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0 MOTIVATION 4

0 Motivation

Theorem. If p is an odd prime, then p = a2 +b? for a,b € Z < p=1
(mod 4).

Proof. If p = a? + b2, then p = 0,1,2 (mod 4). So this condition on p is
necessary.
Suppose instead p = 1 (mod 4). Then (%) = 1. Thus Ja € Z such that

a? = —1 (mod p), or pla® + 1. We can factor a® + 1 = (a +i)(a — i) in the ring

Z[i]. Here we introduce a notation: if R C S are rings and «a € S, then
Rla] = {Z a;o' € Sla; € R}
i=0

, the smallest subring of S containing both R and «.

We know from IB GRM that Z[i] is a UFD. Now p|(a+i)(a—1i). If p is irreducible
in Z[i] then pla + 7 or pla — i, contradiction. Thus p is reducible in Z[i], hence
p = 2129 with 21, 20 € Z[i]. If 21 = A+ Bi, A, B € Z, then A? 4+ B? = p. O

Another example is when p is an odd prime. Does the equation
2P 4 yP = 2P
have solutions with z,y, 2z € Z and zyz # 07

Theorem. (Kummer, 1850)
If Z[e*™"/P] is a UFD, then there are no solutions.
Strategy: factor zP + y? = H?;é (z + > /Py) in Z[e2™/P],

However, we now know Z[e?™"/?] is a UFD «= p < 19.

Theorem. (Kummer, 1850)
If p is a reqular prime, then there are no solutions.
If p < 100, then p is regular <= p # 37,59, 67.

We have seen various examples such as Z C Q, Z[i] C Q[i], Z[e*™/?] C Q[e2™/7],
or in general, O C L, where a ring of "integers” lies in a number field.
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1 Ring of integers

Recall: A field extension L/K is an inclusion K < L of fields. The degree of
L/K is [L: K] =dimg L. We say L/K is finite if [L : K] < 0.

Definition. (1.1)

A number field is a finite extension L/Q. Here are two ways to construct number
fields:

(1) Let « € C be an algebraic number. Then L = Q(«) is a number field;

(2) Let K be a number field, and let f(X) € K[X] be an irreducible polynomial.
Then L = K[X]/(f(X)) is a number field.

(Recall Tower Law: [L: Q] =[L: K|[K : Q] < c0).

Definition. (1.2)

(1) Let L/K be a field extension. Then we say « € L is algebraic over K if there
exists a monic f(X) € K[X] such that f(a)=0;

(2) Let L/Q be a field extension. Then we say « € L is an algebraic integer if
there exists a monic f(X) € Z[X] such that f(a) = 0.

Definition. (1.3)

Let L/K be a field extension, and let o € L be algebraic over K. We call the
minimal polynomial of o over K the monic polynomial f,(X) € K[X] of least
degree such that f,(a) = 0.

We recall why f,(X) is well-defined: there exists some monic f(X) € K[X] with
f(a) =0 as « is algebraic. If f, (), f/(a) € K[X] both satisfy the definition of
minimal polynomial, then we apply the polynomial division algorithm to write

fa(X) = p(X) fo,(X) + r(X)

where p(X),r(X) € K[X], and degr < deg f/,. Evaluate at X = «, we have
0 = fa(a) = p(a)fl(a) + r(a) = r(«). By minimality of deg f/, we must have
r = 0. Then deg f, = deg f,, and f,(X), f'(a) are both monic, i.e. p(X) =1
and fo(X) = fi(X).

Lemma. (1.4)

Let L/Q be a field extension, and let @ € L be an algebraic integer. Then:

(1) The minimal polynomial f,(X) of o over Q lies in Z[X];

(2) If g(X) € Z[X] satisfies g(«r) = 0, then there exists ¢(X) € Z[X] such that
9(X) = fa(X)q(X);

(3) The kernel of the ring homomorphism Z[X]| — L by f(X) — f(a) equals
(fa(X)), the ideal generated by f,(X).

Proof. (1) Recall that if f(X) = a, X"+...4+a¢ € Z[X], then we define from GRM,
the content ¢(f) = ged(an, ..., ag). Recall Gauss’ Lemma: If f(X), g(X) € Z[X],
then ¢(fg) = ¢(f)c(g). Since « € L is an algebraic integer, there exists monic
f(X) € Z[X] such that f(a) = 0, i.e. ¢(f) = 1. Apply polynomial division
in Q[X] to get f(X) = p(X)fo(X) 4+ r(X), where p(X),r(X) € Q[X], degr <
deg fo. The definition of f,(X) implies that 7(X) = 0, hence f(X) = p(X) fo(X).
Now choose integers n, m > 1 such that np(X) € Z[X], c(np) =1, and mf,(X) €
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Zlz], c(mfa) = 1. Then nmf(x) = (np(z))(mfa(z)) = c(nmf(x)) =nm = 1.
So n =m =1, hence f,(x) € Z[X].

(2) Let g(X) € Z[X] be such that g(a) = 0. WLOG g(x) # 0 and ¢(g) = 1. Now
apply polynomial division to write g(x) = ¢(z) fo(x) + s(x) where ¢(x), s(x) €
Q[z], deg s < deg fo. Again by definition we have s(z) = 0. Choose an integer
k > 1 such that kg(x) € Z[z] and ¢(kq) = 1. Then kg(z) = kq(z) fo(z) =
k= c(kg) = c(kq)c(fa) = 1. So k =1, hence ¢(x) € Z[z].

(3) is a reformulation of (2). O

Let L/Q be a field extension. Last time we said « € L is an algebraic integer if
3 monic polynomial f(x) € Z[x] such that f(a) = 0. We proved that if o € L is
an algebraic integer and f,(z) € Q[z] is the minimal polynomial of « over Q,
then f,(x) € Z[z]. However there is a small problem, so we’ll prove again.

Proof. Choose f(z) € Z[z] monic with f(«) = 0, and write

f(@) = q(x) fa(x) +r(z)

where ¢(z),r(z) € Q[x], degr < deg fo. Then r(a) =0 = r(x) =0, by
minimality of deg f,. I said that we can find integer n,m > 1s.t. nfa(x) € Zx],
c(nfa) =1, mq(z) € Z|z], ¢(mq) = 1. However we need to explain why do they
exist. Note f,(x) and ¢g(z) are both monic. Choose integers N, M > 1 such
that N fo(z) € Z[z], Mq(z) € Z[z]. Then ¢(N fo)|N, ¢((Mq)|M as those are the
leading term of the polynomial. Now let N/¢(N fa)) =n € Z, M/c(Mg) = m € Z.
Now nmf(x) = (nfa(z))(mq(x)),soc(nmf(z)) =nm=1 = n=m=1. O

Corollary. (1.5)
If @ € Q, then « is an algebraic integer <— « € Z.

Proof. By lemma 1.4, o is an algebraic integer <= f,(z) € Z[z]. But if o € Q,
then f,(x) =z — «, and the first needs to divide the second polynomial. O

Notation. If L/Q is any field extension, we write O, = {« € L|« is an algebraic
integer}.

Now we proceed to the first non-trivial result of the course:

Proposition. (1.6)
If L/Q is a field extension, O, is a ring.

Proof. Clearly 0,1 € Or. Now if a € O, then f_,(z) = (—1)d8 /e f (—2) =
—a € Op.

The hard part is to show that if a, 5 € O, then a+ 8 € Op and aff € Of.
Observe that if & € Oy, then Z[a] C L is a finitely generated Z-module. By
definition, Z[a] is generated by 1,a, a?, a3, .... Let fo(z) = 2% +a129 ' +... +ad,
a; € Z. Then a? = —(a1a%' + ... + ad), so a? € Zf;ol Za'. By induction,
we see that o € Z?;Ol Za! for all n > d. Hence Z[a] = Zztol Zao'. Now take
o, € Op and let d = deg f,, e = deg f3.
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By definition, Z[a, 8] = Z[][8] is generated as a Z-module by {a?37}; jen. The
same argument show that in fact this ring is generated as a Z-module by {a?37}
for 0<i<d-1,0<j<e—1. So Za,f] is finitely generated. From GRM we
know the classification of finitely generated Z-modules implies that there’s an
isomorphism Z[a, f] =2 Z" & T for some r > 1 and finite abelian group 7. In
fact, T'=0: if v € T, then |T'|y = 0, by Lagrange’s theorem. But Z[o, 8] C L, a
Q-vector space, so this forces v = 0. Now we can therefore fix an isomorphism
Zlo, ] = Z" (r > 1. There’s an endomorphism mggs : Z[wo, 8] — Zlo, ] by
v — afy (as a Z-module). myg corredponds to an 7 x r matrx Ayg € My« (Z).
Let Fog(z) = det(x - 1, — Aag) € Z[z], a monic polynomial. By the Cayley-
Hamilton theorem, F,,3(mqg) = 0 as endomorphisms of Z[«, 5]. Write Fop(z) =
2" 4+ biz" !+ ...+ b, for b; € Z. Thus myg + blmggl 4+ ..+b.-1, =0 as
endomorphisms of Z[a, f].

