,Q, R with the usual < are not well orderings.

3.Q" U {0} with the usual < is not a well ordering (e.g. (0,00) C QT U {0}).
4.The set {1 — 711 :n=2,3,...} as a subset of R with the usual ordering is a well
ordering. 5.The set {1 — 1 :n=2,3,..} U{1} as a subset of R with the usual
ordering is a well ordering. 6.Theset {1—1:n =23, .. Ju{2-1:n=2,3 .}
(same assumption) is a well ordering.

Remark. X is well-ordered iff there is no x1 > 29 > x3 > ... in X.
Clearly if there is such a sequence then S = {1, 2, ...} has no least element.
Conversely, if S C X has no least element, then for each element x € S there
exists a 2’ € S with 2’ < x, so we can just pick z,z’, ... inductively.

Definition. We say total orders X,Y are isomorphic if there exists a bijection
f: X — Y that is order-preserving, i.e. x <y <= f(x) < f(y).

For example, 1 and 4 above are isomorphic; 5 and 6 are isomorphic; 4 and 5 are
not isomorphic (one has a greatest element, and the other doesn’t).

Here comes the first reason why well orderings are useful:

Proposition. (1, Proof by induction)

Let X be well-ordered, and let S C X be s.t. if y € S Vy < x then z € S (each
2 € X). Then S = X.

Equivalently, if p(x) is a property s.t. Va: if p(y)Vy < = then p(z), then p(x)Vz.
(I think we must assert S to be non-empty here, but the lecturer didn’t agree
with me; need to check later.)
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Proof. If S # X then let x be the least element of X \ S. Then = ¢ S. But
y € S Vy < x, contradiction. O

A typical use:

Proposition. Let X,Y be isomorphic well-orderings. Then there is a unique
isomorphism from X to Y.

Proof. Let f,g be isomorphisms. We’ll show f(x) = g(z) Va by induction.
Thus we may assume f(y) = g(y) Yy < z, and want f(x) = g(z). Let a be
the least element of Y \ {f(y) : ¥y < z}. Then we must have f(z) = a: if
f(z) > a, then some 2/ > x has f(z') = a by surjectivity, contradiction. The
same shows g(z) =least element of Y \ {g(y) : y < 2}, but this is the same as a.

So f(x) = g(x). O

Remark. This is false for total orders in general. One example is, consider from
7Z — 7, we could either take identity, or x — x — 5; or from R to R we could
take identity or x = 2 — 5 or = — ...

Definition. In a total order X, an initial segment I is a subset of X such that
zel,y<z = yel.

Example. For any x € X, set I(x) = {y € X : y < 2}. Then this is an initial
segment.

Obviously, not every initial segment is of this form: for example, in R we can
take {z : # < 3}; or in Q, take {x : 2% < 2} U {z < 0} (this cannot be written as
above form as v/2 ¢ Q.

Note: in a well-ordering, every proper initial segment is of the above form: let x
be the least elemnt of X \ I. Then y < 2 = y € I. Conversely, if y € I, then
we must have y < x: otherwise = € I, contradiction.

Our aim is to show that every subset of a well-ordered X is isomorphic to an
initial segment.

Note: this is very false for total orders: e.g. {1,5,9} C Z, or Q C R. If we have
S C X, Wwe would like to define f : S — X that sends the smallest of S to
the smallest of X, then remove them from both sets and send the smallest of
the remaining to the smallest of the remaining, etc... But to do this we need a
theorem.

Theorem. (3, definition by recursion)

Let X be well-ordered, Y be a set, and G: P(X xY) - Y. Then 3f : X - Y
s.t. f(z) = G(f|1,) for all z € X. Moreover, such f is unique.

Here we define the restriction as: for f: A — B, and C' C A, the restriction of
ftoCis fle ={(x, f(x)): € C}. (I think the lecturer is regarding a function
as subset of a cartesian product)

In defining f(x), make use of f|;,, i.e. the values of f(y),y < x.

Proof. Existence: define ’'h is an attempt’ to mean: h : I — Y, some initial
segment I of X, and Vz € I we have h(x) = G(h|r,). Note that is h,h" are
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attempts, both defined at z, then h(z) = h'(x) by induction on z. Since if
h(y) = W' (y)Vy < x then h(z) = h'(z).

Also, Vx € X there exists an attempt defined at x by induction on z: we want
attempt definde at z, given Vy < x there exists attempt defined at y. For each
y < z, we have unique attempt h, defined on {z: z < y} (unique by what we
just showed).

Let h = Uy<yhy: an attempt defined on I,. This is single-valued by uniqueness,
so is indeed a function.

So b/ = hU{(xz,G(h))} is an attempt defined at x.

Now set f(x) =y if 3 attempt h, defined at x, with h(x) = y (single-valued).
Uniqueness: if f, f* suitable then f(z) = f'(z)Vz € X (induction on X) — since
if f(y) = f'(y)Vy <z then f(z) = f'(z). O

A typical application:

Proposition. (4, subset collapse)
Let X be well-ordered, Y € X. Then Y is isomorphic to an initial segment of
X. Moreover, such initial segment is unique.

Proof. To have f an isomorphism from y to an initial segment of X, we need
precisely that Vo € Y : f(z) = min X \ {f(y) : y < 2}. So done (existence and
uniqueness) by theorem 3.

Note that X \ {f(y) : y < x} # ¢, e.g. because f(y) < y Vy (induction), so

rZ{f(y):y <z} O

In particular, a well-ordered X cannot be isomorphic to a proper initial segment
of X — by uniqueness in subset collapse, as X is isomorphic to X.

How do different well-orderings relate to each other?

We say X < Y if X is isomorphic to an initial segment of Y. For example,
Nﬁ{l—%:n:2,3,...}u{1}.

Theorem. (5)
Let X,Y be well-orderings. Then X <Y or ¥ < X.

Proof. Suppose Y £ X. To obtain f: X — Y that is an isomorphism with an
initial segment of Y, need Vo € X : f(z) = min Y \ {f(y) : y < z}. So we are
done by theorem 3.

Note that we cannot have {f(y) : y < } = X, as then Y is isomorphic to I,,. O

Proposition. (6)
Let X,Y be well-orderings with X <Y and Y < X. Then X and Y are
isomorphic.

Proof. We have isomorphism f from X to an isomorphism of Y, and g the other
way round. Then go f: X — X is an isomorphism from X to an initial segment
of X (i.s. of i.s. is i.8.), but that is impossible unless the initial segment is X
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itself. So g o f is identity (by uniqueness in subset collapse). Similarly, f o g is
identity on Y. O

New well-orderings from old:

Write X < Y if X <Y but X not isomorphic to Y. Equivalently, X <Y
iff X is isomorphic to a proper initial segment of Y. For example, if X = N,
Y ={1-1}U{1} then X <Y.

Make a bigger one: given well-ordered X, choose x ¢ X, and set x > y for all
y € X. This is a well-ordering on X U {z}: written X*. Clearly X < X ™.

Put some together:

Let (X, <x) and (Y, <y) be well-orderings. Say Y extends X if X C Y, and
<x, <y agree on X, and X an initial segment of (Y, <y).

Well-orderings (X; : ¢ € I) are nested if Vi,j € I : X, extends X; or X, extends
X;.

Proposition. (7)
Let (X; : i € I) be a nested family of well-orderings. Then there exist well-
ordering X with X > X; Vi.

Proof. Let X = U;e; X, with x < y if 3 with z,y € X; and = <; y, Then < is
a well-defined total order on X. given S C X, S # ¢, choose i with SN X; # ¢.
Then S N X; has a minimal element (as X; is well-ordered), which must also be
a minimal element of S (as X; an i.s. of X). Also, X > X,Vi. O
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4 Ordinals

Are the well-orderings themselves well-ordered?

