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0 Motivation

Theorem. If p is an odd prime, then p = a2 + b2 for a, b ∈ Z ⇐⇒ p ≡ 1
(mod 4).

Proof. If p = a2 + b2, then p ≡ 0, 1, 2 (mod 4). So this condition on p is
necessary.

Suppose instead p ≡ 1 (mod 4). Then
(
−1
p

)
= 1. Thus ∃a ∈ Z such that

a2 ≡ −1 (mod p), or p|a2 + 1. We can factor a2 + 1 = (a+ i)(a− i) in the ring
Z[i]. Here we introduce a notation: if R ⊆ S are rings and α ∈ S, then

R[α] = {
n∑
i=0

aiα
i ∈ S|ai ∈ R}

, the smallest subring of S containing both R and α.

We know from IB GRM that Z[i] is a UFD. Now p|(a+i)(a−i). If p is irreducible
in Z[i] then p|a+ i or p|a− i, contradiction. Thus p is reducible in Z[i], hence
p = z1z2 with z1, z2 ∈ Z[i]. If z1 = A+Bi, A,B ∈ Z, then A2 +B2 = p.

Another example is when p is an odd prime. Does the equation

xp + yp = zp

have solutions with x, y, z ∈ Z and xyz 6= 0?

Theorem. (Kummer, 1850)
If Z[e2πi/p] is a UFD, then there are no solutions.

Strategy: factor xp + yp =
∏p−1
j=0(x+ e2πij/py) in Z[e2πi/p].

However, we now know Z[e2πi/p] is a UFD ⇐⇒ p ≤ 19.

Theorem. (Kummer, 1850)
If p is a regular prime, then there are no solutions.
If p < 100, then p is regular ⇐⇒ p 6= 37, 59, 67.

We have seen various examples such as Z ⊆ Q, Z[i] ⊆ Q[i], Z[e2πi/p] ⊆ Q[e2πi/p],
or in general, OL ⊆ L, where a ring of ”integers” lies in a number field.
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1 Ring of integers

Recall: A field extension L/K is an inclusion K ≤ L of fields. The degree of
L/K is [L : K] = dimK L. We say L/K is finite if [L : K] <∞.

Definition. (1.1)
A number field is a finite extension L/Q. Here are two ways to construct number
fields:
(1) Let α ∈ C be an algebraic number. Then L = Q(α) is a number field;
(2) Let K be a number field, and let f(X) ∈ K[X] be an irreducible polynomial.
Then L = K[X]/(f(X)) is a number field.
(Recall Tower Law: [L : Q] = [L : K][K : Q] <∞).

Definition. (1.2)
(1) Let L/K be a field extension. Then we say α ∈ L is algebraic over K if there
exists a monic f(X) ∈ K[X] such that f(α) = 0;
(2) Let L/Q be a field extension. Then we say α ∈ L is an algebraic integer if
there exists a monic f(X) ∈ Z[X] such that f(α) = 0.

Definition. (1.3)
Let L/K be a field extension, and let α ∈ L be algebraic over K. We call the
minimal polynomial of α over K the monic polynomial fα(X) ∈ K[X] of least
degree such that fα(α) = 0.

We recall why fα(X) is well-defined: there exists some monic f(X) ∈ K[X] with
f(α) = 0 as α is algebraic. If fα(α), f ′α(α) ∈ K[X] both satisfy the definition of
minimal polynomial, then we apply the polynomial division algorithm to write

fα(X) = p(X)f ′α(X) + r(X)

where p(X), r(X) ∈ K[X], and deg r < deg f ′α. Evaluate at X = α, we have
0 = fα(α) = p(α)f ′α(α) + r(α) = r(α). By minimality of deg f ′α, we must have
r = 0. Then deg fα = deg f ′α, and fα(X), f ′(α) are both monic, i.e. p(X) = 1
and fα(X) = f ′α(X).

Lemma. (1.4)
Let L/Q be a field extension, and let α ∈ L be an algebraic integer. Then:
(1) The minimal polynomial fα(X) of α over Q lies in Z[X];
(2) If g(X) ∈ Z[X] satisfies g(α) = 0, then there exists q(X) ∈ Z[X] such that
g(X) = fα(X)q(X);
(3) The kernel of the ring homomorphism Z[X] → L by f(X) → f(α) equals
(fα(X)), the ideal generated by fα(X).

Proof. (1) Recall that if f(X) = anX
n+...+a0 ∈ Z[X], then we define from GRM,

the content c(f) = gcd(an, ..., a0). Recall Gauss’ Lemma: If f(X), g(X) ∈ Z[X],
then c(fg) = c(f)c(g). Since α ∈ L is an algebraic integer, there exists monic
f(X) ∈ Z[X] such that f(α) = 0, i.e. c(f) = 1. Apply polynomial division
in Q[X] to get f(X) = p(X)fα(X) + r(X), where p(X), r(X) ∈ Q[X], deg r <
deg fα. The definition of fα(X) implies that r(X) = 0, hence f(X) = p(X)fα(X).
Now choose integers n,m ≥ 1 such that np(X) ∈ Z[X], c(np) = 1, and mfα(X) ∈
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Z[x], c(mfα) = 1. Then nmf(x) = (np(x))(mfα(x)) =⇒ c(nmf(x)) = nm = 1.
So n = m = 1, hence fα(x) ∈ Z[X].
(2) Let g(X) ∈ Z[X] be such that g(α) = 0. WLOG g(x) 6= 0 and c(g) = 1. Now
apply polynomial division to write g(x) = q(x)fα(x) + s(x) where q(x), s(x) ∈
Q[x], deg s < deg fα. Again by definition we have s(x) = 0. Choose an integer
k ≥ 1 such that kq(x) ∈ Z[x] and c(kq) = 1. Then kg(x) = kq(x)fα(x) =⇒
k = c(kg) = c(kq)c(fα) = 1. So k = 1, hence q(x) ∈ Z[x].
(3) is a reformulation of (2).

Let L/Q be a field extension. Last time we said α ∈ L is an algebraic integer if
∃ monic polynomial f(x) ∈ Z[x] such that f(α) = 0. We proved that if α ∈ L is
an algebraic integer and fα(x) ∈ Q[x] is the minimal polynomial of α over Q,
then fα(x) ∈ Z[x]. However there is a small problem, so we’ll prove again.

Proof. Choose f(x) ∈ Z[x] monic with f(α) = 0, and write

f(x) = q(x)fα(x) + r(x)

where q(x), r(x) ∈ Q[x], deg r < deg fα. Then r(α) = 0 =⇒ r(x) = 0, by
minimality of deg fα. I said that we can find integer n,m ≥ 1 s.t. nfα(x) ∈ Z[x],
c(nfα) = 1, mq(x) ∈ Z[x], c(mq) = 1. However we need to explain why do they
exist. Note fα(x) and q(x) are both monic. Choose integers N,M ≥ 1 such
that Nfα(x) ∈ Z[x], Mq(x) ∈ Z[x]. Then c(Nfα)|N , c(Mq)|M as those are the
leading term of the polynomial. Now let N/c(Nfα) = n ∈ Z, M/c(Mq) = m ∈ Z.
Now nmf(x) = (nfα(x))(mq(x)), so c(nmf(x)) = nm = 1 =⇒ n = m = 1.

Corollary. (1.5)
If α ∈ Q, then α is an algebraic integer ⇐⇒ α ∈ Z.

Proof. By lemma 1.4, α is an algebraic integer ⇐⇒ fα(x) ∈ Z[x]. But if α ∈ Q,
then fα(x) = x− α, and the first needs to divide the second polynomial.

Notation. If L/Q is any field extension, we write OL = {α ∈ L|α is an algebraic
integer}.

Now we proceed to the first non-trivial result of the course:

Proposition. (1.6)
If L/Q is a field extension, OL is a ring.

Proof. Clearly 0, 1 ∈ OL. Now if α ∈ OL, then f−α(x) = (−1)deg fαfα(−x) =⇒
−α ∈ OL.
The hard part is to show that if α, β ∈ OL, then α+ β ∈ OL and αβ ∈ OL.
Observe that if α ∈ OL, then Z[α] ⊆ L is a finitely generated Z-module. By
definition, Z[α] is generated by 1, α, α2, α3, .... Let fα(x) = xd+a1x

d−1 + ...+ad,

ai ∈ Z. Then αd = −(a1α
d−1 + ... + ad), so αd ∈

∑d−1
i=0 Zαi. By induction,

we see that αn ∈
∑d−1
i=0 Zαi for all n ≥ d. Hence Z[α] =

∑d−1
i=0 Zαi. Now take

α, β ∈ OL and let d = deg fα, e = deg fβ .
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By definition, Z[α, β] = Z[α][β] is generated as a Z-module by {αiβj}i,j∈N. The
same argument show that in fact this ring is generated as a Z-module by {αiβj}
for 0 ≤ i ≤ d− 1, 0 ≤ j ≤ e− 1. So Z[α, β] is finitely generated. From GRM we
know the classification of finitely generated Z-modules implies that there’s an
isomorphism Z[α, β] ∼= Zr ⊕ T for some r ≥ 1 and finite abelian group T . In
fact, T = 0: if γ ∈ T , then |T |γ = 0, by Lagrange’s theorem. But Z[α, β] ⊆ L, a
Q-vector space, so this forces γ = 0. Now we can therefore fix an isomorphism
Z[α, β] ∼= Zr (r ≥ 1. There’s an endomorphism mαβ : Z[α, β] → Z[α, β] by
γ → αβγ (as a Z-module). mαβ corredponds to an r× r matrx Aαβ ∈Mr×r(Z).
Let Fαβ(x) = det(x · 1r − Aαβ) ∈ Z[x], a monic polynomial. By the Cayley-
Hamilton theorem, Fαβ(mαβ) = 0 as endomorphisms of Z[α, β]. Write Fαβ(x) =
xr + b1x

r−1 + ... + br for bi ∈ Z. Thus mr
αβ + b1m

r−1
αβ + ... + br · 1r = 0 as

endomorphisms of Z[α, β].
Now the image of 1 is (αβ)r + b1(αβ)r−1 + ...+ br = Fαβ(αβ) = 0. So αβ ∈ OL.
The argument to show α + β ∈ OL is identical, replacing mαβ by mα+β :
Z[α, β]→ Z[α, β] by γ → (α+ β)γ. The detail is omitted here.