Now the image of 1 is (aB)" + b1 (aB)" "' +...+ b, = Fup(aB) =0. So aB € Oy.
The argument to show a 4+ 38 € Oy, is identical, replacing mag by ma4s :
Z|a, B] = Zla, 8] by v — (a+ B)7. The detail is omitted here. O

We call Of, the ring of algebraic integers of L.

Lemma. (1.7)
Let L/Q be a number field, and let & € L. Then In > 1 an integer such that
na € O.

Proof. Let f(z) € Q[z] be a monic polynomial such that f(a) = 0. Then
In € Z,n > 1 such that g(x) = nd*&ff(x/n) € Z[z] is monic. But then
g(na) =ne’f f(a) = 0. So na € Or. O
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2 Complex embeddings

Let L be a number field.

Definition. (2.1)
A complex embedding of L is a field homomorphism ¢ : L — C. Note: in this
case, o is injective, and o|g is the usual embedding Q — C.

Proposition. (2.2)

Let L/K be an extension of number fields, and let og : K — C be a complex
embedding. Then there exist exactly [L : K] embeddings o : L — C which
extends og (0]|x = 09).

Proof. Induction on [L: K]. If [L : K] =1, then L = K, so 0y determines o.
In general, choose a« € L — K and consider L/K(«)/K. By the Tower law,
[L:K]=[L: K(o)][K(x): K] and [K(«) : K] > 1. By induction, it’s enough
to show there are exactly [K(«) : K| embeddings o : K(a) — C extending oy.
Let fo(xz) € K[x] be the minimal polynomial of o over K. Observe there’s
an isomorphism K[z]/(f.(z)) = K(a) by sending x — a. To give a complex
embedding o : K(a) — C extending oy, it’s equivalent to give a root 8 of (o¢ f)(z)
in C (oof(z) € Clx] means apply o9 to the coeflicients of f(z)). Dictionary:
o — f=oc(a). We have [K(«) : K] = deg fo = degogfa. It’s enough to show
00fa has distinct roots in C. The polynomial f,(x) € K|x] is irreducible, so is
prime to its derivative f.(z) (char K = 0). So « is separable over K. O

Recall from last lecture, let L be a number field, a complex embedding is a
field homomorphism o : L — C. The number of such embeddings is [L : Q]. If
L =Q(«), and f,(z) € Q[x] is the minimal polynomial, then there is a bijection
{0 : L - C} < {roots 8 € C of fo(x)} by sending 0 — 8 = o(alpha).

Notation: if ¢ : L — C is a complex embedding, then ¢ : L — C is also a
complex embedding, where (o) = o(a) (complex conjugation). If o = &, then
o(L) C R. Otherwise o # & and o(L) € R.

We write r for the number of complex embedding o such that o = @, s for the
number of pairs of embeddings {0, 5} where 0 # &. Then r 4+ 2s = [L : Q.

Example. Let d € Z be square-free, d # 0,1. Let Q(v/d) = Q[z]/(2? — d). If
d > 0, then r = 2,5 = 0 (real quadratic field).
If d < 0, then r = 0,s = 1 (imaginary quadratic field).

Example. Let m € Z cube-free, m # 0,1, —1. Let Q(/m) = Q[x]/(z® — m).

Then r = 1,s = 1, since 2> — m has one real and two complex roots.

Definition. (2.3)
Let L/K be an extension of number fields, and let « € L. Let m, : L — L be
the K-linear map defined by m,(8) = a8. Then we define

trp k(o) =trmg € K
NL/K(Oé) = detma e K

the trace and norm of « respectively.
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Lemma. (2.4)
If L/K is an extension of number fields and « € L, then

try k() = [L: K(a)] tri ) /i ()

Np k(@) = Nig(ay, i (@) EE @)

Proof. There’s an isomorphism L = K (a)FE(@)] of K (a)-vector spaces(?). [

Lemma. (2.5)
Let L/K be an extension of number fields and let « € L. Let g9 : K — C
be a complex embedding, and let o1, ...,0, : L — C be the embeddings of L
extending .
Then

(To(tI'L/K(Oé)) 01(0&)+...+O’n(6¥)

00(Np k(@) = 01(a)...on ().

Proof. WLOG let L = K(«). Let fo(z) € K[z] be the minimal polynomial of «
over K. Then

(00fa)(2) = (z — 01(a))(z — o2(@))-.(x — on())

If f(a) = 2" +a12" 1 + ...+ an, then og(ar) = —(o1(a) + ... + op (), oo(a,) =
(=D)"01(@)...on ().

Let g(x) € Klx] be the characteristic polynomial of m,. If g(z) = 2™ +
biz" ' + .. 4 by, then by = —trmg = —trp k(a), by = (—1)"detm, =
(—=1)"Npr i (a).By Cayley-Hamilton, g(mq) =0 = g(a) =0 = fo(x) =
g(z). a

Corollary. (2.6)
Ifae OL, then tI‘L/K(Oé), NL/K(a> S OK

Proof. If B € K then 8 € O <= 0¢(8) € O¢ (asVf(x) € Z[z], f(B) =0 <—
f(o0(B)) = 0).

By the lemma, o try k() = o1(a)+...+0n(a). If a € O, then o1(a), ..., 0 () €
Oc = oi(a)+..+on(a) € Oc = ootryk(a) € Oc = trp/k(a) € Ok.

The same argument works for the norm. O

Proposition. (2.7)
Let d € Z be squarefree, d # 0,1, and let L = Q(\/ﬁ) Then

0 Z[Vd) d=2,3 (mod4)
Tl Z4) d=1 (mod 4)

Proof. If a € L, then a € Oy, if and only if both trace and norm (over L/Q) of «
isin Z. Why? Forward direction is the previous corollary; if « € L, then f(«) = 0,
where f(z) = (z —01(a))(z — 02(a)) = 2 — try jg(a)z + N o) € Q[z], where
01,09 are complex embeddings of L. So backward holds too.
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Let a € L. Write v = % + 2v/d where u,v € Q. If a € Op, then try g(a) = u €
Z, and Ny, g(a) = i(u—l—\/&v)(u— Vdv) = (W —dv?) € Z = P —dv? € 4L
= dv? € Z.

Write v = £ where r, s € Z,s # 0, (r, s) = 1. Then we get dr? € s*°Z = s*|dr?.
If p is a prime and p|s then p?|d. But we assumed d is square-free. So s = 1, so
v EZ.

We've shown if v € O, then o = ¥ + 2v/d where u,v € Z and u? = d? (mod 4).

Case 1: d = 2,3 (mod 4). Then u? v? = 0,1 (mod 4). Considering the con-
gruence u? = dv? (mod 4) shows that both u,v € 2Z. Hence a € Z[Vd] =
{a+bVd|a,b € Z}, and O, = Z[Vd].

Case 2: d = 1 (mod 4). Hence u? = v? (mod 4), so u = v (mod 2). Hence

O c{%+ g\/au,v €Z,u=1 (mod 2)} =7 & Z( 1+2\/E). It remains to show

that 1+72\/E is an algebraic integer.

We have trL/Q(HQ‘/E) =1, NL/Q(HQ‘Q) =1l ez O

Recall that if R is a ring, then a unit in R is an element u € R such that there
exists v € R such that uv = 1.

The set R* = {u € R|u is a unit} forms a group under multiplication.

Lemma. (2.8)
If L is a number field, then the units in Op are OF = {a € OL|Np () = £1}.

Proof. next time.

It’s next time now! Let’s prove this lemma.

Npo(af) = Npjg(a)Npg(B) for any o, 3 € L.
If o € OF, then 38 € O, such that af =1 = Npg(a)Ng(f) = 1. Since

NL/Q(Q),NL/Q(ﬂ) S Z, we get NL/Q(OZ) S {:El}
Conversely, suppose a € O, and Ny g(a) = £1. Then a~leL. Letoy,..,op:
L — C be the distinct complex embeddings of L. Then
Npjgla) = oi(a)..on(a) = £1
= oi1(a™!) = +o3(a)...on(a) € Oc
= a €0

O

Remark. We'll prove later in the course that OF is a finite group <= either
L =Q or L is an imaginary quadratic field.
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3 Discriminants and integral bases

Let L be a number field, n = [L : Q], 01,...,0,, : L — C be distinct complex
embeddings.

Definition. (3.1)

Let ay,...,a, € L. Then their discriminant is disc(ay, ..., ) = det(D)?, where
D = Muxn(F) is D;; = o;(c;). Note: this is independent of the choice of
ordering of o1, ..., 0y, and @y, ..., ay,, as that’s just permuting the rows or columns,
hence changing only possibly signs; but we took a square in the definition.