An ordinal is a well-ordered set, with two sell-ordered sets regarded as the same
if they are isomorphic. (Just as a rational is an expression %, with %, %,

regarded as the same if M N’ = M’'N. But, unlike for Q, we cannot formalise
by equivalence classes — see later).

If X is a well-ordering corresponding to ordinal X, say X has order-type «.

Example. For each k € N, write k for the order-type of the (unique) well-
ordering of a set of size k, and write w for order-type of N. So, in R, {1,3,7}
has order-type 3. {1 — % :n =2,3,...} has order-type w. For X of o-t & and Y
of o-t 3, write a < B if X <Y (this is independent of choice of X,Y).
Similarly for a < § etc.

We know: Vo, 3, a< for < a,and if a < 3, 8 < a then a = f.

Theorem. Let o be an ordinal. Then the ordinals < « form a well-ordered set
of order-type a. e.g. the ordinals < w are 0,1,2,3, ....

Proof. Let X have o-t «. the well-orderings < X are precisely (up to isomor-
phism) the proper initial segments of X, i.e. the I,z € X.
But these are isomorphic to X itself, via x — I,. O

We often write I, to be the set of ordinals less than «.

Proposition. (9)
Let S be a non-empty set of ordinals. Then S has a least element.

Proof. Choose a € S. If & minimal in S then done. If not, then SN I, # ¢, so
have a minimal element of S N I, which is therefore minimal in S. O

Theorem. (10, Burali-Forti paradox):
The ordinals do not form a set.

Proof. Suppose not, let X be set of all ordinals. Then X is a well-orderings, say
order-type . So X is isomorphic to I,. But I, is a proper i.s. of X. O

Given a, we have at > a. Also, if {«; : i € I} is a set of ordinals, then there
exists a with o > «o;Vi (by applying prop 7 to the nested family of I,,;i € I).

In fact, there is therefore a least upper bound for {«; : i € I'} by applying prop 9
to the set {§ < « : 8 an upper bound for the a;}. This is written sup{«; : ¢ € I},
e.g. sup{2,4,6,8,...} = w.

Some ordinals: 0,1,2,...,w,w + 1(officially w™),w + 2,...,
wtw=w2=sup{w+1L,w+2,..,}, w2+ 1,w>+2 ..,
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W3, ey Wh, ey ww = w? = sup{w, w2, w3, ...},

.

W21, . Wi Hw, wrw+], WP w2, . wiw? = w22, w2, WP, L WS, WP =
3 3 4 w 2 3

w3, wi2, L wh L w? = sup{w,w? w?, L)

W1, w2, Wi = w@ T
12 43 2 3 w
W LW W w L w
R
And as expected we have w® = sup{w,w?, w3, ...} := go, and then g9 + 1, ...,

and then the whole thing again until e; = séo .

However, although this thing looks quite magnificent, they are all just countable
(as we have just done it). Is there an uncoutnable ordinal? In other words, is
there an uncountable well-ordered set?

Theorem. (11)
There is an uncountable ordinal.

Proof.

IDFEA : takesupo fallcountableordinals. However, thismightnotbeaset.

Let R ={A € P(N x N)} s.t. A is a well-ordering of a subset of N. Let S be
image of R under ’order-type’, i.e. S is the set of all order-types of well-orderings
of some subset of N. Then S is the set of all countable ordinals. Let w; be sup S.
Then w; is uncountable: otherwise, then wy € S, so w; would be the greatest
member of S. But then wy + 1 is also in S. O

Note that, by contradiction, w; is the least uncountable ordinal. w; has some
strange properties, e.g.

1. wy is uncountable, but for any o < wq, we have {§ : 5 < a} countable.

2. If a1, ag, ... < wy is any sequence, then it is bounded in wy: sup{aq,...,as} is
countable, so is less than wi.

Similarly we have

Theorem. (11’, Hartogs’ lemma)
For any set X, there is an ordinal that does not inject into X.
To see that, just replace P(N x N) by P(X x X) in the previous proof.

Write (X)) for the least such ordinal - e.g. v(w) = w;.
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4.1 Successors and limits

Given ordinal «, does « (any set of order-type «, e.g. I,) have a greatest
element?

If yes: say [ is that greatest element. Then y < for v = = v < «, and
v<a = y<fBory=pf (as we can’t have v > 3). In other words, o = 8+.
In that case, we call a a successor;

If not: then V8 < o, 3y < aws.t. v > B. So @ = sup{f : B < a}. (this is false in
general, e.g. w+ 5). We call « a limit.

For example, 5 is a successor, w + 5 is a successor, w is a limit, w + w is a limit.
(0 is a limit as well).

For ordinals «, 8, define a + 8 by recursion on 8 (« fixed) by: a4+ 0 = «a,
a+ BT =(a+8)", a+ X=sup{a+v:v < A} for A a non-zero limit.

For example, w+1 = (w+0)" =w™, w42 =w™ 14w =sup{l+y: 7 < w} =w
— so addition is not commutative.

Officially, by ’recursion on the ordinals’, we mean: define a +~ on {v:v < 5}
(a set) recursively, plus uniqueness. Similarly for induction: if know p(8)VS <
a = p(a) (for each a), then must have p(a)Va. If not, say p(«) false: then
look at {8 < a: p(p) false }.

Note that 8 <y = a+ < a++ (induction on 7). Also, 8 <7 = a+8<
a+7. Indeed, v > 8T, s0 a+v > a+ BT = (a+B)T > a+ B. However, 1 < 2,
but 1 +w =2+ w.

Proposition. (12)
a+ (8+7) = (a+ B)+Va, B, ordinals.

Proof. Induction on 7:

0: a+(B+0)=a+p=(a+p)+0.

Successors: (a+B) +7" = ((@+8)+7) ' =(a+(B+))" =a+(B+7)" =
a+(B+7).

A a non-zero limit: (a+ B) + A=sup{(a+8)+v:v <A} =sup{a+ (B+7):
v < AL

Claim: 8+ X is a limit.

Proof of claim: We have S+~ =sup{f+v:7<A}. Bty <A = Iy < A
with vy <y = B+~v< B8+ So {B+~v:7 <A} does not have a greatest
element.

Back to the main proof, now a + (8 4+ v) = sup{a+ 6 : § < 4+ A}. So want
sup{a+ (B+7):y < M=sup{a+d§:J < B+ A}

<ty <A = B+4+v< B+ A s0o LHS C RHS;

> 0 < B4+ = 0 < B+, somey < A (definition of 8+ A). So
a+dé<a+(B+7). O

Alternative viewpoint:
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Above is the 'inductive’ definition of +. Thereis also a synthetic definition: o+ 8
is the order-type of a U 8 (« disjoint union 3), with all of o coming before all of

8.

Clearly we have a + (6 +7) = (a4 ) + v with this definition (same order-type).
We need:

Proposition. (13)
The synthetic and inductive definition of 4 coincide.

Proof. Write o 4+ 3 for inductive, o +' 8 for synthetic. Do induction on 8 («
fixed).

0: a+0=a=a+'0:

Successors: a+' Bt = (a+' )T = (a+8)" =a+ B7;

A a non-zero limit: a +’' v = order-type of ol X = sup of order-type of a LI,
v < A (nest union, so order-type of union = sup — this was proved before) =
sup(a+ v:y<A)=supla+y:7<A) =a+ A\ O

Normally we prefer to use synthetic than inductive, if we do have a synthetic
definition available.

Ordinal multiplication:

Define af recursively by:

a0 =0, a(BT) = af + a, aX = sup{ay : v < A} for A a non-zero limit. e.g:
wl=wl+w=0+w=w;

w2 =wl4+w=w+uw;

ww = sup{0,w,w + w,w + w + w, ...} (as in our big picture)

2w = sup{2y : v < w} = w, so multiplication is not commutative.