We call OL the ring of algebraic integers of L.

Lemma. (1.7)
Let L/Q be a number field, and let α ∈ L. Then ∃n ≥ 1 an integer such that
nα ∈ OL.

Proof. Let f(x) ∈ Q[x] be a monic polynomial such that f(α) = 0. Then
∃n ∈ Z, n ≥ 1 such that g(x) = ndeg ff(x/n) ∈ Z[x] is monic. But then
g(nα) = ndeg ff(α) = 0. So nα ∈ OL.
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2 Complex embeddings

Let L be a number field.

Definition. (2.1)
A complex embedding of L is a field homomorphism σ : L → C. Note: in this
case, σ is injective, and σ|Q is the usual embedding Q→ C.

Proposition. (2.2)
Let L/K be an extension of number fields, and let σ0 : K → C be a complex
embedding. Then there exist exactly [L : K] embeddings σ : L → C which
extends σ0 (σ|K = σ0).

Proof. Induction on [L : K]. If [L : K] = 1, then L = K, so σ0 determines σ.
In general, choose α ∈ L − K and consider L/K(α)/K. By the Tower law,
[L : K] = [L : K(α)][K(α) : K] and [K(α) : K] > 1. By induction, it’s enough
to show there are exactly [K(α) : K] embeddings σ : K(α)→ C extending σ0.
Let fα(x) ∈ K[x] be the minimal polynomial of α over K. Observe there’s
an isomorphism K[x]/(fα(x)) → K(α) by sending x → α. To give a complex
embedding σ : K(α)→ C extending σ0, it’s equivalent to give a root β of (σ0f)(x)
in C (σ0f(x) ∈ C[x] means apply σ0 to the coefficients of f(x)). Dictionary:
σ → β = σ(α). We have [K(α) : K] = deg fα = deg σ0fα. It’s enough to show
σ0fα has distinct roots in C. The polynomial fα(x) ∈ K[x] is irreducible, so is
prime to its derivative f ′α(x) (char K = 0). So α is separable over K.

Recall from last lecture, let L be a number field, a complex embedding is a
field homomorphism σ : L→ C. The number of such embeddings is [L : Q]. If
L = Q(α), and fα(x) ∈ Q[x] is the minimal polynomial, then there is a bijection
{σ : L→ C} ↔ { roots β ∈ C of fα(x)} by sending σ → β = σ(alpha).

Notation: if σ : L → C is a complex embedding, then σ̄ : L → C is also a
complex embedding, where σ̄(α) = σ(α) (complex conjugation). If σ = σ̄, then
σ(L) ⊆ R. Otherwise σ 6= σ̄ and σ(L) 6⊆ R.

We write r for the number of complex embedding σ such that σ = σ̄, s for the
number of pairs of embeddings {σ, σ̄} where σ 6= σ̄. Then r + 2s = [L : Q].

Example. Let d ∈ Z be square-free, d 6= 0, 1. Let Q(
√
d) = Q[x]/(x2 − d). If

d > 0, then r = 2, s = 0 (real quadratic field).
If d < 0, then r = 0, s = 1 (imaginary quadratic field).

Example. Let m ∈ Z cube-free, m 6= 0, 1,−1. Let Q( 3
√
m) = Q[x]/(x3 −m).

Then r = 1, s = 1, since x3 −m has one real and two complex roots.

Definition. (2.3)
Let L/K be an extension of number fields, and let α ∈ L. Let mα : L→ L be
the K-linear map defined by mα(β) = αβ. Then we define

trL/K(α) = trmα ∈ K
NL/K(α) = detmα ∈ K

the trace and norm of α respectively.
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Lemma. (2.4)
If L/K is an extension of number fields and α ∈ L, then

trL/K(α) = [L : K(α)] trK(α)/K(α)

NL/K(α) = NK(α)/K(α)[L:K(α)]

Proof. There’s an isomorphism L ∼= K(α)[L:K(α)] of K(α)-vector spaces(?).

Lemma. (2.5)
Let L/K be an extension of number fields and let α ∈ L. Let σ0 : K → C
be a complex embedding, and let σ1, ..., σn : L → C be the embeddings of L
extending σ0.
Then

σ0(trL/K(α)) = σ1(α) + ...+ σn(α)

σ0(NL/K(α)) = σ1(α)...σn(α).

Proof. WLOG let L = K(α). Let fα(x) ∈ K[x] be the minimal polynomial of α
over K. Then

(σ0fα)(x) = (x− σ1(α))(x− σ2(α))...(x− σn(α))

If f(α) = xn + a1x
n−1 + ...+ an, then σ0(a1) = −(σ1(α) + ...+σn(α)), σ0(an) =

(−1)nσ1(α)...σn(α).
Let g(x) ∈ K[x] be the characteristic polynomial of mα. If g(x) = xn +
b1x

n−1 + ... + bn, then b1 = − trmα = − trL/K(α), bn = (−1)n detmα =
(−1)nNL/K(α).By Cayley-Hamilton, g(mα) = 0 =⇒ g(α) = 0 =⇒ fα(x) =
g(x).

Corollary. (2.6)
If α ∈ OL, then trL/K(α), NL/K(α) ∈ OK .

Proof. If β ∈ K then β ∈ OK ⇐⇒ σ0(β) ∈ OC (as ∀f(x) ∈ Z[x], f(β) = 0 ⇐⇒
f(σ0(β)) = 0).
By the lemma, σ0 trL/K(α) = σ1(α)+...+σn(α). If α ∈ OL, then σ1(α), ..., σn(α) ∈
OC =⇒ σ1(α) + ...+σn(α) ∈ OC =⇒ σ0 trL/K(α) ∈ OC =⇒ trL/K(α) ∈ OK .

The same argument works for the norm.

Proposition. (2.7)
Let d ∈ Z be squarefree, d 6= 0, 1, and let L = Q(

√
d). Then

OL =

{
Z[
√
d] d ≡ 2, 3 (mod 4)

Z[ 1+
√
d

2 ] d ≡ 1 (mod 4)

Proof. If α ∈ L, then α ∈ OL if and only if both trace and norm (over L/Q) of α
is in Z. Why? Forward direction is the previous corollary; if α ∈ L, then f(α) = 0,
where f(x) = (x−σ1(α))(x−σ2(α)) = x2− trL/Q(α)x+NL/Q(α) ∈ Q[x], where
σ1, σ2 are complex embeddings of L. So backward holds too.
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Let α ∈ L. Write α = u
2 + v

2

√
d where u, v ∈ Q. If α ∈ OL, then trL/Q(α) = u ∈

Z, and NL/Q(α) = 1
4 (u+

√
dv)(u−

√
dv) = 1

4 (u2− dv2) ∈ Z =⇒ u2− dv2 ∈ 4Z
=⇒ dv2 ∈ Z.
Write v = r

s where r, s ∈ Z, s 6= 0, (r, s) = 1. Then we get dr2 ∈ s2Z =⇒ s2|dr2.
If p is a prime and p|s then p2|d. But we assumed d is square-free. So s = 1, so
v ∈ Z.

We’ve shown if α ∈ OL, then α = u
2 + v

2

√
d where u, v ∈ Z and u2 ≡ d2 (mod 4).

Case 1: d ≡ 2, 3 (mod 4). Then u2, v2 ≡ 0, 1 (mod 4). Considering the con-
gruence u2 ≡ dv2 (mod 4) shows that both u, v ∈ 2Z. Hence α ∈ Z[

√
d] =

{a+ b
√
d|a, b ∈ Z}, and OL = Z[

√
d].

Case 2: d ≡ 1 (mod 4). Hence u2 ≡ v2 (mod 4), so u ≡ v (mod 2). Hence

OL ⊆ {u2 + v
2

√
d|u, v ∈ Z, u ≡ 1 (mod 2)} = Z⊕ Z( 1+

√
d

2 ). It remains to show

that 1+
√
d

2 is an algebraic integer.

We have trL/Q( 1+
√
d

2 ) = 1, NL/Q( 1+
√
d

2 ) = 1−d
4 ∈ Z.

Recall that if R is a ring, then a unit in R is an element u ∈ R such that there
exists v ∈ R such that uv = 1.

The set R∗ = {u ∈ R|u is a unit} forms a group under multiplication.

Lemma. (2.8)
If L is a number field, then the units in OL are O∗L = {α ∈ OL|NL/Q(α) = ±1}.

Proof. next time.

It’s next time now! Let’s prove this lemma.
NL/Q(αβ) = NL/Q(α)NL/Q(β) for any α, β ∈ L.
If α ∈ O∗L, then ∃β ∈ OL such that αβ = 1 =⇒ NL/Q(α)NL/Q(β) = 1. Since
NL/Q(α), NL/Q(β) ∈ Z, we get NL/Q(α) ∈ {±1}.
Conversely, suppose α ∈ OL and NL/Q(α) = ±1. Then α−1 ∈ L. Let σ1, ..., σn :
L→ C be the distinct complex embeddings of L. Then

NL/Q(α) = σ1(α)...σn(α) = ±1

=⇒ σ1(α−1) = ±σ2(α)...σn(α) ∈ OC

=⇒ α−1 ∈ OL

Remark. We’ll prove later in the course that O∗L is a finite group ⇐⇒ either
L = Q or L is an imaginary quadratic field.
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3 Discriminants and integral bases

Let L be a number field, n = [L : Q], σ1, ..., σn : L → C be distinct complex
embeddings.

Definition. (3.1)
Let α1, ..., αn ∈ L. Then their discriminant is disc(α1, ..., αn) = det(D)2, where
D = Mn×n(F ) is Dij = σi(αj). Note: this is independent of the choice of
ordering of σ1, ..., σn and α1, ..., αn, as that’s just permuting the rows or columns,
hence changing only possibly signs; but we took a square in the definition.

Lemma. (3.2)
Let α1, ..., αn ∈ L. Then disc(α1, ..., αn) = det(T ), where T ∈ Mn×n(Q) is
Tij = trL/Q(αiαj).