Lemma. (3.2)
Let aq,...,a, € L. Then disc(aq,...,an) = det(T), where T € M, x,(Q) is
Tij = tI"L/Q(OZiij).

P7’00f. Tij = ZZ:I O'k(OéiOéj) = ZZ:l Dkkaj = (DTD)ij. O

Corollary. (3.3)
disc(aq, ...,an) € Q. If @y, ..., ap, € O, then disc(ay, ..., a,) € Z.

Proof. disc(a, ..., ) = det(T), and entries of T is trace of some elements of
L (over Q) so is in the base field Q (think a bit). So this must be rational. If
ai, ..., an € O, then Vi, j, D;; € Oc = disc(aq,...,a,) € OcNQ=2Z. O

Proposition. (3.4)
Let oy, ..., € L. Then disc(aq,...,an) #0 < aq,...,a, form a basis of L
as Q-vector space.

Proof. First suppose aq, ..., a, are linearly dependent. Then the columns of
the matrix D;; = o;(c;) are linearly depnedent = disc(a,...,on) = 0
(determinant is 0).

Now suppose g, ..., @, are linearly independent. Then disc(ay, ..., ) # 0
<= det(T) #0 <= the symmetric bilinear form ¢ : L x L — Q by ¢(a, 8) =
trr,/g(B) is non-degenerate, i.e. Ya € L*,33 € L such that ¢(a, 3) # 0.

If w € L*, then ¢(a, ™) = try o(1) =n #0. O

Definition. (3.5)

We say elements oy, ..., a, € L form an integral basis for Oy, if:
(i) a1, ...,an € Op;

(i) oq, ..., ap, generate Oy, as a Z-module.

Lemma. (3.6)
If a1, ..., ay, form an integral basis for Oy, then the function

f /AL Oy,
(M, .ceymp) — Zmiai
i=1

is an isomorphism of Z-module.



3 DISCRIMINANTS AND INTEGRAL BASES 12

Proof. f is a homomorphism, we must show it’s bijective. Observe that aq, ..., ay,
form a basis of L as Q-vector space. We know that if 8 € L, then IN € ZT
such that N3 € Op (I think (1.7)). So we can write N3 =" | m;a; for some
my €L = [ = E?:l S ai. Hence ay, ..., span L, so they form a basis of
L.

If f(mi,...,myp) =0, then "  mia; =0 = (my,...,myp) = (0,...,0), as
Qq, ..., ay are independent over Q. This shows f is injective. It’s surjecitve by
definition. O

Lemma. (3.7, sandwich lemma)

(i) If H < G are groups and G = Z* for some a > 0, then H = Z" for some
b<a.

(i) If K < H < G are groups and K = Z* G = Z* for some a > 0, then
H=7"

(iii) If H < G are groups and H = Z% G = Z* for some a > 0, then G/H is
finite.

Proof. (i) H < G, G =2 Z*. Then G/H is f.g abelian group. By the classification,
there’s an isomorphism G/H = ZN @ A, A finite abelian group. Choose p
prime, p |/|A|. Then the map f : G/H — G/H by x + H — px + H is
injective, so f' : H/pH — G/pG by = + pH — x + pG is injecitve — why? If
x € H,z € pG, then © = py for some y € G; then y + H € ker(f) = H. Hence
x € pH. So indeed f’ is injective. By the classification, H = Z°. f’ injective
= |H/pH| < |G/pG|, i.e. p* < p®so b < a.

(i) Apply (i) to K < H and H < G to get H = 7" where a < b < a.

(iii) H < G, H 2 Z°,G = Z*. Again G/H is finitely generated, so by the
classification G/H = Z™ @ A where A is a finite abelian group.

Let p be a prime, p |/|A|. same proof as in (i) shows that ' : H/pH — G/pG is
injecitve. Since |H/pH| = |G/pG| = p*, f' is a group isomorphism G/H + pG =
(Z/pZ)N. There’s a surjective homomorphism G/pG — G/H + pG which has
kernel containing the image of f’. Hence G/pG — G/H + pG is surjective with
kernel G/pG. This forces N = 0. O

Let L be a number field, n = [L : Q], 01, ...,0, : L — C be distinct complex
embeddings; a1, ...,a, € L, we defined disc(ay, ..., ;) = det(o;(a;))?. An
alternative notation is A(ay, ..., ;). We also said aj, ..., «, form an integral
basis for Oy, if they generate Op, as a Z-module.

Proposition. (3.8)
There exists an integral basis for Op.

Proof. Let 81, ..., 8, € L be a basis for L as Q-vector space. WLOG, S, ..., B, €
Or. Then Op D @ | Z;.

Recall ¢ : L x L — Q by sending (o, 3) — trz/g(a3) is a non-degenerate sym-
metric bilinear form (we showed that last time). Let 87, ..., 8% be the dual basis.
Then trL/Q(Biﬁ;) = 5”' (Why‘?)

If « € Op, then we can write a = Y ", a;3F where a; € Q. We know
afi € Op, hence trp g(af) € Z. However LHS = Z?Zl trpqa;B;Bi) =
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>oi—1 a5 trr (B85 Bi) = aj. So Or C ©,Zf;. By sandwich lemma there is an
isomorphism between Z™ and Oy,. O

If ay,...,a, B1, ..., Bn are both integral bases for O, then there exists A €
M, xn(Z) such that 8; = Y7 | A;ja; for each j = 1,...,n. Moreover, we must
have det(A) € {1}, and A € GL,,(Z). Then disc(B1, ..., Bn) = det(D’)?, where
(Déj ): 0i(B;), Dij = oi(ej). Wehave Dj; = 370 oi(Arjouw) = 35 oilaw) Akj =
DA ij-

We find disc(Bi, ..., Bn) = det(D')? = det(DA)? = det(D)? = disc(an, ..., o).
Therefore we could define:

Definition. (3.9)
The discriminant Dy, of the number field L is disc(ay, ..., ), where ag, ...,
is any integral basis for Op,.

Proposition. (3.10)
Let L = Q(«), and let f(x) € Q[z] be the minimal polynomial of o over Q. Then

disc(1,a,0?,...,a" 1) = H(Ui(a) —oj(a))? = (—1)"(”_1)/2NL/Q(f’(a))

1<j

In part IT Galois theory, we defined the discrimant of a polynomial, discf =
[[ic;(oi(a) — 0 (a))? where a;’s are the roots of f.

Proof. If D;; = 0;(a?™1), D € M,x,(C), then disc(1,q,...,a" 1) = det(D)?2.
D is a Vandermonde matrix, so we know det(D) = [[;_;(0;(a) — o

On the other hand, Ny, o(f' () = [Ti; os(f' (@) = [Tiy f'(0i()).

Using f(z) = []j_;(z — 0j(a)), we get RHS = [[}_; [, (0i(a) — 0j(a)) =

(~D)E [T, (i) — 0j(a))2. 0

Note: if o € Oy and Z[a] = O, then 1,q,...,a" ! is an integral basi for Op,.
We can then use proposition to calculate Dy.

Example. Let d € Z square-free, d # 0,1, L = Q(+/d). Then

D, — 4d d=2,3 (mod 4)
=1 d d=1 (mod4)

To see this, if d = 2,3 (mod 4), then O = Z[/d] (shown previously). Apply
proposition to 22 — d = f(z), we get Dy, = disc(1,vd) = —Ny,/o(2Vd) = 4d.
On the other hand, if d =1 (mod 4), then Of, = Z[#]. Apply proposition to
the minimal polynomial of this element, f(z) = 2% — 2 + %d, so f'(z) =22 —1,
so f'(e) = Vd. Therefore Dy, = —Np o(Vd) = Vd.

Proposition. If a1,...,a, € O are such that disc(ay,...,a;,) is a non-zero
square-free integer, then «q, ..., a,, form an integral basis for Op,.
Note: this is a sufficient condition, but is not necessary (the previous example).
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Proof. Let B, ..., B, be an integral basis for Op,. There exists A € M, x,(Z) such
that a; =Y | A;;8:Vj = 1,...,n. Thendisc(ay, ..., ay) = det(A)?disc(Bi, ..., Bn)
(we proved this in the beginning of lecture: D’ = DA). In particular, if this is
square-free and non-zero, then det(A4) must be {£1}. So A € GL,(Z). Hence
aq, ..., ap generate O, (as they can generate ;) and form an integral basis. [

This could save a lot of calculation if we are lucky.

Example. Let f(x) = 2® — 2 — 1. Then discf = —4a® — 270> = —23. This is
square-free! If L = Q(«), a a root of f(x), then Op = Z|a].

Definition. (3.12)

Let I C Oy, be a no-zero ideal. Then elements aq, ..., o, € L form an integral
basis for I if:

(i) a1, .., an € I;

(ii) aq, ..., o, generate I as a Z-module.