Similarly, this also has a synthetic definition: «f is the order-type of a x 3,
with (z,y) < (z,t) if either y < ¢t or y = ¢ and « < z. We can check that these
coincide on the previous examples. Also we can see a(87y) = (af)y etc.

We can define ordinal exponentiation, powers, etc. Similarly. For example, let’s
define exponentiation:

;
=1, =af a, o

= sup{a” : v < A} for A a non-zero limit.

Note that w! = w, w? = w-w, and 2¢ = sup{2” : v < w} = w (and is
countable). This is different to what we expect from cardinality, but the notation
in cardinality and here is different.



5 POSETS AND ZORN’S LEMMA 18

5 Posets and Zorn’s lemma

A Partially ordered set or poset is a pair (X, <) where X is a set and < is a
relation on X that is reflexive,transitive and antisymmetric. Write z < y if
x <y,z #y. In terms of <, a poset is irreflexive and transitive.

For example, any total order is a partial order; N* with divides; for any set S,
P(S), wiith < y if  C y; for any X C P(S), with same relation of z < y if
x C y (e.g. all subspaces of a given vector space).

In general, a hasse diagram for a poset X consists of a drawing of the posets
of X, with an upward line from z to y if y covers x, i.e. y > x, but no z that
y>z>a.

Hasse diagrams can be useful to visualize a poset (e.g. N, usual order), or useless
(e.g. Q, usual order).

In a poset X, a chain is a set S C X that is totally ordered (Vz,y € S: a2 <y
ory < z).

Note: chains can be uncountable, e.g. in (R, <) take R.
We say S C X is an antichain if no two elmeent are related.
For S C X, an upper bound for Sisanx € X st. c >y Vy e S.

Say X is a least upper bound, or supremum for S, if z is an upper bound for 5,
and x < y for every upper bound y of S.

Write x = sup S or z = VS.

e.g. In R, {z : 22 < 2} has 7 as least upper bound, and sup = v/2 (so sup S need
not be in S). In R, Z has no upper bound. In Q, {z : 2 < 2} has 7 as an upper
bound, but no least upper bound.

We say a poset is complete if every subset has a sup.

)

e.g. (R, <) is not complete: Z has no sup (so different to notion of ’completeness
from analysis);

[0,1] is complete; (0,1) is not complete: itself has no sup;

P(S) is always complete: {A; : 4 € I} has sup U;erA;.

A function f: X — X, where X is any poset, is order-preserving if f(z) < f(y)
Vo <y.

eg. on N: f(z) =z +1;0n[0,1] : f(z) = 1= (halve the distance to 1); on
P(S): f(A) = AU {i} for some fixed i € S.

not every order-preserving f has a fixed point (f(z) = z), e.g. f(z) =z +1on
N.

Theorem. (1, Knaster-Tarski fixed point theorem):
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Let X be a complete poset. Then every order-preserving function f: X — X
has a fixed point.

Proof. Let E={x € X : x < f(x)}, and put s = sup E. To show f(s) = s, we’ll
show that s < f(s) and s > f(s).

s < f(S): Enough to show f(s) is an upper bound for E (as s the least upper
bound). But z € F = 2z <s = f(z) < f(s) = z < f(z) < f(s).

s > f(s): Enough to show f(s) € E (as s an upper bound). We know s < f(s),
and want f(s) < f(f(s)). But that’s true because f is order preserving. O

Note: in any complete poset X, we have a greatest element (zs.t.xz > y¥y),
namely sup X. A typical application of knaster-tarski:

Theorem. (2, schréder-bernstein theorem)
Let a, B be sets s.t. there exists injection f: A — B and an injection g : B — A.
Then there exists an bijection from A to B.

Proof. Seek partition A = PUQ,B=RUS s.t. f(P)= R and ¢g(S) = Q. Then
we are done: set h to be f on P,y ! on @Q, then h: A — B is a bijection.

ie. we seek P C Ast. A\ g(B)\ f(P)) = P. Define 0 : P(A) — P(A) via
P — A\ g(B\ f(P)). Then since P(A) is complete, 0 order-preserving, there is
a fixed point by K-T theorem. O

5.1 Zorn’s Lemma

An element z in poset X is Mazimal if no y € X has y > z.

Posets need not have a maximal element, for example Z, Q, R.

Theorem. (3, Zorn’s lemma)
Let X be a non-empty poset in which every chain has an u.b.. Then X has a
maximal element.

Proof. Suppose not. Then for each z € X there is some ' € X with 2’ > z.
Also, for any chain C' we have an upper bound u(C). Pick z € X. Define
o € X, each a < y(x) (y(x) is the u.b.?) recursively by: zo = z, Toy1 = @,

zx = u({zq : @ < A}) for A a non-zero limit (this is a chain by induction). Then
a — T4 is an injection from v(X)toX. O

A typical application of Zorn: does every vecotr space have a basis? Recall that
a basis is a LI spanning set.

e.g. V = space of all real polynomials. We can take 1, z, 2?2, ...

Let V now be all real sequences. But I; = (1,0,0,0,...), I = (0,1,0,0,...), then
l1,15 LI but not spanning! (recall span must be a finite linear combination!) It’s
easy to check that there is no countable basis. Also, it turns out that there is no
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explicit basis.
R as a vector space over Q. Basis is called a Hamel basis.

Theorem. (4) Every vector space V has a basis.

Proof. Let X = {A CV : Ais LI}, ordered by C. We seek a maximal element
M of X (then we are done: if M does not span then choose x & (M), and now
M U {z} is LI, contradiction.

We have X # ¢, as ¢ € X.

Given a chain {4; : i € I} in X, put A = U;cr4;, then A > A; Vi, so just
need A € X, ie. A LI Suppose A is not LI, hten > ; \;z; = 0 for some
Z1,...,&, € A, and \; scalars not all zero. We have z; € A;,,...,z, € A;,
for some iy, ...,in, € I. But A;,...,A;, € A;,, some k (as they are nested),
contradicting A;, being LI O

Note: the only actualy maths (i.e. linear alebra) in the proof was the then done’
part.

Another application: completeness theorem when proposition language uncount-
able.

Theorem. (5)
Let S C L(P), where P is any set. Then S consistent implies that S has a
model.

Proof. We seek a maximal consistent S O S. Then done: for each ¢ € L(p) we
have S U {t} or S U {~t} consistent (see chapter 1), hence t € S or =t € S by
maximality of S. Now define v(t) = 1 if t € S, 0 otherwise (as in chapter 1).
Let X be the set of all consistent subsets of L(P), ordered by C. Then X # ¢,
as S € X. Given a non-empty chain (T; : ¢ € I) in X, put T' = U;c;T;. Then
T O T; for each i, so we just need T € X. We have S C T as T # ¢. Also
T is consistent: if T 1, then {t1,...,t,} FL for some ty,...,t, € T. We have
ty € Tiy,ooytn € T;, for some iy, ...,4, € I. But T;,,..., T3, C T;, for some k
(nested), contradicting T;, being consistent. O

One more:

Theorem. (6, well-ordering principle)
Every set S can be well-ordered.
Note that this is very surprising for e.g S = R.