Proof. Tij =
∑n
k=1 σk(αiαj) =

∑n
k=1DkiDkj = (DTD)ij .

Corollary. (3.3)
disc(α1, ..., αn) ∈ Q. If α1, ..., αn ∈ OL, then disc(α1, ..., αn) ∈ Z.

Proof. disc(α1, ..., αn) = det(T ), and entries of T is trace of some elements of
L (over Q) so is in the base field Q (think a bit). So this must be rational. If
α1, ..., αn ∈ OL, then ∀i, j, Dij ∈ OC =⇒ disc(α1, ..., αn) ∈ OC ∩Q = Z.

Proposition. (3.4)
Let α1, ..., αn ∈ L. Then disc(α1, ..., αn) 6= 0 ⇐⇒ α1, ..., αn form a basis of L
as Q-vector space.

Proof. First suppose α1, ..., αn are linearly dependent. Then the columns of
the matrix Dij = σi(αj) are linearly depnedent =⇒ disc(α1, ..., αn) = 0
(determinant is 0).
Now suppose α1, ..., αn are linearly independent. Then disc(α1, ..., αn) 6= 0
⇐⇒ det(T ) 6= 0 ⇐⇒ the symmetric bilinear form φ : L×L→ Q by φ(α, β) =
trL/Q(αβ) is non-degenerate, i.e. ∀α ∈ L∗,∃β ∈ L such that φ(α, β) 6= 0.
If α ∈ L∗, then φ(α, α−1) = trL/Q(1) = n 6= 0.

Definition. (3.5)
We say elements α1, ..., αn ∈ L form an integral basis for OL, if:
(i) α1, ..., αn ∈ OL;
(ii) α1, ..., αn generate OL as a Z-module.

Lemma. (3.6)
If α1, ..., αn form an integral basis for OL, then the function

f : Zn → OL

(m1, ...,mn)→
n∑
i=1

miαi

is an isomorphism of Z-module.
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Proof. f is a homomorphism, we must show it’s bijective. Observe that α1, ..., αn
form a basis of L as Q-vector space. We know that if β ∈ L, then ∃N ∈ Z+

such that Nβ ∈ OL (I think (1.7)). So we can write Nβ =
∑n
i=1miαi for some

m1 ∈ Z =⇒ β =
∑n
i=1

mi
N αi. Hence α1, ..., αn span L, so they form a basis of

L.
If f(m1, ...,mn) = 0, then

∑n
i=1miαi = 0 =⇒ (m1, ...,mn) = (0, ..., 0), as

α1, ..., αn are independent over Q. This shows f is injective. It’s surjecitve by
definition.

Lemma. (3.7, sandwich lemma)
(i) If H ≤ G are groups and G ∼= Za for some a ≥ 0, then H ∼= Zb for some
b ≤ a.
(ii) If K ≤ H ≤ G are groups and K ∼= Za, G ∼= Za for some a ≥ 0, then
H ∼= Za.
(iii) If H ≤ G are groups and H ∼= Za, G ∼= Za for some a ≥ 0, then G/H is
finite.

Proof. (i) H ≤ G, G ∼= Za. Then G/H is f.g abelian group. By the classification,
there’s an isomorphism G/H ∼= ZN ⊕ A, A finite abelian group. Choose p
prime, p 6| |A|. Then the map f : G/H → G/H by x + H → px + H is
injective, so f ′ : H/pH → G/pG by x + pH → x + pG is injecitve – why? If
x ∈ H,x ∈ pG, then x = py for some y ∈ G; then y +H ∈ ker(f) = H. Hence
x ∈ pH. So indeed f ′ is injective. By the classification, H ∼= Zb. f ′ injective
=⇒ |H/pH| ≤ |G/pG|, i.e. pb ≤ pa so b ≤ a.
(ii) Apply (i) to K ≤ H and H ≤ G to get H ∼= Zb where a ≤ b ≤ a.
(iii) H ≤ G, H ∼= Za, G ∼= Za. Again G/H is finitely generated, so by the
classification G/H ∼= ZN ⊕A where A is a finite abelian group.
Let p be a prime, p 6| |A|. same proof as in (i) shows that f ′ : H/pH → G/pG is
injecitve. Since |H/pH| = |G/pG| = pa, f ′ is a group isomorphism G/H + pG ∼=
(Z/pZ)N . There’s a surjective homomorphism G/pG → G/H + pG which has
kernel containing the image of f ′. Hence G/pG→ G/H + pG is surjective with
kernel G/pG. This forces N = 0.

Let L be a number field, n = [L : Q], σ1, ..., σn : L → C be distinct complex
embeddings; α1, ..., αn ∈ L, we defined disc(α1, ..., αn) = det(σi(αj))

2. An
alternative notation is ∆(α1, ..., αn). We also said α1, ..., αn form an integral
basis for OL if they generate OL as a Z-module.

Proposition. (3.8)
There exists an integral basis for OL.

Proof. Let β1, ..., βn ∈ L be a basis for L as Q-vector space. WLOG, β1, ..., βn ∈
OL. Then OL ⊃ ⊕ni=1Zβi.
Recall φ : L× L→ Q by sending (α, β)→ trL/Q(αβ) is a non-degenerate sym-
metric bilinear form (we showed that last time). Let β∗1 , ..., β

∗
n be the dual basis.

Then trL/Q(βiβ∗j ) = δij (why?).

If α ∈ OL, then we can write α =
∑n
i=1 aiβ

∗
i where ai ∈ Q. We know

αβi ∈ OL, hence trL/Q(αβ) ∈ Z. However LHS =
∑n
j=1 trL/Q(ajβ

∗
j βi) =



3 DISCRIMINANTS AND INTEGRAL BASES 13

∑n
j=1 aj trL/Q(β∗j βi) = aj . So OL ⊆ ⊕ni=1Zβ∗i . By sandwich lemma there is an

isomorphism between Zn and OL.

If α1, ..., αn, β1, ..., βn are both integral bases for OL, then there exists A ∈
Mn×n(Z) such that βj =

∑n
i=1Aijαi for each j = 1, ..., n. Moreover, we must

have det(A) ∈ {±1}, and A ∈ GLn(Z). Then disc(β1, ..., βn) = det(D′)2, where
D′ij = σi(βj), Dij = σi(αj). We haveD′ij =

∑n
k=1 σi(Akjαk) =

∑n
k=1 σi(αk)Akj =

(DA)ij .

We find disc(β1, ..., βn) = det(D′)2 = det(DA)2 = det(D)2 = disc(α1, ..., αn).
Therefore we could define:

Definition. (3.9)
The discriminant DL of the number field L is disc(α1, ..., αn), where α1, ..., αn
is any integral basis for OL.

Proposition. (3.10)
Let L = Q(α), and let f(x) ∈ Q[x] be the minimal polynomial of α over Q. Then

disc(1, α, α2, ..., αn−1) =
∏
i<j

(σi(α)− σj(α))2 = (−1)n(n−1)/2NL/Q(f ′(α))

In part II Galois theory, we defined the discrimant of a polynomial, discf =∏
i<j(σi(α)− σj(α))2 where αi’s are the roots of f .

Proof. If Dij = σi(α
j−1), D ∈ Mn×n(C), then disc(1, α, ..., αn−1) = det(D)2.

D is a Vandermonde matrix, so we know det(D) =
∏
i<j(σj(α)− σi(α)).

On the other hand, NL/Q(f ′(α)) =
∏n
i=1 σi(f

′(α)) =
∏n
i=1 f

′(σi(α)).
Using f(x) =

∏n
j=1(x − σj(α)), we get RHS =

∏n
i=1

∏
j 6=i(σi(α) − σj(α)) =

(−1)(
n
2)
∏
i<j(σi(α)− σj(α))2.

Note: if α ∈ OL and Z[α] = OL, then 1, α, ..., αn−1 is an integral basi for OL.
We can then use proposition to calculate DL.

Example. Let d ∈ Z square-free, d 6= 0, 1, L = Q(
√
d). Then

DL =

{
4d d ≡ 2, 3 (mod 4)
d d ≡ 1 (mod 4)

To see this, if d ≡ 2, 3 (mod 4), then OL = Z[
√
d] (shown previously). Apply

proposition to x2 − d = f(x), we get DL = disc(1,
√
d) = −NL/Q(2

√
d) = 4d.

On the other hand, if d ≡ 1 (mod 4), then OL = Z[ 1+
√
d

2 ]. Apply proposition to

the minimal polynomial of this element, f(x) = x2 − x+ 1−d
4 , so f ′(x) = 2x− 1,

so f ′(α) =
√
d. Therefore DL = −NL/Q(

√
d) =

√
d.

Proposition. If α1, ..., αn ∈ OL are such that disc(α1, ..., αn) is a non-zero
square-free integer, then α1, ..., αn form an integral basis for OL.
Note: this is a sufficient condition, but is not necessary (the previous example).
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Proof. Let β1, ..., βn be an integral basis for OL. There exists A ∈Mn×n(Z) such
that αj =

∑n
i=1Aijβi ∀j = 1, ..., n. Then disc(α1, ..., αn) = det(A)2disc(β1, ..., βn)

(we proved this in the beginning of lecture: D′ = DA). In particular, if this is
square-free and non-zero, then det(A) must be {±1}. So A ∈ GLn(Z). Hence
α1, ..., αn generate OL (as they can generate βi) and form an integral basis.

This could save a lot of calculation if we are lucky.

Example. Let f(x) = x3 − x− 1. Then discf = −4a3 − 27b2 = −23. This is
square-free! If L = Q(α), α a root of f(x), then OL = Z[α].

Definition. (3.12)
Let I ⊆ OL be a no-zero ideal. Then elements α1, ..., αn ∈ L form an integral
basis for I if:
(i) α1, ..., αn ∈ I;
(ii) α1, ..., αn generate I as a Z-module.

Proposition. (3.13)
Let I ⊆ OL be a non-zero ideal. Then there exists an integral basis for I.