Proposition. (3.13)
Let I C Op, be a non-zero ideal. Then there exists an integral basis for I.

Definition. By definition, I C Oy =< Z". Let ag,...,a, € O be an integral
basis for Op. Let o € I be non-zero. Then («) C I, hence &} ;Zac; C I C Oy,
So by sandwich lemma, there is an isomorphism between I and Z" as Z-module.
Hence there exists an integral basis for I.

An interesting consequence of the proof:

Definition. (3.14)
If I C Oy, is a non-zero ideal, then we define its norm

N(I) =[O : 1]
which is finite by the sandwich lemma.

Definition. (3.15)

If I € Op is a non-zero ideal then we define disc(I) = disc(ay, ..., o) where
aq, ..., is an integral basis for I. (same argument shows disc(I) depends only
on I).

Lemma. (3.16)
If I C Oy is a non-zero ideal, then disc(I) = disc(Or)N(I)2.

Proof. Let ay, ..., an, B1, ..., Bn be integral bases for O, and I respectively. Then
JA € Myxn(Z)such that B; = Y"1 | Ajja; Vi =1,..n, and disc(ay, ..., ay, ) det(A)? =
disc(Bi, ..., Bn). We must show det(A)? =[Oy, : I]2

In fact, we’ll show if B € M, «,(Z) and det(B) # 0, then |Z"/BZ"| = | det(B)].
This suffices after identify Op = Z"™.

Recall: 3P,Q € GL,(Z) such that PBQ = D = Diag(dy,...,d,), di € Z
(Smith normal form). Hence we have Z"/BZ" = 7" /D7" = & |Z/d;Z =
2 /Bz"| = [27/DZ"| = [T, |di.

On the other hand, |det(B)| = |det(D)| = [Ti—, |di|. O
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Remember we have L a number field, n = [L : Q], 01, ...,0, : L — C are distinct
complex embeddings of L.

Lemma. (3.17)
Let o € Op \ {0}. Then N(()) = |Np/g()| (Note that’s an ideal).

Proof. Let ay, ..., ay, be an integral basis for Or. Then aay, ..., aa, is an integral
basis for I = (a). So

disc(I) = disc(aay, ..., )
= det(0;(aq;))?
= det(o;(a)oi(a;))?

= ([ oi(@))* det(os(c;))?
i=1
= Ny o(a)?disc(Oy)

And we showed last time that for any non-zero ideal J C Oy, disc(J) =
N(J)2disc(Or). O

Notation: If o € L — {0}, we let N(a) = N((a))N(0) = 0.
Then Va, 5 € Or, N(af) = N(a)N(5).
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4 Unique factorisation in Oy,

Recall: we say a ring R is a unique factorisation domain (UFD) if

(i) R is an integral domain;

(ii) if € R is non-zero and not a unit, then there exists an expression = p;...p,
where p; € R are irreducible elements. This expression is unique in the sense
that if x = ¢;...qs is another such expression, then r = s and after re-ordering,
each g; is an associate of p; (i.e. ¢; € R*p;, where R* is the field of units).

After 2 years of Cambridge Maths we certainly know Z is a UFD. However, if L
is a number field, Oy, need not be a UFD.

In fact, any non-zero = € O, which is not a unit can be expressed as a product
of irreducible elements.

If € Oy, then z is a no-zero non-unit <= N(z) > 1. Suppose z € Oy, is a
non-zero non-unit which cannot be written as a product of irreducible elements,
and with N(z) minimal among elements with this property. Then z = yz with
N(y) > 1, N(z) > 1, hence N(y) < N(x), N(z) < N(z). By minimality of
N(z), both y, z can be written as products of irreducible; contradiction.

Example. Consider L = Q(v/—5, Op, = Z[v/-5], and O} = {£1}. In O, we
have 6 =2 x 3 = (14 +/—5)(1 — v/—5), and all of the four are irreducibles, and
no two are associates (norms). So Oy, is not a UFD (famous example).

Idea: introduce ideal multiplication in order to reduce elements further.

Recall that if R is a ring and I, J are ideals of R, then we define

k
1] ={>_aibila; € I,b; € J},
i=1
I+J={a+blacl,be J}

We can define an ideal I C R to be irreducible if it does not admit an expression
I = JK where J, K are proper ideals of R.

Key point: even if « € Oy, is irreducible, the ideal («) need not be irreducible. For

example in Z[v/—=5], we have (2) = (2,14++/=5)2, (3) = (3,1++/—=5)(3,1—+/—5).

Definition. (4.1)
If R is a ring, we say that an ideal P C R is prime if Va,y € R, 2y € P
— x€PoryecP.

Lemma. (4.2)
Let R be a ring, and let I, J, P C R be ideals, and suppose P is prime and
IJCP. ThenI CPorJCP.

Proof. WLOG I € P. Choose some x € I\ P. If y € J, is any element, then
zyelJCP.Soye P. SoJ CP. O
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From now on, L is a number field.

Lemma. (4.3)
Any non-zero prime ideal P C Oy, is a maximal ideal.

Proof. Recall: if R is a ring and I C R is an ideal, then I is prime <= R/I is
an integral domain, and I is maximal <= R/I is a field. If you don’t remember
these statements then I strongly encourage you to review GRM. If p C Oy, is
a non-zero prime ideal, then O /P is a finite integral domain (of cardinality
N(P)); any such ring is a field, so P is also maximal. O

Lemma. (4.4)
If I € Op is a non-zero ideal, then there exist non-zero prime ideals P, ..., P, C
Orp, such that P;...P,. C I.

Proof. For contradiction, let I C Op be an ideal whicih does not have this
property, and such that N(I) is minimal among ideals not having this property.
Then [ is not prime, so there exist elements x,y € O, such that xy € I but
x &I,y & I. But then it follows that I C I+ (z) and I € I+ (y). So
NI+ (z)), N(I+ (y)) < N(I). By minimality of N(I), we can find non-zero
prime ideals P;...P, C I + (z) and Q1...Q- € I + (y). Then P;...P.Q;...Q, C
(I+ (2))(I+ (y)) CI?+aI +yl+ (zy) C I. Contradiction. O

Lemma. (4.5)
If I € O is a non-zero ideal, then there exists v € L'\ Oy, such that vI C Oy..

Proof. Let o € I\ {0}. Let Py, ..., P, C Of be non-zero prime ideals such that
Py...P. C (o). WLOG r is minimal with this property. Let P be a minimal
ideal containing I. Then P D I D («) 2 P;...P,, hence P D P, for some i. After
relabelling assume P D P;. Since non-zero prime ideals are maximla, we have
P = P,. Since r is minimal, we have P,...P, Z («). Choose 8 € P,...P, \ ().
Claim: the element v = 3/« has the desired property.

If v € Oy, then 8 = ay € (a), contradiction;
N=L21Clp..P-I1CLlPP..P,COy. O

Let L be a number field. Last lecture we proved that if I C O, is a non-zero
ideal, then there exist v € L\ Of, such that I C Op.

Proposition. (4.6)
If I C Op is a non-zero ideal, there exists a non-zero ideal J C Oy, such that
1J is principal.

Proof. Choose o € I\ {0}. Define J = {8 € Or|BI C («)}. J is a non-zero
ideal, as a € J. We have IJ C («). We will show IJ = (a.

Let K = iIJ C Oyr. We will show in fact that K = Op. Suppose otherwise,
that K # O, then 3y € L\ O, such that vK C Oy,

We have (o) C I, hence é] D Oy, hence underbraceéIJK O J. Hence
vJ CvK C Of.

Another observation is that, we also have vI.J = yaK C («).
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If we have 8 € vJ, on one hand § € Op,; on the other hand, I C («). So 8 € J,
hence vJ C J.

Recall that J admits an integral basis, so ther’s an isomorphism J = Z™. If
A € My xn(Z) is the matrix representing multiplication by ~, and if f(x) € Z[x]
is the characteristic polynomial of A, then f(y) = 0.

Hence v € Op. Contradiction. So K = O, O]

Corollary. (4.7)
If I,J, K C Oy, are non-zero ideals and IJ = I K, then J = K.

Proof. Choose a non-zero ideal A C O, such that Al = («) is principal. Then
AlJ=aJ = AIK =aK — J=K. O

If I, J C O, are non-zero ideals, say I divides J (or I|J) if there exists an ideal
K C Oy, such that IK = J.

Corollary. (4.8)
If I,J C Op, are non-zero ideals, then I|J <= 1D J.

Proof. If IK = J, then J C I.

Suppose instead that I O J. Choose a non-zero ideal AQy, such that AT = ()
is principal (by 4.6). Then Al = (a)) 2 AJ, hence Of, 2 éAJ. So K = éAJ is
a non-zero ideal of O, and IK = LAIJ = J. 0O

Theorem. (4.9)

If I C Oy, is a non-zero ideal, then there exist prime ideals P, ..., P, C Oy, such
that I = P, P,...P.. Moreover, this expression is unique up to re-ordering of
terms.