Proof. Let X = {(A,R): A C S and R is a well-ordering of A}. We order this
by: (A,R) < (A", R') if (A',R’) extends (A, R). Then X # ¢, as (¢,¢) € X.
Given a chain ((A;, R;) : ¢ € I), we have (U;erA;, Uier R;) € X, and extends each
(A;, R;) from chapter 2. So by Zorn’s lemma, X has a maximal element (A, R).
We must have A = S: otherwise choose x € S\ A and take ’successor’: well-order
AU{z} by putting z > a Va € A, contradicting maximality of (A4, R). O

Remark. Proof of zorn was easy, but we used a lot of machinery there (ordinals,
recursion, hartog’s lemma).
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5.2 Zorn’s lemma and the axiom of choice

In proof of Zorn’s kemma, we chose, for each z € X, and 2’ D z, i.e. we made
infinitely many arbitrary choices, even by time we get to x,,. We did the same
in part TA, to prove that a countable union of countable sets is countable. This
is appealing to the axiom of choice, saying that we may choose an element of
each set in a family of non-empty sets.

More precisely, the axiom of choice states that, if (4; : ¢ € I) is a family of sets,
we have a choice function, meaning a function f: I — U;erA; s.t. f(i) € A; Vi.
This is of a different characterto the other set-building rules in that the object
whose existence is asserted is not uniquely specified by its properties (unlike
e.g., AUB).

So often one points out when one has used axiom of choice.

Note that AC is trivial [I| =1 (A # ¢ means 3z € A). Similarly for I finite by
induction. However, there is no derivation of AC from the other set-building
rules for general I.

Also, we cannot prove ZL without AC because we can deduce AC from ZL:
Given family (A; : i € I) of non-empty sets, a partial choice function is an
[ J = UierA; for some J C I, s.t. f(j) € A;V5 € J. Put (J, f) < (J', f') if
J C J and f'|J = f. This poset is not empty. Also, given a chain we have an
upper bound being the union of them. So by ZL, there is a maximal of such.
We must have J = I in that case, as if not we can choose (?77) i € I\ J, x € 4,
and put J' = JU{i}, f' = fU{(i,z)}. Contradiction.

Conclusion: ZL <= AC (in presence of the other set-building rules).

Also, we had ZL = WO, and WO = AC trivially (well order Ui € T A;
and let f(i) be the least element of A4;). So we get ZL < AC <= WO.

5.3 The Bourbaki-Witt theorem

Poset X is chain-complete if X # ¢ and every non-empty chain has a sup.
For example, any complete poset is chain-complete; any finite poset is chain-
complete; and {A C V : A is LI}, for a vector space V is also.

We say f: X — X is inflationary if f(x) > z V.

Theorem. (Bourbaki-Witt)

X chain-complete, f : X — X inflationary. Then f has a fixed point.

Note that BW follows instantly from ZL: take maximal z, and now f(z) > «
= f(z) ==x.

However, we can prove BW without AC: we pick some xzy € X, then let
x1 = f(xg), x2 = f(21), ..., and let x,, be the sup of them.

In chapter 2, we did not use AC, except in remark that well-ordering <= no
decreasing sequence, and that w; is not a countable sup.
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In fact, it’s easy to deduce ZL from BW (using AC). So we can view BW as the
choice-free version of ZL.
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6 Predicate Logic

Recall that a group is a set equipped with functions:
M : A2 — A (arity’ (slots) 2) and inverse iA — A (Carity’ 1), and a constant
e € A (kind of ’arity’ 0), s.t.

(Va,y,z € A)(M(z, M(y, z)) = M(M(z,y),2)),

And a poset is a set A equipped with a predicate (relation) < (arity 2) C A2 s.t

<
(Vz,y,2 € A)((z <y ANy < 2) = 2 <2),
(Vez,ye A)((z <yAy<z) = z=1y)

We try to establish these correspondence between propositional logic and pred-
icate logic: Language — e.g. language of groups (thinks like the definitions
above);

Valuation — structure (set equipped with functions and relations of given ari-
ties);

Model of S (valuation making each s € S true) — model of S (structure in
which each s € S holds);

S Et — same (e.g. In language of groups, should have the above 3 definitions
E M(e,e) = e etc);

S+t — same (but a bit more complicated).

Let © (function symbols) and TI(relation symbols) be disjoint sets, and « (arity)
: QUIT — N. The language L = L(Q, 11, «) is the set of formulae, defined by:
e variables: x1,x9,3,... (can use z,y, etc);

e terms: defined inductively by:

(i) each variable is a term;

(ii) If f € Q, a(f) = n, and t1,...,t, are terms, then ftj..t, is a term
(and as always, we can add brackets, commas, etc). For example, in the
language of groups: Q = {m,i,e} of arities 2,1,0, II = ¢. Some terms:
21, (@1, 32), € e, €), m(z1,i(21)), etc.

e Atomic formulae, consists of:

(i) L

(ii) (s =t), any terms s, t;

(iii) ¢(t1,...,tn), any ¢ € I, a(¢) = n, and terms tq, ..., ty.

Again use the language of groups as example: m(x,y) = m(y, z), m(x,i(z)) = ¢;
In language of posets: Q = ¢, IT = {<} of arity 2. We could take z = y,z <
Y,z < .

e Formulae: defined inductively by:

(i) Each atomic formula is a formula,

(ii) If p, ¢ are formulae, then so is (p = q);

(iii) If p is a formulae, x is a variable, then (Vz)p is a formula.

e.g. in language of groupsL (Vz)(m(z,z) = e), (Vz)((m(z,z) = ¢) =
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(3y)(m(y,y) = x)) (note that we have not talked about 3 yet; we’ll do that
later).
In language of posets: (Va)(z < z).

Notes:

1. A formula is just a string of symbols.

2. We can now write —p for p = 1, and similarly for p A ¢, p V q etc, and
(Fz)p for —(Va)(—p).

A term is closed if it contains no variables. For example, e, m(e, e), m(e, m(e, €)).
However, m(z,i(x)) is not closed.

An occurrence of variable x in formular p is bound if it is inside the brackets of
Vo' quantifier. Otherwise, it is free.

For example, in m(z,z) = e = (3y)(m(y,y) = x), each z is free and each y is
bound.

Note that in some cases we can make a variable both free and bound: (m(z,z) =
e) = (Vz)(Vy)(m(z,y) = m(y,x)). We see that « in LHS is free, but in RHS
is bound (although it’s not a very helpful expression).

A sentence is a formula without free variables: e.g., (Vz)(m(z,e) = z). For
formula p, variable z, term ¢, the substitution p[t/x] is obtained by replacing
each free occurence of x with t.

For example, if p is (3y)(m(y,y) = x), then ple/x] is (Jy)(m(y,y) = e).

Semantic entailment: An L-structure consists of a non-empty (see later wfor why)
set A equipped with, for each f € Q with a(f) = m, a function fq : A™ — A,
and for each ¢ € I, with a(¢) = n, a relation ¢4 C A™.

For example, let L be the language of groups: an L-structure is a set A with
functions m4 : A2 — A, is: A — A, eq an element of A (need not be a group!
These have no 'meaning’ yet).

Another example: L be the language of posets: an L-structure is a set A with a
relation <4C A2

We want to define the interpretation ps € {0,1} of a sentence p in structure A,
e.g. (Vz)(m(x,z) = e) shold be ’true in A’ if Va € A: ma(a,a) =ea.
So: ’insert € A subsubscript A and say it aloud’.

Formal bit: For L-structure A, define interpretation of a closed term t to be
ta € A, defined inductively by:

(ft1.tn)a = faltia, .., tna) for any f € Q, a(f) = n, closed terms ty, ..., t,.
e.g. m(e,i(e))a =ma(ea,ia(ea)) (and e4 already defined).

Atomic formulae: define ps € {9, 1} for p atomic by:
(i) La=0;
(i)

. . 1 sqg=ty
(S_t)A_{ 0 else

for s,t closed terms;
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(i)
I (tia,-rtna) € 04
0 else

O(t1..tn)a = {
for ¢ € II, a(¢) = n, closed terms tq, ..., t,.
Sentences: p4 defined inductively by:
(i)

_J 0 pa=1,4ga=0
(p:>Q)A{1 else

(i)
(Vi)y)a = { (1) ;Zl[zéx]A =1forallaec A

where, for any a € A, add constant symbol a to L, obtaining L', and make A an
L'-structure by setting a4 = a.