Definition. By definition, I ⊆ OL ∼= Zn. Let α1, ..., αn ∈ OL be an integral
basis for OL. Let α ∈ I be non-zero. Then (α) ⊆ I, hence ⊕ni=1Zααi ⊆ I ⊆ OL.
So by sandwich lemma, there is an isomorphism between I and Zn as Z-module.
Hence there exists an integral basis for I.

An interesting consequence of the proof:

Definition. (3.14)
If I ⊆ OL is a non-zero ideal, then we define its norm

N(I) = [OL : I]

which is finite by the sandwich lemma.

Definition. (3.15)
If I ⊂ OL is a non-zero ideal then we define disc(I) = disc(α1, ..., αn) where
α1, ..., αn is an integral basis for I. (same argument shows disc(I) depends only
on I).

Lemma. (3.16)
If I ⊆ OL is a non-zero ideal, then disc(I) = disc(OL)N(I)2.

Proof. Let α1, ..., αn, β1, ..., βn be integral bases for OL and I respectively. Then
∃A ∈Mn×n(Z) such that βj =

∑n
i=1Aijαi ∀j = 1, ...n, and disc(α1, ..., αn) det(A)2 =

disc(β1, ..., βn). We must show det(A)2 = [OL : I]2.

In fact, we’ll show if B ∈Mn×n(Z) and det(B) 6= 0, then |Zn/BZn| = |det(B)|.
This suffices after identify OL ∼= Zn.

Recall: ∃P,Q ∈ GLn(Z) such that PBQ = D = Diag(d1, ..., dn), di ∈ Z
(Smith normal form). Hence we have Zn/BZn ∼= Zn/DZn ∼= ⊕ni=1Z/diZ =⇒
|Zn/BZn| = |Zn/DZn| =

∏n
i=1 |di|.

On the other hand, |det(B)| = |det(D)| =
∏n
i=1 |di|.
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Remember we have L a number field, n = [L : Q], σ1, ..., σn : L→ C are distinct
complex embeddings of L.

Lemma. (3.17)
Let α ∈ OL \ {0}. Then N((α)) = |NL/Q(α)| (Note that’s an ideal).

Proof. Let α1, ..., αn be an integral basis for OL. Then αα1, ..., ααn is an integral
basis for I = (α). So

disc(I) = disc(αα1, ..., ααn)

= det(σi(ααj))
2

= det(σi(α)σi(αj))
2

= (

n∏
i=1

σi(α))2 det(σi(αj))
2

= NL/Q(α)2disc(OL)

And we showed last time that for any non-zero ideal J ⊆ OL, disc(J) =
N(J)2disc(OL).

Notation: If α ∈ L − {0}, we let N(α) = N((α))N(0) = 0.
Then ∀α, β ∈ OL, N(αβ) = N(α)N(β).
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4 Unique factorisation in OL

Recall: we say a ring R is a unique factorisation domain (UFD) if
(i) R is an integral domain;
(ii) if x ∈ R is non-zero and not a unit, then there exists an expression x = p1...pr
where pi ∈ R are irreducible elements. This expression is unique in the sense
that if x = q1...qs is another such expression, then r = s and after re-ordering,
each qi is an associate of pi (i.e. qi ∈ R∗pi, where R∗ is the field of units).

After 2 years of Cambridge Maths we certainly know Z is a UFD. However, if L
is a number field, OL need not be a UFD.

In fact, any non-zero x ∈ OL which is not a unit can be expressed as a product
of irreducible elements.

If x ∈ OL, then x is a no-zero non-unit ⇐⇒ N(x) > 1. Suppose x ∈ OL is a
non-zero non-unit which cannot be written as a product of irreducible elements,
and with N(x) minimal among elements with this property. Then x = yz with
N(y) > 1, N(z) > 1, hence N(y) < N(x), N(z) < N(x). By minimality of
N(x), both y, z can be written as products of irreducible; contradiction.

Example. Consider L = Q(
√
−5, OL = Z[

√
−5], and O∗L = {±1}. In OL we

have 6 = 2× 3 = (1 +
√
−5)(1−

√
−5), and all of the four are irreducibles, and

no two are associates (norms). So OL is not a UFD (famous example).

Idea: introduce ideal multiplication in order to reduce elements further.

Recall that if R is a ring and I, J are ideals of R, then we define

IJ = {
k∑
i=1

aibi|ai ∈ I, bi ∈ J},

I + J = {a+ b|a ∈ I, b ∈ J}

We can define an ideal I ( R to be irreducible if it does not admit an expression
I = JK where J,K are proper ideals of R.

Key point: even if α ∈ OL is irreducible, the ideal (α) need not be irreducible. For
example in Z[

√
−5], we have (2) = (2, 1+

√
−5)2, (3) = (3, 1+

√
−5)(3, 1−

√
−5).

Definition. (4.1)
If R is a ring, we say that an ideal P ( R is prime if ∀x, y ∈ R, xy ∈ P
=⇒ x ∈ P or y ∈ P .

Lemma. (4.2)
Let R be a ring, and let I, J, P ⊆ R be ideals, and suppose P is prime and
IJ ⊆ P . Then I ⊆ P or J ⊆ P .

Proof. WLOG I 6⊆ P . Choose some x ∈ I \ P . If y ∈ J , is any element, then
xy ∈ IJ ⊆ P . So y ∈ P . So J ⊆ P .
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From now on, L is a number field.

Lemma. (4.3)
Any non-zero prime ideal P ⊆ OL is a maximal ideal.

Proof. Recall: if R is a ring and I ( R is an ideal, then I is prime ⇐⇒ R/I is
an integral domain, and I is maximal ⇐⇒ R/I is a field. If you don’t remember
these statements then I strongly encourage you to review GRM. If p ⊆ OL is
a non-zero prime ideal, then OL/P is a finite integral domain (of cardinality
N(P )); any such ring is a field, so P is also maximal.

Lemma. (4.4)
If I ( OL is a non-zero ideal, then there exist non-zero prime ideals P1, ..., Pr ⊆
OL such that P1...Pr ⊆ I.

Proof. For contradiction, let I ( OL be an ideal whicih does not have this
property, and such that N(I) is minimal among ideals not having this property.
Then I is not prime, so there exist elements x, y ∈ OL such that xy ∈ I but
x 6∈ I, y 6∈ I. But then it follows that I ( I + (x) and I ( I + (y). So
N(I + (x)), N(I + (y)) < N(I). By minimality of N(I), we can find non-zero
prime ideals P1...Pr ⊆ I + (x) and Q1...Qr ⊆ I + (y). Then P1...PrQ1...Qr ⊆
(I + (x))(I + (y)) ⊆ I2 + xI + yI + (xy) ⊆ I. Contradiction.

Lemma. (4.5)
If I ( OL is a non-zero ideal, then there exists γ ∈ L \ OL such that γI ⊆ OL.

Proof. Let α ∈ I \ {0}. Let P1, ..., Pr ⊆ OL be non-zero prime ideals such that
P1...Pr ⊆ (α). WLOG r is minimal with this property. Let P be a minimal
ideal containing I. Then P ⊇ I ⊇ (α) ⊇ P1...Pr, hence P ⊃ Pi for some i. After
relabelling assume P ⊃ P1. Since non-zero prime ideals are maximla, we have
P = P1. Since r is minimal, we have P2...Pr 6⊆ (α). Choose β ∈ P2...Pr \ (α).
Claim: the element γ = β/α has the desired property.
If γ ∈ OL, then β = αγ ∈ (α), contradiction;
γI = β

αI ⊆
1
αP2...Pr · I ⊆ 1

αP1P2...Pr ⊆ OL.

Let L be a number field. Last lecture we proved that if I ( OL is a non-zero
ideal, then there exist γ ∈ L \ OL such that γI ⊆ OL.

Proposition. (4.6)
If I ⊆ OL is a non-zero ideal, there exists a non-zero ideal J ⊆ OL, such that
IJ is principal.

Proof. Choose α ∈ I \ {0}. Define J = {β ∈ OL|βI ⊆ (α)}. J is a non-zero
ideal, as α ∈ J . We have IJ ⊆ (α). We will show IJ = (α.
Let K = 1

αIJ ⊆ OL. We will show in fact that K = OL. Suppose otherwise,
that K 6= OL, then ∃γ ∈ L \ OL such that γK ⊆ OL.
We have (α) ⊆ I, hence 1

αI ⊇ OL, hence underbrace 1
αIJK ⊃ J . Hence

γJ ⊆ γK ⊆ OL.
Another observation is that, we also have γIJ = γαK ⊆ (α).
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If we have β ∈ γJ , on one hand β ∈ OL; on the other hand, βI ⊆ (α). So β ∈ J ,
hence γJ ⊆ J .
Recall that J admits an integral basis, so ther’s an isomorphism J ∼= Zn. If
A ∈Mn×n(Z) is the matrix representing multiplication by γ, and if f(x) ∈ Z[x]
is the characteristic polynomial of A, then f(γ) = 0.
Hence γ ∈ OL. Contradiction. So K = OL.

Corollary. (4.7)
If I, J,K ⊆ OL are non-zero ideals and IJ = IK, then J = K.

Proof. Choose a non-zero ideal A ⊆ OL such that AI = (α) is principal. Then
AIJ = αJ = AIK = αK =⇒ J = K.

If I, J ⊆ OL are non-zero ideals, say I divides J (or I|J) if there exists an ideal
K ⊆ OL such that IK = J .

Corollary. (4.8)
If I, J ⊆ OL are non-zero ideals, then I|J ⇐⇒ I ⊇ J .

Proof. If IK = J , then J ⊆ I.
Suppose instead that I ⊇ J . Choose a non-zero ideal AOL such that AI = (α)
is principal (by 4.6). Then AI = (α) ⊇ AJ , hence OL ⊇ 1

αAJ . So K = 1
αAJ is

a non-zero ideal of OL, and IK = 1
αAIJ = J .

Theorem. (4.9)
If I ⊆ OL is a non-zero ideal, then there exist prime ideals P1, ..., Pr ⊆ OL such
that I = P1P2...Pr. Moreover, this expression is unique up to re-ordering of
terms.