Proof. We show existence by contradiction. Suppose [ is an ideal which cannot
be written as product of primes, and with N (I) minimal subject to this condition.
We can find a maximal ideal P D I. P is also prime. Then P|I, so we can write
I = PJ for some ideal J C Or. Then J|I, hence J D I. If J = I, then we get
I = IP, hence O, = P as we can cancel, but that’s a contradiction as prime
ideals by definition cannot be Oy .

Therefore J 2 I, hence N(J) < N(I). By minimality, we can write J as
J = P,...P. where each P, C Oy, are prime ideals. Then we have I = PJ.
Contradiction. This shows existence.

For uniqueness, suppose P, ..., P., @1, ..., Qs are non-zero prime ideals in Of,
such that P;...P, = @1...Qs. Then P1|Q1...Q,, so P; O Q; for some i =1, ..., s.
WLOG P; D Q. Since both P;,Q; are maximal, P, = ;. Then we cancel
to obtain Ps...P. = @...Q; continue this to get r = s and P; = @Q; after
re-ordering. O

Definition. (4.10)

The ideal class group CI(Of) = {I C O, non-zero ideal}. I ~ J if Jo € L* such
that af = J.

We write [I] for the equivalence class containing I.
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Lemma. (4.11)
Cl(Oy, is a group under the operation

[1)[J] = [1J]

with identity [Of].

Proof. If 1,J C O, are non-zero ideals and «, 3 € L* are such that af C Of,
and BJ C Op. Then
(al)(8.J) = aBL]

so ideal multiplication is well-defined on equivalent classes.

For any I C O, O =1, so [Oy] is an identity.

We showed that if I C Oy, is any non-zero ideal, then there exists a non-zero
ideal J C Oy, such that I.J = («) is principal. Then [I|[J] = [IJ] = [(«)] = [OL].
Hence [I]71 = [J]. O

Proposition. (4.12)

The following are equivalent:

(i) O is a PID;

(ii) Or is a UFD;

(iii) The ideal class group, Cl(Oy), is trivial.

Proof. (i) implies (ii): In IB GRM.

(ii) implies (iii): We must show any ideal I C Oy, is principal. We know that we
can write I = P...P, as a product of prime ideals.

It’s therefore enough to show that every prime ideal of Op, is principal. Let
P C Op, be a non-zero prime ideal, let « € P be non-zero, and let a = a...c,
be an expression of a as a product of irreducibles.

Recall: if R is a ring, then we say « € R is prime if Vy, z € R, z|yz = z|y or
x|z. Also we learned from GRM that if R is a UFD then irreducible elements of
R are prime.

We find P D a = (a1)...(ay) = P|P;...P, where P; = (a;). Since «; is prime,
P, is a prime ideal. Hence we must have P = P; = («;) for some i, and hence P
is principal.

(iii) implies (i): Let I C Op be a non-zero ideal. Since CI(Of is trivial,
we have [I] = [OL], so there exists & € L* such that aOp = I. We have
a-l=aelC0O, s0oac O, hence I = (a) is principal. O

Lemma. (4.13)
If I, J C Op, are non-zero ideals, then N(I.J) = N(I)N(J).

Proof. Example sheet 2. O

Example sheet 2 now available!

Last time we learned that, if L is a number field, then we know any non-zero
ideal I C Oy, canbe written uniquely as I = [[;_, P{*, wher the p; are distinct
prime ideals, and e; > 1. We also defined C1(Oy,) as the obstruction to Oy, being
a UFD.
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5 Dedekind’s criteion

If P C Oy, is a non-zero prime ideal, then there’s a unique prime number p € Zx
such that p € P. (p) = ker(Z — Or/P). Then P|pOr, and N(P) = p/ for some
f>1

Lemma. (5.1)

Let p be a prime number, and factor pOr, = [[,_, P{* where Py, ..., P, are
distinct prime ideals of O, e; > 1. Define f; > 1 by N(P;) = p/i. Then
Si_ieifi =[L:Q]. In particular, » < [L: Q].

Proof. Apply norm to get N(pOpr)(= pll¥) =['_, N(P,)% (= plli=ie:fi). O

Definition. (5.2)
Let p be a prime number, and let pOr, = [];_; P be the factorization as above.
(i) We say p ramifies in L if e; > 1 for some i. We say p is totally ramified if

r=1and e; = [L:Q]. In other words, pOj, = PZ-[L:@].
(ii) We say p is inert in L if r =1 and e; = 1, i.e. pOy, is prime.

(iii) We say p splits completely in L if r = [L: Q] and e; = f; = 1 for all 4.
Note that these don’t cover all the possible cases.

Theorem. (5.3, Dedekind’s criterion)

Let @ € Op, be such that L = Q(«). Let f(x) € Z[x] be its minimal polynomial
and let p be a prime such that p t [Of : Z[o]].

Let f(z) = f(z) (mod p), and factor f(z) = [[;_, gi(z)¢ in F,[z], where
g1(x), ..., gr(x) € Fplx] are distinct monic irreducible polynomials. Let g;(z) €
Z[z] be any polynomial with g;(z) (mod p) = g;(z), and define Q; = (p, gi(«)) C
Oy, an ideal of Op. Let f; = degg;(x).

Then Q1, ..., Q, are distinct prime ideals of Op, and pOy, = [[;_, Q@ — i*’, and
N(Q:) = p”.

For example, let’s take L = Q(v/—11), p = 5. We see —11 = 1 (mod 4), so
O = Z[Hi\éjl] Thus Z[v/—11] C O, has index 2 as an additive subgroup.
Therefore we can apply Dedekind’s criterion to a = v/—11, with f(z) = 2% + 11
in order to factorize 507,. We see f(x) = f(x) (mod 5) = 22 +1 = (z+2)(z +3)
in Fs[z]. So tOf = PQ where P = (5,v/—-11+2),Q = (5,4/—11,3), and hence
P, Q are the same prime ideals (of O ). Thus 50y, splits completely in Q/—11.

Proof. (of 5.3)

Recall: if R is a ring and I C R is an ideal, then there’s a bijection be-
tween ideals containing I and idealks of R/I. 3rd isomorphism theorem gives
R/J = (R/I)/(J/I). We have Z[a] C Op of finite index. Let A = Z|a],
¢ : A — Op. By reduction mod p, we get another ring homomorphism
¢: A/pA— Or/pOr, by ¢(8 +pA) = +pOL.

We claim that this is actually an isomorphism. Both source and targe have
cardinality p“@, so it’s enough to show ¢ is surjective. Let N = [0y, : Z[a]].
We can find a,b € Z such that aN +bp = 1. If 8 € Oy, then N§ € Z[a] (by
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Lagrance), and 8 = aNB +bpf = ¢(aNB + pA) = 8+ pOr. Therefore there
is a bijection between ideals in O, containing p and ideals of A/pA.
We have A = Z[a] = Z[x]/(f(z)) by sending a to z. Reduction mod p gives an iso-

morphism A/pA = Z[z]/(p, f(x)) = Fp_[x]/(f(a:)) We have f(z) = H:Zl gi(x)e,

so there are homomorphisms Fy[z]/(f(z)) — F,[z]/(g:(z)), given by quotient
by the ideal (g;(z)) 2 (f(x)). Define Q; € Op, to be the ideal containing p such

5 N
that Q;/(p) is the kernel of the ring homomorphism Or,/pOyr, LN A/pA =
Fo[z]/(f(x)) — Fp[x]/(gi(x)). This ring homomorphism is surjective, and its
image is a field of cardinality p/i. Hence O /Q; is a finite field of cardinality
pfi, hence Q; is a prime ideal of norm N(Q;) = p/7.

Also, the Q; are distinct, because their images in O /pOy, are distinct, as if
i # j then (g;(x), g;(x)) is the unit ideal of F},[x]. To show Q; = (p, gi(«)), it’s
enough to show Q;/(p) C O /pOy is generated by g;(«). This is equivalent to
showing that ker(F,[z]/(f(z)) — Fp[x]/(g:(z))) is generated by g;(z). This is
true by definition.

It remains to show Q*...Q5" = pOr. We have

1 Q7 = (p1g1()) . (prgr (@)
= (P1g1(@)*)...(p1gr()")
< (P g1(a))...(gr(a)") = (p, f(a)) = (p)
Take norms, N(LHS) = szl N(Q;)% = prizieifi = plegf — plL:Ql — N(p)
N(RHS). This forces Qf'...Q% = pOy.

o

Let L be a number field. Last time we had that if « € O, Q(a) =L, pt Oy :
Z[a]]. Dedekind’s criterion: can factor pOp, by factoring f,(z) (mod p).