If p has free variables, we can define py C Arumber of free variables of p_
e.g. if pis (Jy)(m(y,y) = x), then pa = {a € A:3b € A with mu(b,b) = a}.

If pa =1, say p true in A, or p holds in A, or A is a model of p. For T a theoy
(set of sentences), say T semantically entails p, written T F p, if every model of
T is a model of p.

p is a tautology if ¢ E p (or just E p), i.e. p holds in every L-structure. For
example, F (Vz)(z = z).

Examples: theory of groups: Q = (m,i,e), Il = ¢. Let

T = {(Vz)(Vy)(Vz)(m(z, m(y, 2)) = m(m(z,y), 2), (Vz)(m(z, e) = x Am(e,x) = x), (Vz)(m(z, i(z)) = e A m(
Then an L-structure is a model of T <= it is a group.

Say T ’axiomatises’ the class of groups or ’axiomatises the theory of groups’.

Sometimes call the elements of T' the ’axioms’ of T

Theory of fields: Q = {+, x,—,0,1}. T is: abelian group under (+,—,0); X

is commutative, associative, distributive under +; (Vz)(lx = ), =(1 = 0),

(Vz)((—(x = 0)) = (Jy)(zy = 1)). Then T axiomatises the class of fields.

E.g., T E inverses are unique: (Vz)((—(z #0)) = ((Vy)(Va)((yx =1 A zz =
1) = y=2)).

Theory of posets: Q = ¢,II = {<}.

Tis: (Vo)(z < z), (Vo) (Vy)(V2)((z Sy Ay < 2) = o < 2), (Vo) (Vy)((z <
yAy<z) = z=y).

Theory of graphs: = ¢, Il = {a} (’is adjacent to’).
T'is (Vo) (a(z,x)), (Vo)(Vy)(a(z,y) = aly,x)).

Proofs:
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Logical axioms:

1)p = (¢ = p) (any formulae p, q);

p = (¢ = 1) = (p = q) = (p = r)) (any formulae p, q,7);
(=—p) = p (any formula p);

(Vz)(x = x); (any variable x);

(V )(Vy)(x =y) = (p = ply/z])) (any variables z,y, formula p where

occuring bound in p)
(M) (Vz)(p = q)) = (p = (Vz)q) (any variable z, formulae p, ¢ with z
not occurring free in p).

As rules of deduction, we take:

Modus Ponens: From p,p = ¢ can deduce g;

Generalisation: From p can deduce (Vz)p, if z does not occur free in any premise
used to prove p.

For S C L, p € L, a proof of p from S is a finite sequence of formulae, ending
with p, s.t. each line is a logical axiom, or a member of S, or follows from earlier
lines by MP or GEN. Write S - p (°S proves P’) if there exists a proof of p from
S.

Example: {z =y,x =2} F {y = z} (use axiom 5, with p being 'z = 2’).

L (Vo)(Vy)(r =y = (r =2 = y = z)) (axiom 5);

2. (Vo) Vy)lz=y = (z=2 = y=2)) = W)lze=y = (=2 =
y = z)) (axiom 6, t =" 2);

3. W(z=y = (=2 = y=2)) (MP on 1,2);

4. My)la=y = (e=2 = y=2)) = (e=y = (=2 = y=2))
(axiom 6);

5. 2=y = (x=2 = y=2z2) (MP on 34);

6. © =y (hypothesis)

7. x=y = y=2z (mp on 5,6)

8. x = z (hypothesis)

9. y==z2 (mpon78)

Aim: TFp <= TEnp.

e.g. if p holds in every group then p can be proved from the three group axioms
(completely obvious).

Proposition. (1, deduction theorem)
Let SCL,p,ge L. Then St (p = q) < SU{p}tq.

Proof. Forward: as for propositional logic, from p = ¢ write down p and
apply MP to obtain S U {p} F ¢;

Backward: as for propositional logic: the only new case is ’generalisation’. So in
proof of ¢ from S U {p} we have something like r then (Vz)r (Gen), and have a
proof of p = r from S (induction), and we want S +p = (Vz)r. In proof
of r from S U {p}, no premise had z free. So in proof of p = r from S, no
premise had x free. Hence S+ (Vz)(p = r (gen).
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o If = does not occur free in p: we have S +p = (Vz)r by axiom 6 and MP;
e If 2 does occur free in p: proof of r from S U {p} cannot have used p. So in
fact S+ (Vz)r whence S+ (p = (Vz)r) by axiom 1. O

Proposition. (2, soundness)
Let S be a set of sentences, p a sentence. Then if S+ p then S F p.

Proof. We have proof of p from S, and a model A of S, and we want p, = 1.
This is an induction down the lines of the proof. O

For adequacy, we want if S F p, i.e. that if SU{-p} EL, then SU{—-p} L.

Theorem. (3, model existence lemma, or completeness theorem)

Let S C L be a set of setences. Then S consistent implies that S have a model.
Ideas:

e 1. Build model out of language: let A be the set of closed terms of L, with
operation line (14+1)+4 (14+1)=(1+1)+ (1 +1);

e 2. Say for S be the theory of fields: (1+1)+1# 14+ (1+1), but S+
(1+1)+1=1+(1+1). So quotient out by s ~ ¢ if S+ s=1;

e 3. Suppose s is the fields of characteristic 2 or 3, i.e. field axioms, and the
statement 1+1=0V1+141=0. Then S/ 1+1=0. So [1+ 1] # [0],
where [-] denotes the equivalent class unrder ~. Also, S 1+1+1=0, so
[14+141] # [0].

So our structure does not satisfy 1+1 =0V 1+ 14+ 1=0. Then we need to
extend S to maximal consistent.

e 4. If S is 'fields with a sqaure root of 2”: field axioms + (3z)(zx = 1+ 1).
Maybe no closed term ¢ has [tf] = [1 4+ 1]. So s lacks 'witnesses’.

Solution: for each (Jz|p in S, add new constant ¢ to language, and add p[c/x]
to S. (e.g. cc=1+1).

Now no longer maximal consistent, so go back to step 3.

Problem: this might not terminate.

Proof. We have consistent S in language Ly = L(Q2,II). Extend to maximal
consistent S; (zorn), so for each sentence p € L, we have p € Sy, or (—p) € Si.
Thus S is complete (for every p, S; F p or S1 F (-p)). Add witnesses: for
each (Jz)p in S7, add new constant ¢ and axiom p[c/z]. We obtain T3 in
language Ly = L(Q U Cy,1I) that has witnesses for Sy (if (3x)p € S, then some
closed term t has p[t/xz] € T1). It’s easy to check T3 consistent. Now extend
T) to maximal consistent Sy (in L). Add witnesses, obtaining T5 in language
Loy =L(QUC; UCy,II).

Continue inductively.

Put S = S; USyU.... Inlanguage L = L(QUCL UCy U ...).

e S is consistent: If S 1, then some S,, L (as proofs are finite), contradiction;
e S is complete: given sentence p € L, we have p € L,, for some n (as p mentions
only finitely many constants), so S,+1 F p or Sp41 F (—p) (choice of Sp41).

e S has witnesses (for itself): given (3x)p € S, we have (Jz)p € S,, for some n.
So p[t/z] € T,, for some closed term t (choice of T},), whence p[t/z] € S. O
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On set of closed terms of L, define s ~ ¢ if S+ (s =t).