Proof. We show existence by contradiction. Suppose I is an ideal which cannot
be written as product of primes, and with N(I) minimal subject to this condition.
We can find a maximal ideal P ⊃ I. P is also prime. Then P |I, so we can write
I = PJ for some ideal J ⊆ OL. Then J |I, hence J ⊃ I. If J = I, then we get
I = IP , hence OL = P as we can cancel, but that’s a contradiction as prime
ideals by definition cannot be OL.
Therefore J ) I, hence N(J) < N(I). By minimality, we can write J as
J = P2...Pr where each Pi ⊆ OL are prime ideals. Then we have I = PJ .
Contradiction. This shows existence.

For uniqueness, suppose P1, ..., Pr, Q1, ..., Qs are non-zero prime ideals in OL
such that P1...Pr = Q1...Qs. Then P1|Q1...Qr, so P1 ⊇ Qi for some i = 1, ..., s.
WLOG P1 ⊃ Q1. Since both P1, Q1 are maximal, P1 = Q1. Then we cancel
to obtain P2...Pr = Q2...Qs; continue this to get r = s and Pi = Qi after
re-ordering.

Definition. (4.10)
The ideal class group Cl(OL) = {I ⊆ OL non-zero ideal}. I ∼ J if ∃α ∈ L∗ such
that αI = J .
We write [I] for the equivalence class containing I.
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Lemma. (4.11)
Cl(OL is a group under the operation

[I][J ] = [IJ ]

with identity [OL].

Proof. If I, J ⊆ OL are non-zero ideals and α, β ∈ L∗ are such that αI ⊆ OL
and βJ ⊆ OL. Then

(αI)(βJ) = αβIJ

so ideal multiplication is well-defined on equivalent classes.
For any I ⊆ OL, OLI = I, so [OL] is an identity.
We showed that if I ⊆ OL is any non-zero ideal, then there exists a non-zero
ideal J ⊆ OL such that IJ = (α) is principal. Then [I][J ] = [IJ ] = [(α)] = [OL].
Hence [I]−1 = [J ].

Proposition. (4.12)
The following are equivalent:
(i) OL is a PID;
(ii) OL is a UFD;
(iii) The ideal class group, Cl(OL), is trivial.

Proof. (i) implies (ii): In IB GRM.
(ii) implies (iii): We must show any ideal I ⊆ OL is principal. We know that we
can write I = P1...Pr as a product of prime ideals.
It’s therefore enough to show that every prime ideal of OL is principal. Let
P ⊆ OL be a non-zero prime ideal, let α ∈ P be non-zero, and let α = α1...αr
be an expression of α as a product of irreducibles.
Recall: if R is a ring, then we say x ∈ R is prime if ∀y, z ∈ R, x|yz =⇒ x|y or
x|z. Also we learned from GRM that if R is a UFD then irreducible elements of
R are prime.
We find P ⊃ α = (α1)...(αr) =⇒ P |P1...Pr where Pi = (αi). Since αi is prime,
Pi is a prime ideal. Hence we must have P = Pi = (αi) for some i, and hence P
is principal.
(iii) implies (i): Let I ⊆ OL be a non-zero ideal. Since Cl(OL is trivial,
we have [I] = [OL], so there exists α ∈ L∗ such that αOL = I. We have
α · 1 = α ∈ I ⊆ OL, so α ∈ OL, hence I = (α) is principal.

Lemma. (4.13)
If I, J ⊆ OL are non-zero ideals, then N(IJ) = N(I)N(J).

Proof. Example sheet 2.

Example sheet 2 now available!

Last time we learned that, if L is a number field, then we know any non-zero
ideal I ⊆ OL canbe written uniquely as I =

∏r
i=1 P

ei
i , wher the pi are distinct

prime ideals, and ei ≥ 1. We also defined Cl(OL) as the obstruction to OL being
a UFD.
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5 Dedekind’s criteion

If P ⊆ OL is a non-zero prime ideal, then there’s a unique prime number p ∈ Z≥0

such that p ∈ P . (p) = ker(Z→ OL/P ). Then P |pOL, and N(P ) = pf for some
f ≥ 1.

Lemma. (5.1)
Let p be a prime number, and factor pOL =

∏r
i=1 P

ei
i where P1, ..., Pr are

distinct prime ideals of OL, ei ≥ 1. Define fi ≥ 1 by N(Pi) = pfi . Then∑r
i=1 eifi = [L : Q]. In particular, r ≤ [L : Q].

Proof. Apply norm to get N(pOL)(= p[L:Q]) =
∏r
i=1N(Pi)

ei(= p
∏r
i=1 eifi).

Definition. (5.2)
Let p be a prime number, and let pOL =

∏r
i=1 P

ei
i be the factorization as above.

(i) We say p ramifies in L if ei > 1 for some i. We say p is totally ramified if

r = 1 and e1 = [L : Q]. In other words, pOL = P
[L:Q]
i .

(ii) We say p is inert in L if r = 1 and e1 = 1, i.e. pOL is prime.
(iii) We say p splits completely in L if r = [L : Q] and ei = fi = 1 for all i.

Note that these don’t cover all the possible cases.

Theorem. (5.3, Dedekind’s criterion)
Let α ∈ OL be such that L = Q(α). Let f(x) ∈ Z[x] be its minimal polynomial
and let p be a prime such that p - [OL : Z[α]].
Let f̄(x) = f(x) (mod p), and factor f̄(x) =

∏r
i=1 ḡi(x)ei in Fp[x], where

ḡ1(x), ..., ḡr(x) ∈ Fp[x] are distinct monic irreducible polynomials. Let gi(x) ∈
Z[x] be any polynomial with gi(x) (mod p) = ḡi(x), and define Qi = (p, gi(α)) ⊆
OL, an ideal of OL. Let fi = deg ḡi(x).
Then Q1, ..., Qr are distinct prime ideals of OL, and pOL =

∏r
i=1Q− iei , and

N(Qi) = pfi .

For example, let’s take L = Q(
√
−11), p = 5. We see −11 ≡ 1 (mod 4), so

OL = Z[ 1+
√
−11

2 ]. Thus Z[
√
−11] ⊆ OL has index 2 as an additive subgroup.

Therefore we can apply Dedekind’s criterion to α =
√
−11, with f(x) = x2 + 11

in order to factorize 5OL. We see f̄(x) = f(x) (mod 5) = x2 + 1 = (x+ 2)(x+ 3)
in F5[x]. So tOL = PQ where P = (5,

√
−11 + 2), Q = (5,

√
−11, 3), and hence

P,Q are the same prime ideals (of OL). Thus 5OL splits completely in Q
√
−11.

Proof. (of 5.3)
Recall: if R is a ring and I ⊆ R is an ideal, then there’s a bijection be-
tween ideals containing I and idealks of R/I. 3rd isomorphism theorem gives
R/J ∼= (R/I)/(J/I). We have Z[α] ⊆ OL of finite index. Let A = Z[α],
φ : A → OL. By reduction mod p, we get another ring homomorphism
φ̄ : A/pA→ OL/pOL by φ̄(β + pA) = β + pOL.
We claim that this is actually an isomorphism. Both source and targe have
cardinality p[L:Q], so it’s enough to show φ̄ is surjective. Let N = [OL : Z[α]].
We can find a, b ∈ Z such that aN + bp = 1. If β ∈ OL, then Nβ ∈ Z[α] (by
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Lagrance), and β = aNβ + bpβ =⇒ φ̄(aNβ + pA) = β + pOL. Therefore there
is a bijection between ideals in OL containing p and ideals of A/pA.
We have A = Z[α] ∼= Z[x]/(f(x)) by sending α to x. Reduction mod p gives an iso-
morphism A/pA ∼= Z[x]/(p, f(x)) ∼= Fp[x]/(f̄(x)). We have f̄(x) =

∏r
i=1 ḡi(x)ei ,

so there are homomorphisms Fp[x]/(f̄(x)) → Fp[x]/(ḡi(x)), given by quotient
by the ideal (ḡi(x)) ⊇ (f̄(x)). Define Qi ⊆ OL to be the ideal containing p such

that Qi/(p) is the kernel of the ring homomorphism OL/pOL
φ̄−1

−−→ A/pA
∼=−→

Fp[x]/(f̄(x)) → Fp[x]/(ḡi(x)). This ring homomorphism is surjective, and its
image is a field of cardinality pfi . Hence OL/Qi is a finite field of cardinality
pfi , hence Qi is a prime ideal of norm N(Qi) = pfi .
Also, the Qi are distinct, because their images in OL/pOL are distinct, as if
i 6= j then (ḡi(x), ḡj(x)) is the unit ideal of Fp[x]. To show Qi = (p, gi(α)), it’s
enough to show Qi/(p) ⊆ OL/pOL is generated by ḡi(α). This is equivalent to
showing that ker(Fp[x]/(f̄(x)) → Fp[x]/(ḡi(x))) is generated by ḡi(x). This is
true by definition.
It remains to show Qe11 ...Q

er
r = pOL. We have

Qe11 ...Q
er
r = (p1g1(α))e1 ...(prgr(α))er

= (p1g1(α)e1)...(p1gr(α)er )

≤ (p, g1(α)e1)...(gr(α)er ) = (p, f(α)) = (p)

Take norms, N(LHS) =
∏r
i=1N(Qi)

ei = p
∑r
i=1 eifi = pdeg f = p[L:Q] = N(p) =

N(RHS). This forces Qe11 ...Q
er
r = pOL.

Let L be a number field. Last time we had that if α ∈ OL, Q(α) = L, p - [OL :
Z[α]]. Dedekind’s criterion: can factor pOL by factoring fα(x) (mod p).

Proposition. (5.4)
Let d be a square-free integer, d 6= 0, 1, L = Q(

√
d), and let p be a prime number.

Then
(1) If p is odd, then:
• if p|d, then (p) = P 2, so p ramifies in L;
• if p - d and (dp ) = 1, then (p) = PQ, so p splits completely in L;

• if p - d and (dp = −1, then (p) is prime and p is inert in L.

(2) If p = 2, then:
• if d ≡ 2, 3 (mod 4), then 2 ramifies in L;
• if d ≡ 1 (mod 8), then 2 splits completely in L;
• if d ≡ 5 (mod 8), then 2 is inert in L.