Proposition. (5.4)

Let d be a square-free integer, d # 0,1, L = Q(+/d), and let p be a prime number.
Then

(1) If p is odd, then:

e if p|d, then (p) = P2, so p ramifies in L;

e if ptdand (%) =1, then (p) = PQ, so p splits completely in L;
e if ptdand (% = —1, then (p) is prime and p is inert in L.

(2) If p = 2, then:

e if d=2,3 (mod 4), then 2 ramifies in L;

e if d =1 (mod 8), then 2 splits completely in L;

e if d =5 (mod 8), then 2 is inert in L.

Proof. We just do the case where p = 2. If d = 2,3 (mod 4), then O, = Z[/d]
2

so by Dedekind’s criterion, we must factor 2 —d (mod 2). But 22 —d = (z —d)
(mod 2). If d =1 (mod 4), then Of = Z[H2‘/a]7 so we must factor z2 + x + 174
(mod 2). If d =1 (mod 8), this is 2> + z = z(z + 1) (mod 2). If d =5 (mod 8),

this is % + z + 1 (mod 2) which is irreducible. O
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6 Geometry of numbers

Definition. (6.1)

If V is a finite dimensional R-vector space, then a lattice in V' is a subgroup
of the form A = @&, Zv,, where vy, ..., v, is a basis of V' as R-vector space (for
example, Z™ C R™).

Definition. (6.2)
If V is a finite-dimensional inner product space over R, and A C V is a lattice,
then the covolume of A is

A(N) = vol({z tivilt; € [0,1)})

where A = @] Zv;.
Check: this is independent of the choice of basis vy, ..., vy.

For today, let’s consider only a fixed imaginary quadratic field L = Q(v/d) where
d < 0 is a square-free integer. Let’s take o : L — QQ be a complex embedding.
Then o(Op) is a lattice in ¢. If d = 2,3 (mod 4), then ¢(Or) = Z & Z[Vd]; if
d=1 (mod 4) then 0(Or) =7Z EBZ(H'—Q‘/E)

If I < Op, is a non-zero ideal, then o(I) is a lattice in C.

Lemma. (6.3)
If 1 C Oy is a non-zero ideal, then A(I) = 1+/|disc(I)| = w‘/ |Dy|.

Proof. Let ay,as be an integral basis for I. Then o(I) = Zo(a1) & Zo (o).
Write aq = @1 + iy1, @2 = @2 + iy2, then A(o(I)) = [det (! }?)| (area of a
parallelogram).

Then . .
disc(I) = det (331 +twr T2+ zy2> = (24)2 det (Z/l y2>

. -2
xry — ’Lyl Xro — Zy X1 i)

O

Theorem. (6.4, special case of Minkovski’s theorem)

Let A C R? be a lattice, and let S = D(0,7) C R? be the closed disk of radius r.
Then if area(S) > 4A(A), then IX € A — {0} such that A € S.

In particular, there exists A € A — {0} such that |A|> < 2A(A).

Corollary. (6.5)
If I C Oy is a non-zero ideal, then there exists o € I — {0} s.t. N(a) < ¢ N(I),

where cf, := 2./|Dy|.

Proof. We apply the theorem to o(I) C C to get A € o(I) — {0}, such that
AP <2 ¥\/|DL| =¢N(I). If a € I is such that o(a) = A, then N(a) =
a(@)o(a) = |o(a)] = |A]%. O

Corollary. (6.6)
If [I] € Cl(Oy,), then there exists J € [I]| such that N(J) < ¢r.



6 GEOMETRY OF NUMBERS 23

Proof. Choose k € [I]7! so that IK is principal. Apply the corollary to find « €
K — {0}, such that N(a) < ¢, N(K). Then (o) C K = Kl|(a) = 3J C Oy
non-zero ideal such that JK = («). We have [J] = [K]~! = [I], so J € [I]. Also,
N(J)=N(a)/N(K) <cr. O

Theorem. (6.7)
The group C1(Or) is finite. (we’ll prove this for any L next time).

Proof. We've shown every class [I] € C1(Or) has a representative of norm < cr,.
It therefore suffices to show that Vm € Z, m > 1, the number of ideals I C Oy,
of norm N(I) = m is finite. If N(I) = m, then [Of, : I] = m, so by Lagrance,
m € I. Thus I comes from an ideal of the finite ring O, /mOy. O

Note: we see CL(Qp,) is generated by ideal classes [P], where P C Oy, is a non-
zerp prime ideal of norm N(P) < ¢z Why? Any class has the form [I], where
N(I) <ep. I =][;_;p, then [I] = (yi =1"[P;] and N(I) = [[;_,; N(P;)*,
so N(P,)) < N(I) <c¢yp foreachi=1,..r.

Example. Consider d = —-7. d =1 (mod 4), so D, = —d, ¢; = %\ﬁ < %\ﬁ <
2.

Cl(Oyp) is generated by ideals of norm < 2. There are none except Oy, so
Cl(Op) is the trivial group. Hence Of, = Z[@] is a UFD.

d= -5 Dy =—4d, cf, = %\/ﬁ = %\/5 < %\/5 < 3. Hence Cl(Oy,) is generated
by prime ideals P C Oy, of norm N(P) = 2. We know by Dedekind’s criterion
that 207 = P2. Hence CI(Op) is generated by [P], and [P]? = [20;] is the
trivial class.

Hence there are two possibilities: if P is principal, then CI(Op) is trivial; if P
is not principal, then CI(Op) = Z/2Z. We know Oy, is not a UFD, so we must
have Cl(Op) = Z/2Z.

Last time we see that if L is an imaginary quadratic field, then CI(QOp) is
finite, generated by [P] where P is a prime ideal of norm N(P) < Cp, where

Cr=2./|Dy|.

This time we will show the case of a general number field L.

Theorem. (6.8, Minkowski’s theorem)

Let A C R™ be a lattice, and let £ C R™ be a measurable subset which is conve,
and centrally symmetric (F = —F = {z € R"| —z € E}). Then:

(i) If vol(E) > 2" A(A), then 3\ € A\ {0} such that )\ € E;

(i) If vol(E) > 2" A(A) and E is compact, then 3\ € A\ {0} such that A € E.
(we used this last time in the special case n = 2, E=closed disk).

Proof. Let A = @7 Zv;, P ={>"""_; t;v;|t; € [0,1)}. Then vol(P) = A(A), and
R™ = Ll,\eA(P + /\)

(i) vol(P) < 5hvol(E) = vol(3E) = >, cp vol([3EIN[A+P]) =3,y vol([3E—
AN P).

We claim that there exists A # p € A such that (3E — A\) N (3E — p) is
non-empty. Why? If not, sets %E — A are pairwise disjoint, so vol(P) <
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> sen VOU([3E — A N P) < wol(P), contradiction.

Hence 32,w € E such that § —A =5 —pu, where A\ #p € A, so\—pu=35-39 =
2+ % Since E is centrally symmetric, —w € E, and E is convex implies that
: 1 EY e B soA— mue (A\{0})NE.

(ii) E compact implies that E is closed and bounded. wvol(E) > 2"A(A) so
vm > 1, vol((14 1) E) > 2" A(A). By (i), Vm € NasA,, € (A\{0})N((1+L)E),
and (1 + %)E C 2F, and 2FE N A is finite as 2F is bounde. By pigeonhole
principle we can assume 3\ € A\ {0} such that \,, = A\¥m > 1. E closed and
AMe(1+L)EVm >1 = X € E. Now let L be a number field. Let n = [L : Q],
let 71, ..., 7 : L — R be the real embeddings of L, and let 01,571, ...,04,65 : L — C
be the remaining distinct complex embeddings of L. Then r + 2s = n.

Define a map S : 1 = R” x C* by a — (11(), ..., (), 01(0), ..., 05 (). This is
a homomorphism of additive groups. O

Lemma. If I C Oy, is a non-zero ideal, then S(I) is a lattice.

Proof. Let ai,...,ay be an integral basis of I. Then S(I) = &7 ,Zs(a;) and
R" x C3 has dimension n as R-vector space. So we must show that S(ay), ..., S(c,)
are independent or equivalently that

Tl(a)].)...Tl(Oén)
Tr(al):::TT(an)
det | Reoy(ay)...Reoi(ay,) | #0
Imoy(ay)...Imoy (o)
Iman(al):::fmas(an)

(£)=G 5) ()

So this determinant equals
T1(a)1)...71 ()

Note: for z € C,

1 Tr(aq)ee ()
(5" et ) mo(an) |7

sigmay (aq)...05(an)
as disc(I) # 0. O

Lemma. (6.10)
If I C Oy is a non-zero ideal, then

L dise@)] = YD oy

A(S(D)) = —
(1) = o -
Proposition. (6.11)

If I C Oy, is a non-zero ideal, then there exists « € I\ {0} such that N(«) <
CLN(I), where Cp, = (2)* 2L /[D,].