This is clearly an equivalent relationship. let A be the set of equivalent clases.
Make A into an L-structure by setting fa([t1], ..., [t2]) = [ft1...tn] (each f €
Q,a(f) =n, closed terms t1...t,), pa = {([t1], .., [ta]) : S @(t1, ..., tn)} (each
¢ €11, a(¢) = n, closed terms t;...t,,).

Claim: ¢4 =1 <= S F p for each setnence p € L. (Then done: A is a model
of S, so A is a model of S.

Proof. An easy induction:
Atomic sentences:
L:l4=0and SHL.
s=t:

¢(t1...t,): same.

Induction step:
p = ¢

St(p = q) <= Sk (-p)orStq
<= pa =0 or g4 = 1(induction)
= (p = @Qa=1

where the second step is because, say if the forward direction doesn’t hold, then
St p, SF (—q) (since S is complete), but then S+ —(p = ¢), contradiction).

(3x)p: ) B
St (Fx)p < St p[t/a]
<~ plt/x]a=1
< ((Fz)p)a =1

for some closed term ¢. The last line is because A is the set of equivalent classes
of closed terms. O

By remark before theorem 3 we have

Corollary. (4,adequacy)
If SF p, then S+ o.

Hence:

Theorem. (5, Godel’s completeness theorem for first-order logic)

Let S be a set of sentences and p a sentence (in language L). Then S F p <
St p.

The proof is just soundness + adequacy.
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Note:

o If L is countable (i.e .Q, IT countable), then we don’t need Zorn’s lemma;

e 'First-order’ means variables range over elements of our structure (not, e.g.,
subsets).

Theorem. (6, compactness)
Let S C L be a set of sentences. Then if every finite subset of S has a model,
then S has a model.

Proof. This is trivial if we replace E with | (as proofs are finite). O

Note: we have no decidability theorem — how to check if S F ¢?

Some consequences of completeness/compactness:

Can we axiomatise the class of finite groups? In other words, we want some
sentences S (in language of groups) s.t. a structure is a model for S <= it is
a finite group.

However, this is not possible.

Corollary. (7)
the class of finite groups cannot be axiomatised (in language of groups).

Proof. Suppose S axiomatises finite groups. We add to S the sentences:

(F21) (Fz2) (~ (21 = 22))
(321)(Fr2) Bz3) (~ (21 = 22) A = (71 = 33) A ~(22 = 73))

which stands for |G| > 2, |G| > 3, etc.
Then ever finite subset has a model (e.g. Z,, n large). However, the set itself
has no model — contradicting compactness. O

Similarly,

Corollary. (7)
Let S be a theory in a language L. Then if S has arbitrarily large finite models,
then it has an infinite model.

Proof. Add sentences as in corollary 7, and apply compactness theorem. O

So we know finiteness is not a first-order property.

Corollary. (8, upward Léwenheim-Skolem theorem)
If a theory S has an infinite model, then it has an uncoutnable model.

Proof. Add uncoutnably many consttants {c; : i € I} to the language, and add
to S the set of sentences ¢; # ¢; (for each distinct 4, j € I). Then any finite
subset has a model. So the whole set has a model by compactness. O
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Similarly, we could find a model into which P(P(R)) injects (choose I =
P(P(R))). E.g., there exists an infinite field (Q), so there exists field as big as
P(P(R)).

Corollary. (9, downward Lowenheim-Skolem theorem):
Let S be a theory in countable language L. If S has a model, then it has a
countable model.

Proof. The model constructed in theorem 3 is countable. O

6.1 Peano Arithmetic

We try to make the usual axioms for N into a first-order theory.
L:Q=10,s,+,x}, II =¢, axioms:

L (Va)(—s(z) = 0);

2. (Vo) (Vy)(s(z) = s(y) = = =1y);

?- (VY1) (Vyn)[(p[0/2] N (Va)(p = pls(x)/2])) = (Va)p.

y; in 3 are parameters).

4. (Vz)(x + 0= 2);

5. (Va)(Vy)(x + s(y) = s(z +y));
6. (Vz)(z+0=0);

7. (Va)(Vy)(z x (y) = (z +y) + ).

These axioms are called Peano Arithmetic or Formal Number Theory.

Note on axiom 3: first guess shold have been

(p[0/z) 0 (Val(p = pls(x)/a])) = (Vz)p
But then missing properties like > y (y chosen earlier).

Then PA has an infinite model, so by upward L-S, PA has an uncountable model
that is not isomorphic to N trivially. Doesn’t this contradict the fact that the
usual axioms characterise N uniquely?

Answer: axiom 3 is only 'first-order induction’ — even in N itself, it refers to only
countably many subsets (as opposed to true induction).

A subset S C N is called definable if there exists p € L, free variable z, s.t.
VYm € N we have: m € S <= p[m/z] holds in N (where by m we mean
1+1+...4+1 (m times)).

e.g. set of squares: p(z) is (3y)(yy = z);

set of primes: p(x) is: ~(x =0) N =(z = 1)~(Vy)(y|]z) = ((y=1)V (y = x)),
where y|x is a short hand for (32)(yz = ), and by 1 we mean s(0).

Powers of 2: p(x) is (Vy)((y|z Ay prime) = (y = 2)).

Exercise: powers of 4; challenge: powers of 6.

Is PA complete? in other words, for each sentence p, PA + p or PA F —p?
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Theorem. (Gddel’s incompleteness theorem)

PA is not complete.

Take p with PA V/ p, PA I/ =p. We have p holding in N or (—p) holding in N.
Conclution: 3 sentence p s.t. p is true in N, but PA I/ p.

This does not contradict completeness; it shows that if p true in all models of
PA, then PA + p.
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7 Set Theory

Aim: what does ’the universe of sets’ look like?

Key starting point: view set theory as ’just another finite-order theory’.

7.1 Zermelo-Fraenkel set theory

We have L: Q= ¢, Il = {e}, a(e) = 2.

We’ll have the ZF axioms: 2 to get started, 4 to build things, and 3 you might
not think of at first.

Then a ’universe of sets” will mean a model (V,€) of the ZF axioms.

1. Aziom of extension:
If two sets have the same mebmers, then they are equal:
Vx)(Vy)(Vz)(z €x <= z€y) = (x=y)).

Note: converse is an instance of a logical axiom.

2. Aziom of separtion:

We can form a subset of a set, or precisely, given set x and property p(z), we
can form the set of all z €  such that p(z) holds:

(Vt1)...(Vtn) (V) By)(V2)(z € y <= (2 € x A D))

This is actually an axiom scheme: for each formula p and free variables t;.

Note: we do want parameters, e.g. to have {z € x : ¢ € z}, t chosen earlier.

3. Axiom of empty-set:
There is a set with no members.
(Fz)(Vy)(—y € z).

We write ¢ for the unique (by extension axiom) such set x. This is just an
abbreviation: so p(¢) means (3z)((Vy)(—y € z) A p(x)).

Similarly, write {z € x : p(z)} for the set guaranteed by separation.

4. Aziom of pair-set:
We can form {z,y}.
Vz)(Vy)(3z)(Vt)(t € 2 <= t=axVi=y).

We write {z,y} for this set, and {z} for {z,x}.

We can now define the ’ordered pair’ (x,y) to be {{z}, {z,y}}.

It’s easy to check that (z,y) = (t,u) = z =t Ay = u (follows from axiom so
far).

Say x is an ordered pair if (Jy)(3z)(x = (v, 2)), and we say f is a function to
mean (Vz)(x € f = x is an ordered pair) A(Vx)(Vy)(Vz)((x,y) € f A (2, 2) €
f = y=2).
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Can now define the domain of a function as follows: write x = Domf if (f is a
function) A(Vz)(z € 2 <= (3t)((2,t) € [))).