Proof. We just do the case where p = 2. If d ≡ 2, 3 (mod 4), then OL = Z[
√
d],

so by Dedekind’s criterion, we must factor x2−d (mod 2). But x2−d ≡ (x−d)2

(mod 2). If d ≡ 1 (mod 4), then OL = Z[ 1+
√
d

2 ], so we must factor x2 + x+ 1−d
4

(mod 2). If d ≡ 1 (mod 8), this is x2 + x = x(x+ 1) (mod 2). If d ≡ 5 (mod 8),
this is x2 + x+ 1 (mod 2) which is irreducible.
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6 Geometry of numbers

Definition. (6.1)
If V is a finite dimensional R-vector space, then a lattice in V is a subgroup
of the form Λ = ⊕mi=1Zvi, where v1, ..., vn is a basis of V as R-vector space (for
example, Zn ⊆ Rn).

Definition. (6.2)
If V is a finite-dimensional inner product space over R, and Λ ⊆ V is a lattice,
then the covolume of Λ is

A(Λ) = vol({
n∑
i=1

tivi|ti ∈ [0, 1)})

where Λ = ⊕ni=1Zvi.
Check: this is independent of the choice of basis v1, ..., vn.

For today, let’s consider only a fixed imaginary quadratic field L = Q(
√
d) where

d < 0 is a square-free integer. Let’s take σ : L → Q be a complex embedding.
Then σ(OL) is a lattice in φ. If d ≡ 2, 3 (mod 4), then σ(OL) = Z⊕ Z[

√
d]; if

d ≡ 1 (mod 4) then σ(OL) = Z⊕ Z( 1+
√
d

2 )
If I ≤ OL is a non-zero ideal, then σ(I) is a lattice in C.

Lemma. (6.3)

If I ⊆ OL is a non-zero ideal, then A(I) = 1
2

√
|disc(I)| = N(I)

2

√
|DL|.

Proof. Let α1, α2 be an integral basis for I. Then σ(I) = Zσ(α1) ⊕ Zσ(α2).
Write α1 = x1 + iy1, α2 = x2 + iy2, then A(σ(I)) = |det

(
x1 x2

y1 y2

)
| (area of a

parallelogram).
Then

disc(I) = det

(
x1 + iy1 x2 + iy2

x1 − iy1 x2 − iy2

)
= (2i)2 det

(
y1 y2

x1 x2

)

Theorem. (6.4, special case of Minkovski’s theorem)
Let Λ ⊆ R2 be a lattice, and let S = D(0, r) ⊆ R2 be the closed disk of radius r.
Then if area(S) ≥ 4A(Λ), then ∃λ ∈ Λ− {0} such that λ ∈ S.
In particular, there exists λ ∈ Λ− {0} such that |λ|2 ≤ 4

πA(Λ).

Corollary. (6.5)
If I ⊆ OL is a non-zero ideal, then there exists α ∈ I − {0} s.t. N(α) ≤ cLN(I),
where cL := 2

π

√
|DL|.

Proof. We apply the theorem to σ(I) ⊆ C to get λ ∈ σ(I) − {0}, such that

|λ|2 ≤ 4
π ·

N(I)
2

√
|DL| = clN(I). If α ∈ I is such that σ(α) = λ, then N(α) =

σ(α)σ(α) = |σ(α)|2 = |λ|2.

Corollary. (6.6)
If [I] ∈ Cl(OL), then there exists J ∈ [I] such that N(J) ≤ cL.



6 GEOMETRY OF NUMBERS 23

Proof. Choose k ∈ [I]−1 so that IK is principal. Apply the corollary to find α ∈
K−{0}, such that N(α) ≤ cLN(K). Then (α) ⊆ K =⇒ K|(α) =⇒ ∃J ⊆ OL
non-zero ideal such that JK = (α). We have [J ] = [K]−1 = [I], so J ∈ [I]. Also,
N(J) = N(α)/N(K) ≤ cL.

Theorem. (6.7)
The group Cl(OL) is finite. (we’ll prove this for any L next time).

Proof. We’ve shown every class [I] ∈ Cl(OL) has a representative of norm ≤ cL.
It therefore suffices to show that ∀m ∈ Z,m ≥ 1, the number of ideals I ⊆ OL
of norm N(I) = m is finite. If N(I) = m, then [OL : I] = m, so by Lagrance,
m ∈ I. Thus I comes from an ideal of the finite ring OL/mOL.

Note: we see CL(OL) is generated by ideal classes [P ], where P ⊆ OL is a non-
zerp prime ideal of norm N(P ) ≤ cL. Why? Any class has the form [I], where
N(I) ≤ cL. If I =

∏r
i=1 p

ei
i , then [I] = ()i = 1r[Pi]

ei and N(I) =
∏r
i=1N(Pi)

ei ,
so N(Pi) ≤ N(I) ≤ cL for each i = 1, ..., r.

Example. Consider d = −7. d ≡ 1 (mod 4), so DL = −d, cl = 2
π

√
7 < 2

3

√
7 <

2.
Cl(OL) is generated by ideals of norm < 2. There are none except OL, so

Cl(OL) is the trivial group. Hence OL = Z[ 1+
√
−7

2 ] is a UFD.

d = −5: DL = −4d, cL = 2
π

√
70 = 4

π

√
5 < 4

3

√
5 < 3. Hence Cl(OL) is generated

by prime ideals P ⊆ OL of norm N(P ) = 2. We know by Dedekind’s criterion
that 2OL = P 2. Hence Cl(OL) is generated by [P ], and [P ]2 = [2OL] is the
trivial class.
Hence there are two possibilities: if P is principal, then Cl(OL) is trivial; if P
is not principal, then Cl(OL) ∼= Z/2Z. We know OL is not a UFD, so we must
have Cl(OL) ∼= Z/2Z.

Last time we see that if L is an imaginary quadratic field, then Cl(OL) is
finite, generated by [P ] where P is a prime ideal of norm N(P ) ≤ CL, where
CL = 2

π

√
|DL|.

This time we will show the case of a general number field L.

Theorem. (6.8, Minkowski’s theorem)
Let Λ ⊆ Rn be a lattice, and let E ⊆ Rn be a measurable subset which is conve,
and centrally symmetric (E = −E = {x ∈ Rn| − x ∈ E}). Then:
(i) If vol(E) > 2nA(Λ), then ∃λ ∈ Λ \ {0} such that λ ∈ E;
(i) If vol(E) ≥ 2nA(Λ) and E is compact, then ∃λ ∈ Λ \ {0} such that λ ∈ E.
(we used this last time in the special case n = 2, E=closed disk).

Proof. Let Λ = ⊕ni=1Zvi, P = {
∑n
i=1 tivi|ti ∈ [0, 1)}. Then vol(P ) = A(Λ), and

Rn = tλ∈Λ(P + λ).
(i) vol(P ) < 1

2n vol(E) = vol( 1
2E) =

∑
λ∈Λ vol([

1
2E]∩[λ+P ]) =

∑
λ∈Λ vol([

1
2E−

λ] ∩ P ).
We claim that there exists λ 6= µ ∈ Λ such that (1

2E − λ) ∩ ( 1
2E − µ) is

non-empty. Why? If not, sets 1
2E − λ are pairwise disjoint, so vol(P ) <
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∑
λ∈Λ vol([

1
2E − λ] ∩ P ) ≤ vol(P ), contradiction.

Hence ∃z, w ∈ E such that z
2 −λ = w

2 −µ, where λ 6= µ ∈ Λ, so λ−µ = z
2 −

w
2 =

z
2 + (−w)

2 . Since E is centrally symmetric, −w ∈ E, and E is convex implies that
z
2 + (−w)

2 ∈ E, so λ− mu ∈ (Λ \ {0}) ∩ E.
(ii) E compact implies that E is closed and bounded. vol(E) ≥ 2nA(Λ) so
∀m ≥ 1, vol((1+ 1

m )E) > 2nA(Λ). By (i), ∀m ∈ N∃sλm ∈ (Λ\{0})∩((1+ 1
m )E),

and (1 + 1
m )E ⊆ 2E, and 2E ∩ Λ is finite as 2E is bounde. By pigeonhole

principle we can assume ∃λ ∈ Λ \ {0} such that λm = λ∀m ≥ 1. E closed and
λ ∈ (1 + 1

m )E∀m ≥ 1 =⇒ λ ∈ E. Now let L be a number field. Let n = [L : Q],
let τ1, ..., τr : L→ R be the real embeddings of L, and let σ1, σ̄1, ..., σs, σ̄s : L→ C
be the remaining distinct complex embeddings of L. Then r + 2s = n.

Define a map S : l→ Rr ×Cs by α→ (τ1(α), ..., τr(α), σ1(α), ..., σs(α)). This is
a homomorphism of additive groups.

Lemma. If I ⊆ OL is a non-zero ideal, then S(I) is a lattice.

Proof. Let α1, ..., αn be an integral basis of I. Then S(I) = ⊕ni=1Zs(αi) and
Rr×C3 has dimension n as R-vector space. So we must show that S(α1), ..., S(αn)
are independent or equivalently that

det



τ1(α)1)...τ1(αn)
...

τr(α1)...τr(αn)
Reσ1(α1)...Reσ1(αn)
Imσ1(α1)...Imσ1(αn)

...
Imσn(α1)...Imσs(αn)


6= 0

Note: for z ∈ C, (
z
z

)
=

(
1 i
1 −i

)(
Rez
Imz

)
So this determinant equals

(
1

−2i
)s det


τ1(α)1)...τ1(αn)

...
τr(α1)...τr(αn)
σ1(α1)...σ1(αn)

...
sigman(α1)...σs(αn)

 6= 0

as disc(I) 6= 0.

Lemma. (6.10)
If I ⊆ OL is a non-zero ideal, then

A(S(I)) =
1

2s

√
|disc(I)| = N(I)

2s

√
|DL|

Proposition. (6.11)
If I ⊆ OL is a non-zero ideal, then there exists α ∈ I \ {0} such that N(α) ≤
CLN(I), where CL = ( 4

π )s n!
nn

√
|DL|.