Here (7, is called the Minkowski constant of L.
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Proof. We apply Minkowski’s theorem to the lattice S(I), and region B, s(t) =
{(x,2) e R" x C*| 22:1 | | + 2Zf:1 |2i| < t}.

Note: B, s(t) is convex, centrally symmetric and compact.

If vol(B, s(t)) > 2"A(S(I)), then there exists o € I\ {0} such that S(«a) €
B, 4(1).

We use a tuck with the AM-GM inequality to bound N («):

N(a)l/n — (ﬁ |Tz(a))f[ |0,i(a)|2)1/n < (Z::l ‘7—1(0‘” +22§:1 |Ul(a)‘)

Hence N(a) < t"/n™. To get optimal bound, choose ¢ so that vol(B, s(t)) =
2" A(S(I)).
Exercise: vol(B,,s(t)) = 2"(5)t" /n! (Induction on r and s).

We have
2" (mw/2)%t" /nl = 2" A(S(])) = 2T+3N(I)\/|DL\

= t" = (4/7)°*nIN(I)\/|DL|
= N(a) <t"/n" =CrN(I)

Corollary. (6.12)
For any class [I] € Cl(Op), there exists J € [I] such that N(J) < Cf.

Corollary. (6.13)
The group CI(Op) is finite, generated by [P] where P is a prime ideal of norm
N(P) < Cy.

These corollaries are deduced from the proposition exactly as in the case L =

Q(W4d), d < 0.

Remark. In practice this bound is very effective. For example consider f(z) =
2% — x + 1, this is irreducible mod 5, so over Q. Let L = Q(a) where « is a root
of f(x). In this case r = 1,s = 2, the discriminant discf = 2869 = 19 - 151 is
square-free, so O, = Z[a], and Dy, = discf, so ¢, = (4/7)%(5'/5%)v/2869 < 4.
Hence C1)Oy, is generated by P of norm N(P) = 2 or 3. By Dedekind’s criterion,
such primes exist iff f(x) has a root in Fs or F3. But there are no such roots.
Hence CI(Oyr) is trivial, hence Z[a] is a UFD.

Last time we showed CL(QOp) is generated by [P] where [P] is a prime ideal
of norm N(P) < Cp = (4/7)%n!/n"/|Dr|. For example, if L = Q(1/10),
Cr =1V4-10 = V10 < 4. CI(O, is generated by [P] where N(P) =2 or 3.
Dedekind’s criterion: 20, = P2, where P, = (2,v/10). 22 =10 = 22 — 1 (mod 3)
s0 301, = P3P}, where Py = (3,14 1/10). To find relatoins in CI(Or), we can
calculate norms, e.g. N(2++/10) = |4 — 10| = 6, so (2 + v/10) = P2 P3 or Py P}.
In either case we see that [P»] generates CI(Op. So either CI(OL) is trivail, or
Cl(Or, = Z/27 with the second case occuring iff So P, is not principal. Ps is
principal <= 3Ja + bv/10 € O, such that (a + bv/10) = P, <= Ja,b € Z s.t.
a? — 10b% = £2.

If a® — 10b® = 42, then either 2 or —2 is a quadratic residue (mod 5). So in
fact P, is not principal. So Cl(O) = Z/27Z.
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Now take L = Q(v/—17). C; =2 - 1y/4-17 = 4/mV/17 < 3V/17 < 6. So Cl(Op)
is generated by primes of norm 2,3 or 5. Dedekind’s criterion: 2 4+ 17 = 22 + 2
(mod 5), so 507, is prime of norm 25. 2% +17 = 2% — 1 (mod 3), so 301, = Q3Q%
where Q3 = (3,14 v/—17), Q5 = (3,1 —/=17). 22 + 17 = (2 +1)? (mod 2), so
201, = Q% where Q2 = (2,1 + /—17).

Now N(1++/—=17) =18 = 2 x 3%. Note 1 + V=17 € Q3 = Qs](1 + v/—17).
So we must have either (1 + v/—17) = Q2Q3Q%, or (1 +/—17) = Q2Q3. To

decide between these, we compute
Q3 = (0,34 3vV—17,(1 + V—17)?)
=(9,34+3vV—-17,-16 + 2v/—17)
9,3+ 3vV—17,2+2v/—17)
9,1+ +v-17)

~—~ o~ o~

We see 1+ /=17 € Q% so Q3%|(1 + v/—17), hence (1 + /—17) = Q2Q3%. We see
[Q3] generates Cl(Or,) and if Q2 is not principal then Cl(Of) = Z/47. But Q-
is principal iff we can solve a® + 17b%> = 2 with a,b € Z. This is impossible, so
Cl(Or) =2 7/47.

Remark. Ther are many open questions about ideal class groups even for
quadratic fields.

Things we know: Number of CI (OQ( V@) — 00 as d — —oo through squaree-free
integers. There are exactly 9 imaginary quadratic fields with trivial ideal class
group (hard).

Things we don’t know: are there infinitely many real quadratic fields of trivial
ideal class group?

Cohen-Lenstra heuristics: let p be an odd prime, and let A be a finite abelian

group of p-power order. Then for d < 0 square-free, P(C1(Og ) = A) =
12, (1-1/p%)

Number of Aut(A)"

For M a finite abelian group, M), is the (unique) p-sylow subgroup.

By definition, The above probablity is the ratio between the number of d < 0
square-free, Cl1(Og/z))p = A, |d| < X and the number of d < 0 square-free,
|d| < .
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7 Dirichlet’s unit theorem

Let L be a number field of degree n = [L : Q|, 7y,...,7 : L — R are real
embeddings, o1, ...,04,01,...,05 : L — C are distinct complex embeddings.

Theorem. (7.1)

There is an isomorphism O% 2 uy, x Z' 571 where puy, C O} is the finite cyclic

group of roots of unity in O7 .

In fact the proof shows omre: defineamap ! : O3 — R"™"5: [(a) = (log |11 ()], ..., log |7 ()], 21og |o1 ()], ..., 2 1c
then this is a homomorphism of abelian groups, and [(O}) is contained in the

hyperplane H = {x € R"%| Y277, = 0} C R"*+*. This expresses the condition

a€0; = logN(a)=>"_,log|r(a)|+2> 7, |oi(a)].

The proof of the theorem will show (O} ) is a lattice in H.

Example: O3 is finite < r+s=1,1e. r =158 =0 (L = Q), or
r=0,s=1(L=Q(Vd),d < 0 square-free). The first case where O% is infinite is
L =QVd),d > 0, square-free. Then +s—1 = 1, so [(O3) is infinite cyclic. Let’s
fix o : Q(sqrtd) — R to be the real embedding with o(v/d) > 0. o(uz) C R*, so
pr, = {£1} in this case. In this case, we can consider the map I’ : O — R by
a — log|o(a)|. We know that I'(O3) C R is a lattice, in particular there is a
uniquely characterised unit o € O} satisfying o(«) > 0, log |o(«)| > 0 and as
small as possible. In other words, o € O} is the unit for which o(a) > 1 and
o(a) is minimal with respect to this property. We call « the fundamental unit
of L = Q(v/d). Then we have 0% = {£a"|n € Z}.

Example sheet 3 is now online!

~

Last time we have: if L is a number field, then Of = py, x Z"™71 where up,
are roots of unity.

Now suppose L = Q(v/d) where d € Z is a square free integer, d > 1. We identify
L with a subfield of R, where v/d is the positive square root.

We saw that the Dirichlet’s unit theorem implies 3u € OF such that u = min{v €
O3 |v > 1}. w is called the fundamental unit, and O} = {xu"|n € Z}.

Lemma. (7.2)

(1) If d = 2,3 (mod 4) and v € O} satisfies v > 1, then v = a + bv/d where
a>b>1;

(2) If d = 1 (mod 4), and v € O} satisfies v > 1, then v = }(a + bV/d) wher
a>b>1.

Proof. (1) Let v/ = a — byv/d. Then vv' = a® — db*> = Np9(v) = £1. So
v>1 = |v/| <1. Hence v+ =2a >0, v—v = sb/d > 0. As a,b are
integers, we must have a > 1,b > 1.

Also, (a/b)? =d+1/b?> > 1asd > 2.

(2) Let v = 1(a—bV/d). Then v’ = £1 and a? —db? = £4. Then v+v' = a > 0,
and v —v' = bv/d > 0. Hence a > 1,b> 1. Also, (a/b)> = d+4/b* as d > 5 as
d=1 (mod 4). O
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We can use this to find the fundamental unit © € Oj. First suppose d = 2,3
(mod 4) and let u = a+bv/d. Let u* = ap+bpvd. Then u**+! = (a1 +byVd)(a+
bk\/E) = (a1ag + db1bg) + (brar + albk)\/g. Hence byx11 = brax + a1b, > by.
Hence the sequence by, ba, b3 is strictly increasing.