And write f : # — y for (f is a function) A(x = Domf| A (V2)((3t)((t, 2) €
f) = z€y)).

5. Axiom of union:
We can form unions.
(Vz)(Fy)(V2)(z €y <= (3t)(z €t At € x)).

6. Axiom of power-set:

We can form power-sets.

(Vz)(Jy)(Vz)(z €y <= z C x).

Here by z C x we mean (Vt)(t € z = t € z).

Notes:

1. write Uz and P(z) for these two sets. We can write 2 U y, etc.

2. No extra axiom needed for interseionts: we can form Nz (x # ¢) as a subset
of y any y € x. So ok by separation.

3. We can now form x X y as a suitable subset of PP(zUy) —since if t € z,u € y,
then (t,u) = {{t},{t,u}} € PP(z Uy). And then we can form the set of all
functions from z to y, as a subset of P(z X y).

The next three are more subtle:

7. Axiom of infinity:

So far, V' (the branch symbol) must be inifinite. For example, write z+ = zU{x},
then easy to check that ¢,¢", ¢t ... are all distinct. We often write 0 for ¢,
1 for ¢7,2 for ¢, etc. So 1 =1{0},2=1{0,1},3 ={0,1,2},etc. But does the
structure (V, €) have an infinite set — e.g. = with ¢ € z,¢" € z, ...7

We say x is a successor set if (¢ € ) A (Vy)(y € 2 = yT € x).

Now let’s state the axiom:
There is an infintie set/there is a successor set.
(3x)(z is a successor set).

Note that any intersection of successor sets is a successor set, so there exists a
least one, called w. This will be our version, in V', of the natural numbers.

Thus (Vz)(z € w < (Vy)(y a successor set =—> x € y)).
Note that if z C w is a successor set then x = w by definition:
(Vz)(x CwApExA(Vy)(ly€Ex = y" €x)) = z =w). This is induction:

genuine induction, over all x C w (as opposed to in PA).

Also, it’s easy to check (Vz € w)(—zT = ¢), and (Vz € w)(Vy € w)(zT =yT =
x=vy).

Thus: w satisfies (in V') all the usual axioms for the natural numbers.

Say x is finite if (y)(y € w A = bijects with y).
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And then z is countable if x is finite or x bijects with .

8. Axiom of Foundation:

”Sets are build up from simpler sets”. We want to disallow x € z: note that
{z} has no e-minimal member; and also disallow & € y € x: note {z,y} has
no e-minimal element, etc. And we also want to disallow the infinite sequence
x1 € Tg, T2 € T1, T3 € Ta,..., in which case {xg, x1, ...} has no e-minimal element.

The axiom: every (non-empty) set has an e-minimal element.
V)(x#¢ = Fy)lyeaxAVz)(z€x = z&y)).

Bonus lecture on next Wednesday 1pm (proof of incompleteness theorem, consis-
tency of ZF)

9. Aziom of Replacement:

We often say ”for each i € I have A; — take {A; : i € I}. However, how do we
know they form a set? Alternatively, how do we know that ¢ — A; is a function?
We want to say ”the image of a set under something that looks like a function is
a set”.

A digression on classes:

Idea: x — {z} (for all z). This looks like a function, but it isn’t: e.g. every
function has a domain as functions are sets of ordered pairs, and the domain is
just the left element of all those pairs. However, the ’domain’ of © — {x} is not
a set (the universal 'set’).

For an L-structure V', a collection C of elements of V is called a class if there is
a formula p, free variables z (and maybe more) s.t. z € C <= p(z) holds in
V. E.g. V is a class: take p(z) to be z = z.

For any ¢, {z : t € x} is a class: take p(x) to be t € x.
Note that every set y is a class: take p(z) to be z € y.

If C is not a set (in V), i.e. [(Fy)(Vz)(x € y < p(x)), say C is a proper class.
E.g., V is a proper class, as is {« : x infinite}, where by infinite we mean not
finite.

Similarly, a function-class is a collection F' of ordered pairs from V', s.t. for some
formula p, free variables z,y (and maybe more), have (z,y) € F < p(z,vy),
and if (z,y) € F,(x,z) € F, then y = z.

For example, z — {X} is a function class: take p(z,y) to be y = {«}.

—End of digression—

Let’s now state the axiom of replacement: ”the image of a set under a function-
class is a set.

(V0)-.. () ([(V2) (V) (V=) (p A ple/y)) = y = 2)] = [(Va) Ey)(v2) (= €
y = (@)t € nplt/e.2/y)

For each formula p, free variables x,y,t1, ..., t,, i.e., the image of x under p is a
set.
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Eg. for any set z, we can form {{t} : t € x} using function class t — {t}.

This is a ’bad’ example, as it didn’t need replacement — see later for 'good’
examples.

Those are the ZF axioms.

Note:

1: Sometimes separation is called ’comprehension’, and sometimes fundation is
called ’regularity’.

2. ZF axioms do not include AC: ZF 4+ AC is called ZFC, where axiom of
choice is: "every family of (non-empty) sets has a choice function” — (Vf)(f
is a function A(Vz)(z € Domf = f(z) # ¢)) = (Jy)(y is a function
ADomy = Domf A (Vz)(x € Domf = g(z) € f(x)))).

Goal: what does a model (V,¢€) of ZF look like?

Remark: we haven’t proved ZF consistent (i.e. 3 model of ZF). Sadly, ZF t/ 7 ZF
has a model”, i.e. it cannot be proved in ordinary maths (ZF or ZFC).

Say x is transitive if every member of z is itself a member of z: (Vy)((32)(y €
zANz€x) = (y€x),ie UrCux.

E.g. 2= {¢,{¢}} is transitive; w is transitive as n = {0,1,...,n — 1} Vn € w.
Lemma 1: every set x is contained in a transitive set.

Remarks: 1. Officially, let (V,€) be a model of ZF. Then in V, ... holds, or
equivalently, ZF F ....
2. Any N of transitive sets is transitive, so we’ll then know that there exists

a least transitive set containing x, called the transitive closure of x, written
TC(x).

Proof. We'll take U (Uz) U (UUz)J) UUUx)U... which is a set by union axiom,
which is a set by replacement (a good example of replacement): 0 — x,1 — Uz,
etc. But why is this a function class?

To show that, define f is a an attempt to mean (recall we’ve done similar
things before in chapter 2) (f is a function ) N (Domf € w) N (Domf #
P)N(f(0) =z)Nn(¥n)(n € DomfNn #0 = f(n) =Uf(n—1)). Then
(v € W)V (9F)((f, ' attempts An € Domf') = f(n) = ['(n)) (by
w-induction). And (Vn € w)(3f)(f an attempt Nn € Domf) (again, by w-
induction). So take p(y, z) to be (3f)(f an attempt Ny € DomfNf(y) =z). O

We want foundation to be saying ’sets are built out of simpler sets’. If so, we
would want: suppose p(y)Vy € x implies p(z), then p(x)Va.

Theorem. (2, principle of e-induction): let p be a formula with free variables
t1, . tn, . Then (Vt)...(Vn) (Vo) ((Vy)(y € ¢ = ply) = p(z)) =
(Vz)p(x)). Note that formally, p(y) should be ply/z], and p(x) should just be p.
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Proof. Given tq,...,t,, have p(y)Vy € + = p(z), and suppose (Vx)p(x) not
true. So (3z)(—p(z)). We want ot say 'choose e-minimal member of {z : —p(x)),
then contradiction’; however, this might not be a set — e.g. if p(z) is = # .

Let t = TC({z}). So z € ¢, and —p(z). Let w = {y € t : =p(y)), and let
y be an epsilon-minimal element of u. Then —p(y). But (Vz € y)p(z) (as
z €y = z €t and yis eminimal in u). O

Remarks: 1. we used existence of transitive closures (i.e. lemma 1).