Here CL is called the Minkowski constant of L.
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Proof. We apply Minkowski’s theorem to the lattice S(I), and region Br,s(t) =
{(x, z) ∈ Rr × Cs|

∑r
i=1 |Xi|+ 2

∑s
i=1 |zi| ≤ t}.

Note: Br,s(t) is convex, centrally symmetric and compact.
If vol(Br,s(t)) ≥ 2nA(S(I)), then there exists α ∈ I \ {0} such that S(α) ∈
Br,s(t).
We use a tuck with the AM-GM inequality to bound N(α):

N(α)1/n = (

r∏
i=1

|τi(α))

s∏
i=1

|σi(α)|2)1/n ≤
(
∑r
i=1 |τ1(α)|+ 2

∑s
i=1 |σi(α)|)

n

Hence N(α) ≤ tn/nn. To get optimal bound, choose t so that vol(Br,s(t)) =
2nA(S(I)).
Exercise: vol(Br,s(t)) = 2r(π2 )stn/n! (Induction on r and s).
We have

2r(π/2)stn/n! = 2nA(S(I)) = 2r+sN(I)
√
|DL|

=⇒ tn = (4/π)sn!N(I)
√
|DL|

=⇒ N(α) ≤ tn/nn = CLN(I)

Corollary. (6.12)
For any class [I] ∈ Cl(OL), there exists J ∈ [I] such that N(J) ≤ CL.

Corollary. (6.13)
The group Cl(OL) is finite, generated by [P ] where P is a prime ideal of norm
N(P ) ≤ CL.

These corollaries are deduced from the proposition exactly as in the case L =
Q(
√
d), d < 0.

Remark. In practice this bound is very effective. For example consider f(x) =
x5 − x+ 1, this is irreducible mod 5, so over Q. Let L = Q(α) where α is a root
of f(x). In this case r = 1, s = 2, the discriminant discf = 2869 = 19 · 151 is
square-free, so OL = Z[α], and DL = discf , so cL = (4/π)2(5!/55)

√
2869 < 4.

Hence Cl)OL is generated by P of norm N(P ) = 2 or 3. By Dedekind’s criterion,
such primes exist iff f(x) has a root in F2 or F3. But there are no such roots.
Hence Cl(OL) is trivial, hence Z[α] is a UFD.

Last time we showed CL(OL) is generated by [P ] where [P ] is a prime ideal
of norm N(P ) ≤ CL = (4/π)3n!/nn

√
|DL|. For example, if L = Q(

√
10),

CL = 1
2

√
4 · 10 =

√
10 < 4. Cl(OL is generated by [P ] where N(P ) = 2 or 3.

Dedekind’s criterion: 2OL = P 2
2 , where P2 = (2,

√
10). x2−10 ≡ x2−1 (mod 3)

so 3OL = P3P
′
3, where P3 = (3, 1 +

√
10). To find relatoins in Cl(OL), we can

calculate norms, e.g. N(2 +
√

10) = |4− 10| = 6, so (2 +
√

10) = P2P3 or P2P
′
3.

In either case we see that [P2] generates Cl(OL. So either Cl(OL) is trivail, or
Cl(OL ∼= Z/2Z with the second case occuring iff So P2 is not principal. P2 is
principal ⇐⇒ ∃a+ b

√
10 ∈ OL such that (a+ b

√
10) = P2 ⇐⇒ ∃a, b ∈ Z s.t.

a2 − 10b2 = ±2.
If a2 − 10b2 = ±2, then either 2 or −2 is a quadratic residue (mod 5). So in
fact P2 is not principal. So Cl(OL) ∼= Z/2Z.
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Now take L = Q(
√
−17). Cl = 4

π ·
1
2

√
4 · 17 = 4/π

√
17 < 4

3

√
17 < 6. So Cl(OL)

is generated by primes of norm 2, 3 or 5. Dedekind’s criterion: x2 + 17 ≡ x2 + 2
(mod 5), so 5OL is prime of norm 25. x2 +17 ≡ x2−1 (mod 3), so 3OL = Q3Q

′
3

where Q3 = (3, 1 +
√
−17), Q′3 = (3, 1−

√
−17). x2 + 17 = (x+ 1)2 (mod 2), so

2OL = Q2
2 where Q2 = (2, 1 +

√
−17).

Now N(1 +
√
−17) = 18 = 2× 32. Note 1 +

√
−17 ∈ Q3 =⇒ Q3|(1 +

√
−17).

So we must have either (1 +
√
−17) = Q2Q3Q

′
3, or (1 +

√
−17) = Q2Q

2
3. To

decide between these, we compute

Q2
3 = (0, 3 + 3

√
−17, (1 +

√
−17)2)

= (9, 3 + 3
√
−17,−16 + 2

√
−17)

= (9, 3 + 3
√
−17, 2 + 2

√
−17)

= (9, 1 +
√
−17)

We see 1 +
√
−17 ∈ Q2

3 so Q2
3|(1 +

√
−17), hence (1 +

√
−17) = Q2Q

2
3. We see

[Q3] generates Cl(OL) and if Q2 is not principal then Cl(OL) ∼= Z/4Z. But Q2

is principal iff we can solve a2 + 17b2 = 2 with a, b ∈ Z. This is impossible, so
Cl(OL) ∼= Z/4Z.

Remark. Ther are many open questions about ideal class groups even for
quadratic fields.
Things we know: Number of Cl(OQ(

√
d) →∞ as d→ −∞ through squaree-free

integers. There are exactly 9 imaginary quadratic fields with trivial ideal class
group (hard).
Things we don’t know: are there infinitely many real quadratic fields of trivial
ideal class group?

Cohen-Lenstra heuristics: let p be an odd prime, and let A be a finite abelian
group of p-power order. Then for d < 0 square-free, P(Cl(OQ(

√
d))
∼= A) =∏∞

i=1(1−1/pi)

Number of Aut(A) .

For M a finite abelian group, Mp is the (unique) p-sylow subgroup.

By definition, The above probablity is the ratio between the number of d < 0
square-free, Cl(OQ(

√
d))p

∼= A, |d| < X and the number of d < 0 square-free,

|d| < x.
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7 Dirichlet’s unit theorem

Let L be a number field of degree n = [L : Q], τ1, ..., τr : L → R are real
embeddings, σ1, ..., σs, σ̄1, ..., σ̄s : L→ C are distinct complex embeddings.

Theorem. (7.1)
There is an isomorphism O∗L ∼= µL × Zr+s−1, where µL ⊆ O∗L is the finite cyclic
group of roots of unity in O∗L.
In fact the proof shows omre: define a map l : O∗L → Rr+s: l(α) = (log |τ1(α)|, ..., log |τr(α)|, 2 log |σ1(α)|, ..., 2 log |σs(α)|),
then this is a homomorphism of abelian groups, and l(O∗L) is contained in the

hyperplane H = {x ∈ Rr+s|
∑r+s
i=1 xi = 0} ⊆ Rr+s. This expresses the condition

α ∈ O∗L =⇒ logN(α) =
∑r
i=1 log |τi(α)|+ 2

∑s
i=1 |σi(α)|.

The proof of the theorem will show l(O∗L) is a lattice in H.

Example: O∗L is finite ⇐⇒ r + s = 1, i.e. r = 1, s = 0 (L = Q), or

r = 0, s = 1 (L = Q(
√
d),d < 0 square-free). The first case where O∗L is infinite is

L = Q
√
d), d > 0, square-free. Then +s− 1 = 1, so l(O∗L) is infinite cyclic. Let’s

fix σ : Q(sqrtd)→ R to be the real embedding with σ(
√
d) ≥ 0. σ(µL) ⊆ R∗, so

µL = {±1} in this case. In this case, we can consider the map l′ : O∗L → R by
α → log |σ(α)|. We know that l′(O∗L) ⊆ R is a lattice, in particular there is a
uniquely characterised unit α ∈ O∗L satisfying σ(α) > 0, log |σ(α)| > 0 and as
small as possible. In other words, α ∈ O∗L is the unit for which σ(α) > 1 and
σ(α) is minimal with respect to this property. We call α the fundamental unit
of L = Q(

√
d). Then we have O∗L = {±αn|n ∈ Z}.

Example sheet 3 is now online!

Last time we have: if L is a number field, then O∗L ∼= µL × Zr+s−1, where µL
are roots of unity.

Now suppose L = Q(
√
d) where d ∈ Z is a square free integer, d > 1. We identify

L with a subfield of R, where
√
d is the positive square root.

We saw that the Dirichlet’s unit theorem implies ∃u ∈ O∗L such that u = min{v ∈
O∗L|v > 1}. u is called the fundamental unit, and O∗L = {±un|n ∈ Z}.
Lemma. (7.2)
(1) If d ≡ 2, 3 (mod 4) and v ∈ O∗L satisfies v > 1, then v = a + b

√
d where

a ≥ b ≥ 1;
(2) If d ≡ 1 (mod 4), and v ∈ O∗L satisfies v > 1, then v = 1

2 (a + b
√
d) wher

a ≥ b ≥ 1.

Proof. (1) Let v′ = a − b
√
d. Then vv′ = a2 − db2 = NL/Q(v) = ±1. So

v > 1 =⇒ |v′| < 1. Hence v + v′ = 2a > 0, v − v′ = sb
√
d > 0. As a, b are

integers, we must have a ≥ 1, b ≥ 1.
Also, (a/b)2 = d± 1/b2 ≥ 1 as d ≥ 2.
(2) Let v′ = 1

2 (a−b
√
d). Then vv′ = ±1 and a2−db2 = ±4. Then v+v′ = a > 0,

and v − v′ = b
√
d > 0. Hence a ≥ 1, b ≥ 1. Also, (a/b)2 = d± 4/b2 as d ≥ 5 as

d ≡ 1 (mod 4).
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We can use this to find the fundamental unit u ∈ O∗L. First suppose d ≡ 2, 3

(mod 4) and let u = a+b
√
d. Let uk = ak+bk

√
d. Then uk+1 = (a1 +b1

√
d)(ak+

bk
√
d) = (a1ak + db1bk) + (b1ak + a1bk)

√
d. Hence bk+1 = b1ak + a1bk > bk.

Hence the sequence b1, b2, b3 is strictly increasing.