We can therefore characterise u as follows: let b € N be the least positive integer
such that db® + 1 or db® — 1 is of the form a? for some a € N. Then u = a4 bV/d.
Now suppose d = 1 (mod 4), and let u = %(a + Wd), a,b € Z. Let uF =
%(ak + bk\/g). Then by = %(albk + byag). Using lemma 7.2, we see byy1 > by.
If (77)

This is wrong. Let’s correct this next time. Sorry!

Example. d = 2.L = Q(\@) b=1works: 2—1=12. So1++V2is a
fundamental unit.

d=7 Try b=1: 741 is not a square; b = 2, doesn’t work either; b = 3:
9.-74+1=82 So 8+ 37 is a fundamental unit.

Note: This procedure is not always efficient. For example, the fundamental unit

in Q(v/22) is 197 + 421/22.

There is a more efficient algorithm which uses continued fractions, but it is not
discussed in this course (see number theory).

We now prove the unit theorem (this is non-examinable).

We recall the setup: L is a number field, 7y, ...,7 : L — R, 01,51,...,05,05 :

L — C are real and complex embeddings of L respectively.

Last time we defined amap: [ : O — R"™"* by a — (log(71(a)), ..., log(7(0)), 2 log (o1 (), ..., 21og(cs(cv))).
The image is contained inside the subspace H = {x € R™**| 37 **z; = 0}.

Lemma. (7.3)

Let a € Or, \ {0} be such that the above image vector is (ay, ..., a,+s) € R"5.

Fix an integer 1 < k < r + s. Then ther exists 5 € Op \ {0} such that if

1(B) = (b1, ... brps) € R™T then b; < a; if i # k. Moreover, N(8) < (2)*/|Dy|.

Proof. Let c1,...,cr4s € Ry, and let
E= {(sz) €R" x C8Hx1| <cpy e |$r‘ <e, |Zl|2 S Crgly ey |Zr|2 < Cr+s}
Then if vol(E) > 2"+25A(S(OL)) = 275/|DL|, then (S : O — R" x C%).

There exists 8 € Op, \ {0} such that S(8) € E (by Minkovski’s theorem). In
particular, N(8) = [[;_, [ (B)|TT;-, los(8)|> < c1...crq5 (by defiintion of E).

97+ /[Dy].

The first property gives b; < a; if i # k, and the second property gives N(3) >
Cle..Crys = (%)S\/|DL\. O

Corollary. (7.4)
Fix an integer 1 < k < r +s. Then there exists ¢ € O} such that if I(¢) =
(a1, ..., arys) then a; < 0if i # k, and a > 0.
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Proof. By the lemma, we can find elements aj,as, ... of O \ {0} such that
N(Oél) < (%)s\/ |DL| Vi € N, and if Z(Oél‘) = (bil,...,bi’ers), then bij < bifl’j
if j # k Vi = 2,3,.... The ideals («;) have bounded norm, so are finite in
number, so there exist elements ay, ap; with (an) = (apr). Then the element
e = ay/apy € OF has the desired property. O

We continue with the non-examinable proof of Dirichlet’s unit theorem.

We proved propoition: let a € Op, \ {0} be such that I(«) fix 1 < k < r+s.

Then 38 € O, \ {0} such that N(8) < (%)S\/|DL|, and if [(8) = (b1, ..., bpts)
then b; < a; if i # k.

We deduced Corllary 7.4: fix 1 <k < r+ s. Then there exists ¢ € OF such that
if i(e) = (a1, ..., ar4s), then a; < 0 if ¢ # k.

Proof. Choose a € Oy, \ {0}. By the proposition, we can find elements as, ...
such that N(o;) < (2/m)%/|Dg|, and if 1(i) = (bi1,...ir+s) then byj > biyq; if
j#kforalli>1.

We now look at the ideals (1), (ov2), .... These have norm at most (2/7)+/|Dr|.
We know there are only finitely many ideals of O, of norm at monst that, so
there must exist N < M such that (an) = (o). Hence Ju € OF such that
apy =uay. Also, u = apy/ay = l(u) = (b1 — ON1,y -y brnrts — DNrts). But
N < M,sobyj>byjifj#k SoBuyj—by; <0if j#Ek. O

Lemma. (7.5)

Let N > 1, and let A € Myxn(R) be such that:
° Zfil Ajj=0foral j=1,..,N;
0A1]>Olfl=j,and<01fl#j

Then A has rank N — 1.

Proof. The rank is at most N — 1. We show the first N — 1 rows of A are LI.

Suppose there exist t; € R,i =1,..., N — 1 not all zero s.t. Zfi}l t;A;; = 0 for
each j =1,...,N. WLOG after rescaling ther exists k that t;, =1 and t; < 1 if
i # k. Then 0 = Zf\[:_ll tiAi > Zf\:ll A > Ei\il A;, = 0, contradiction. [

Lemma. (7.6)
Fix B> 0. Let Xp ={a € Op|Vo : L — C,|o(a)| < B}. THen Xp is finite.

Proof. Recall the map S : O — R” x C*. S(Op) is a lattice in R" x C*.
S(Xp) is the intersection of the lattice S(Oyr,) with a compact subset of R" x C*.
Therefore it must be finite. O

Proposition. (7.7)
[(O3) is a lattice in H < R"*5.

Proof. We must show there exist units vy, ..., vr4s—1 € OF such that I(v1), ..., [ (Vr4s—1)
span H as an R-vector space and generate {(O}) as an abelian group.
By corollary 7.4, we can find €1, ..., e,4s € OF such htat if i(e;) = (Asj, ..., Artsj),
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then A;; <0if ¢ # j and A;; > 0if ¢ = j. By lemma 7.5, the matrix A has rank
r+s—1,s0 we can find v1, ..., 045—1 € OF such that I(v1),...,l(vy4s_1) span
O3 as an R-vector space.

Let A = @715 'ZI(v;) < H. This is a lattice in H. Then A < 1(O%) and if u €
O3, then 3\ € A such that I(u) — X € {5 til(v)|t1, oy trrs1 € [0,1]} = P.
But the set of units [(P) is finite by Lemma 7.6. Hence the quotien I(O3F)/A is
finite. By Lagrange’s theorem, 3N € Z, N > 1 such that NI(O3) < A. Hence
A <1(03) < +A. By the sandwich lemma, (O} ) is a free abelian group of rank
r 4+ s — 1. In particular, it is a lattice in H. O

Let’s now finish the proof of the unit theorem, i.e. show there’s an isomorphism
O3 = ug, x Z"71 where py, is the (finite) group of roots of unity in Op,.

Proof. We have puy = kerl. If € € pr, then ¢V = 1 for some N > 1, hence
(V) =0=NIE) = () =0as (£ e R". If « € OF and I(a) = 0 then
Vo : L — C, |o(a)| = 1. By lemma 7.6, ker! is finite. By Lagrange’s theorem, it
consists of roots of unity.

Choose v1, ..., 0p=5—1 € O} such that [(v1),...,[(vy+s-1) IS & Z—basis of 1(03).
Define a map f : g x Z"571 — OF by (&,n1, ..., npqs—1) = 0oy O
Exercise: this is an isomorphism.
Return to the examinable parts:

We now show how to find the fundamental unit in Q(v/d), where v/d € R+ and
d € 7Z is a positive square-free integer.

d>1,d=1 (mod 4):

Recall: the fundamental unit u € O7F is the least unit u > 1. We saw last time
that if v = %(a + b\/&) € O} is any unit with v > 1, then a > b > 1.

Let uk = %( + bk\[) Then bk+1 (albk + blak) (a1 + bl)bk > bk We
see bit1 > by, with equality iff ay = bk and a; = by = 1. Note: if a1 = by =1,
then N(u) =|15%¢| =1 = d =5. Assume first that d > 5. Then the sequence

b1 < by < b3 < ... is strictly increasing. The fundamental unit u can therefore be
found as following: let b € N be the least positive integer such that db? 4 4 = a?
or db?> — 4 = a?, where a € N. Then 1(a + bv/d) is the fundamental unit.

Now suppose d = 5. Then at least b; < by < ... is non-decreasing, and each value
b; can appear at most twice: this is because occurrences correspond to solutions
to b2d+4 = a?. We can therefore characterize the fundamental unit u as follows:
let b inN be the least positive integer for which db?> + 4 = a2 or db? — 4 = a?
for a,a’ € N (units 3(a + bv/d)andi (a’ + bv/d)). Recall that the fundamental
unit is the least unit with u > 1. Of these two possibilities, choose the unit with
the smaller value of a or a’. In this case, b= 1 givesd+4 =3%,d—4=1. So
1(1+ v/5) is the fundamental unit in this case.
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