2. In fact, e-induction equivalent to foundatoin: as can deduce foundation
from e-induction (in the presence of the other ZF axioms): say x is regular if
(Vy)(x € y = y has an e-minimal element). Foundation says every set is
regular. To prove this by € induction, given y regular Vy € =, we want to prove x
is regular. For = € z, if x minimal then done. Otherwise, some y € = has y € z.
But y is regular. So z has a minimal element.

How about recursion? we want ’f(z) defined in terms of the f(y), y € x’.

Theorem. (3, e-recursion theorem)

Let G be a function-class ((z,y) € G <= p(z,y) for some formula p), every-
where defined. Then there is a function-class F' ((z,y) € F' <= q(z,y), for
some formula ¢) s.t. (Vz)(F(x) = G(F|x)). Moreover, F is unique.

Note: Fl|z = {(z, f(2)) : z € 2} is a set, by replacement.

Proof. Say f is an attempt if: (f is a function ) A (Domf transitive ) A (Vz)(x €
Domf = f(z) = G(f|x)) (flz is defined, as Dom f is transitive).

Then (Vz)(f, f attempts defined at © = f(x) = f'(z)) by e-induction.
Since, if f, f' agree at all y € x, then they agree at x.

Also, (Vz)(3 attempt f defined at x) by e-induction.

Indeed, suppose | forally € x 3 attempt defined at y. So Vy € x 3 unique attempt
fy defined on TC({y}). Put f = Uye,fy, and now put f' = f U {(z, G(f|z)}.
So done: take ¢(x,y) to be (3f)(f an attempt Az € Domf A f(z) = y). O

Note: e-induction and e-recursion proofs look very similar to induction and
recursion from chapter 2.

What properties of the 'relation-class’ e (i.e. the formula p(z,y) = zey) have we
used?

1. p is well-founded: every non-empty set has a p-minimal element;
2. pislocal: (y:p(y,x)) is a set, for each x.

So in fact we have p-induction and p-recursion for any p(z,y) that is well-founde
and local.

For a relation r on a set a, trivially = is local (as a is a set). So to have r-induction
and r-recursion, just need r to be well-founded.

Thus induction and recursion from chapter 2 are special cases of this.
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Can we 'model’ a relation by &7
E.g. let a = {a1,a2,a3} and r = {(a1,a2), (az,as3)}.

Put b = {b1,b2,b3}, where by = ¢, by = {¢}, bs = {{¢}}. Then a;ra; =
birb;Vi, j. Moreover, b transitive.

Say relation r on set a is extensional if (Va,y € a)((Vz € a)(zrz — zry) =
x =), e.g. above relation on above a, or relation € on any transitive set.

Analogue of subset collapse is:

Theorem. (4, Mostowski’s collapse theorem):

Let 7 be a relation on a set a that is well-founded and extensional. Then 3
transitive b and bijection f : a — bs.t. (Va,y € a)(zxVy <= f(z) € f(y)).
Moreover, b and f are unique.

Proof. Define f(x) = {f(y) : yrz} a definition by r-recursion on the set a. (f is
a function, not just a function-class, as it is an image of the set a).
Let b= {f(x) : € a} (a set, by replacement).

Then b transitive (definition of f), and f surjective (definition of b). We need f
injective, then also have xry < f(z) € f(y).

We'll show that (Vy)(f(y) = f(z) = y = ) holds Vz € a, by r-induction on
x.

So given y with f(y) = f(x), we want y = z, and may assume that (Vt)(vn)((t,n €
antrz A fly) = f(t) = n=1).

f‘roin f(y) = f(z), we have {f(n) : nry} = {f(t) : tra}, whence {n: nry} = {t:

Thus x = y as r extensional.

Existence: if f, f’ suitable then (Vo € a)(f(z) = f”(z)) by r-induction. O

An ordimal or Von Neumann ordinal is a transitive set that is well-orderd by e.
(or ’totally ordered, thanks to foundation)
e.g. ¢,{¢},anyn cw (asn =140,1,2,....,{n — 1}), w itself.

So mostowski tells us: any well-ordered X is order-isomorphic to a unique ordinal
a. Say X has order-type «. (this was owed from chapter 2).

Remark (irrelevant): we know that for any ordinal «, have {§ : 8 < a} is a
well-ordered set of order-type a.

Hence, by definition of f in theorem 4, we have: a < f < « € (.

Soa={f:8<a}.
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Soe.g. at =aU{a}, and sup{e; : i € I} = U{a; : 5 € I}.
Picture of the universe:

"start with ¢, and take P (power sets) many times. Define sets V,, for each
ordinal a be recursion: Vg = ¢, Vo1 = P(Vy), VA = Ua<aVa for A a non-zero
limit. We want every set = to belong to some V.

Lemma. (5)
Each V, is transitive.

Proof. Induction on «a: 0 is trivial.

Successors: given x € y € V41, we have y € P(V,,), so z € V,,. So xz C V, (as
V., transitive), i.e. z € P(V,,) = Vou1.

Limits: any union of transitive sets is transitive. O

Lemma. (6)
We have V,, C Vg whenever a < f3.

Proof. Induction on § (« fixed):

8 = « is trivial.

Successors (8): given V, C Vi, we want V,, C P(V3). But V3 C P(Vj), z €
Vs = x C Vj as that is transitive.

Limits are trivial as well as it is the union of all V,, below. O]

Theorem. (7)

(Vz)(Fa)(x € V).

Slogan: V = UgeconVa, where ON is the class of ordinals. However that’s not
allowed, as we cannot take union over a class.

Notes: 1. x CV,, <= x € Vyy1.

2. If x C V,,, then there exists least such « — called the rank of z. For example,
rank(¢) = 0, rank({¢}) = 1, rank(w) = w, and rank(a) = « for all ordinals «
(by induction).

Proof. We'll show (Vz)(3a)(x C V,,) by e-induction. Given z, have y C V,, for
some «a (for each y € ), 50 ¥y C Viank(y)s 1-€. ¥ € Vigni(y)+1 for each y € x.
Let o = sup{rank(y) +1:y € x}. Then x C V. O

Remark. 1. The V,, are called the Von-Neumann Hierarchy.

2. Proof gives: rank(z) = sup{rank(y) + 1 : y € x} (this is the right way to
think about rank). For example, what’s the rank of {6}? For each ordinal the
rank is itself, so rank(6) = 6. So rank{6} = sup{rank(6) +1} =7.

3. (useless comment) Most of maths takes place in V119, apart from order-types,
etc. i.e. in this course.

8 Cardinals

Let’s look at ’sizes’ of sets. Work in ZFC.
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We want to define Card(x) so that Card(x) = Card(y) <= x <>y, which is a
short hand for ’there is a bijection from x to y’.

(Note: We cannot take Card(z) = {y : y <> x}, as this may not be a set.)

We do know x <+ « for some ordinal «, so can define Card(z) to be the least
such a. Thus Card(z) = Card(y) <= z= < y.

(In just ZF, use Scott trick: define the essential rank of z to be essrank(x) =least
rank of any y <+ x, and then define Card(z) = {y C Vessrank(z) : ¥ <+ 2})

Say m is a cardinal or a cardinality if m = Card(z) for some z.

For cardinals m,n, say m < n if M injects into N for some M, N with
Card(M) =m, Card(N) = n (does not depend on choice of M and N).

Write m < n if m < n and m # n. For example, Card(w) < Card(P(w)).
Note that if m < mn, n < m, then m = n (Schréder-Bernstein). So < is a partial

order, and even a total order (by well-ordering). However, in just ZF, this need
not be a total ordering.
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