We can therefore characterise u as follows: let b ∈ N be the least positive integer
such that db2 + 1 or db2− 1 is of the form a2 for some a ∈ N. Then u = a+ b

√
d.

Now suppose d ≡ 1 (mod 4), and let u = 1
2 (a + b

√
d), a, b ∈ Z. Let uk =

1
2 (ak + bk

√
d). Then bk+1 = 1

2 (a1bk + b1ak). Using lemma 7.2, we see bk+1 ≥ bk.
If (??)
This is wrong. Let’s correct this next time. Sorry!

Example. d = 2.L = Q(
√

2). b = 1 works: 2 − 1 = 12. So 1 +
√

2 is a
fundamental unit.
d = 7. Try b = 1: 7 ± 1 is not a square; b = 2, doesn’t work either; b = 3:
9 · 7± 1 = 82. So 8 + 3

√
7 is a fundamental unit.

Note: This procedure is not always efficient. For example, the fundamental unit
in Q(

√
22) is 197 + 42

√
22.

There is a more efficient algorithm which uses continued fractions, but it is not
discussed in this course (see number theory).

We now prove the unit theorem (this is non-examinable).

We recall the setup: L is a number field, τ1, ..., τr : L → R, σ1, σ̄1, ..., σs, σ̄s :
L→ C are real and complex embeddings of L respectively.
Last time we defined a map: l : O∗L → Rr+s by α→ (log(τ1(α)), ..., log(τr(α)), 2 log(σ1(α)), ..., 2 log(σs(α))).

The image is contained inside the subspace H = {x ∈ Rr+s|
∑r+s
i=1 xi = 0}.

Lemma. (7.3)
Let α ∈ OL \ {0} be such that the above image vector is (a1, ..., ar+s) ∈ Rr+s.
Fix an integer 1 ≤ k ≤ r + s. Then ther exists β ∈ OL \ {0} such that if
l(β) = (b1, ..., br+s) ∈ Rr+s, then bi < ai if i 6= k. Moreover, N(β) ≤ ( 2

π )s
√
|DL|.

Proof. Let c1, ..., cr+s ∈ R>0, and let

E = {(x, z) ∈ Rr × Cs||x1| ≤ c1, ..., |xr| ≤ cr, |z1|2 ≤ cr+1, ..., |zr|2 ≤ cr+s}

Then if vol(E) ≥ 2r+2sA(S(OL)) = 2r+s
√
|DL|, then (S : OL → Rr × Cs).

There exists β ∈ OL \ {0} such that S(β) ∈ E (by Minkovski’s theorem). In
particular, N(β) =

∏r
i=1 |τ1(β)|

∏s
i=1 |σi(β)|2 ≤ c1...cr+s (by defiintion of E).

We choose ci so that 0 < ci < eai if i 6= k, and vol(E) = πs2rc1...cr+s =
2r+s

√
|DL|.

The first property gives bi < ai if i 6= k, and the second property gives N(β) ≥
c1...cr+s = ( 2

π )s
√
|DL|.

Corollary. (7.4)
Fix an integer 1 ≤ k ≤ r + s. Then there exists ε ∈ O∗L such that if l(ε) =
(a1, ..., ar+s) then ai < 0 if i 6= k, and ak > 0.
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Proof. By the lemma, we can find elements α1, α2, ... of OL \ {0} such that
N(α1) ≤ ( 2

π )s
√
|DL| ∀i ∈ N, and if l(αi) = (bi1 , ..., bi,r+s), then bij < bi−1,j

if j 6= k ∀i = 2, 3, .... The ideals (αi) have bounded norm, so are finite in
number, so there exist elements αN , αM with (αN ) = (αM ). Then the element
ε = αN/αM ∈ O∗L has the desired property.

We continue with the non-examinable proof of Dirichlet’s unit theorem.

We proved propoition: let α ∈ OL \ {0} be such that l(α) fix 1 ≤ k ≤ r + s.
Then ∃β ∈ OL \ {0} such that N(β) ≤ ( 2

π )s
√
|DL|, and if l(β) = (b1, ..., br+s)

then bi < ai if i 6= k.

We deduced Corllary 7.4: fix 1 ≤ k ≤ r + s. Then there exists ε ∈ O∗L such that
if l(ε) = (a1, ..., ar+s), then ai < 0 if i 6= k.

Proof. Choose α ∈ OL \ {0}. By the proposition, we can find elements α1, ...
such that N(αi) ≤ (2/π)s

√
|DL|, and if l(i) = (bi1,...,ir+s) then bij > bi+1j if

j 6= k for all i ≥ 1.

We now look at the ideals (α1), (α2), .... These have norm at most (2/π)
√
|DL|.

We know there are only finitely many ideals of OL of norm at monst that, so
there must exist N < M such that (αN ) = (αM ). Hence ∃u ∈ O∗L such that
αM = uαN . Also, u = αM/αN =⇒ l(u) = (bm1 − bN1, ..., bmr+s − bNr+s). But
N < M , so bNj > bMj if j 6= k. So BMj − bNj < 0 if j 6= k.

Lemma. (7.5)
Let N ≥ 1, and let A ∈MN×N (R) be such that:

•
∑N
i=1Aij = 0 for all j = 1, ..., N ;

• Aij > 0 if i = j, and < 0 if i 6= j.
Then A has rank N − 1.

Proof. The rank is at most N − 1. We show the first N − 1 rows of A are LI.
Suppose there exist ti ∈ R, i = 1, ..., N − 1 not all zero s.t.

∑N−1
i=1 tiAij = 0 for

each j = 1, ..., N . WLOG after rescaling ther exists k that tk = 1 and ti ≤ 1 if
i 6= k. Then 0 =

∑N−1
i=1 tiAik ≥

∑N−1
i=1 Aik >

∑N
i=1Aik = 0, contradiction.

Lemma. (7.6)
Fix B > 0. Let XB = {α ∈ OL|∀σ : L→ C, |σ(α)| ≤ B}. THen XB is finite.

Proof. Recall the map S : OL → Rr × Cs. S(OL) is a lattice in Rr × Cs.
S(XB) is the intersection of the lattice S(OL) with a compact subset of Rr ×Cs.
Therefore it must be finite.

Proposition. (7.7)
l(O∗L) is a lattice in H ≤ Rr+s.

Proof. We must show there exist units v1, ..., vr+s−1 ∈ O∗L such that l(v1), ..., l(vr+s−1)
span H as an R-vector space and generate l(O∗L) as an abelian group.
By corollary 7.4, we can find ε1, ..., εr+s ∈ O∗L such htat if l(εj) = (Aij , ..., Ar+sj),
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then Aij < 0 if i 6= j and Aij > 0 if i = j. By lemma 7.5, the matrix A has rank
r + s− 1, so we can find v1, ..., vr+s−1 ∈ O∗L such that l(v1), ..., l(vr+s−1) span
O∗L as an R-vector space.
Let Λ = ⊕r+s−1

i=1 Zl(vi) ≤ H. This is a lattice in H. Then Λ ≤ l(O∗L) and if u ∈
O∗L, then ∃λ ∈ Λ such that l(u)−λ ∈ {

∑r+s−1
i=1 til(vi)|t1, ..., tr+s−1 ∈ [0, 1]} = P .

But the set of units l(P ) is finite by Lemma 7.6. Hence the quotien l(O∗L)/Λ is
finite. By Lagrange’s theorem, ∃N ∈ Z, N > 1 such that Nl(O∗L) ≤ Λ. Hence
Λ ≤ l(O∗L) ≤ 1

NΛ. By the sandwich lemma, l(O∗L) is a free abelian group of rank
r + s− 1. In particular, it is a lattice in H.

Let’s now finish the proof of the unit theorem, i.e. show there’s an isomorphism
O∗L ∼= µL × Zr+s−1, where µL is the (finite) group of roots of unity in OL.

Proof. We have µL = ker l. If ξ ∈ µL, then ξN = 1 for some N ≥ 1, hence
l(ξN ) = 0 = Nl(ξ) =⇒ l(ξ) = 0 as l(ξ ∈ Rr+s. If α ∈ O∗L and l(α) = 0 then
∀σ : L→ C, |σ(α)| = 1. By lemma 7.6, ker l is finite. By Lagrange’s theorem, it
consists of roots of unity.

Choose v1, ..., vr=s−1 ∈ O∗L such that l(v1), ..., l(vr+s−1) is a Z-basis of l(O∗L).
Define a map f : µL×Zr+s−1 → O∗L by (ξ, n1, ..., nr+s−1)→ ξvn1

1 ...v
nr+s−1

r+s−1 .

Exercise: this is an isomorphism.

Return to the examinable parts:

We now show how to find the fundamental unit in Q(
√
d), where

√
d ∈ R>0 and

d ∈ Z is a positive square-free integer.

d > 1, d ≡ 1 (mod 4):

Recall: the fundamental unit u ∈ O∗L is the least unit u > 1. We saw last time

that if v = 1
2 (a+ b

√
d) ∈ O∗L is any unit with v > 1, then a ≥ b ≥ 1.

Let uk = 1
2 (ak + bk

√
d). Then bk+1 = 1

2 (a1bk + b1ak) ≥ 1
2 (a1 + b1)bk ≥ bk. We

see bk+1 ≥ bk, with equality iff ak = bk and a1 = b1 = 1. Note: if a1 = b1 = 1,
then N(u) = | 1−d4 | = 1 =⇒ d = 5. Assume first that d > 5. Then the sequence
b1 < b2 < b3 < ... is strictly increasing. The fundamental unit u can therefore be
found as following: let b ∈ N be the least positive integer such that db2 + 4 = a2

or db2 − 4 = a2, where a ∈ N. Then 1
2 (a+ b

√
d) is the fundamental unit.

Now suppose d = 5. Then at least b1 ≤ b2 ≤ ... is non-decreasing, and each value
bi can appear at most twice: this is because occurrences correspond to solutions
to b2i d± 4 = a2

i . We can therefore characterize the fundamental unit u as follows:
let b inN be the least positive integer for which db2 + 4 = a2 or db2 − 4 = a2

for a, a′ ∈ N (units 1
2 (a + b

√
d)and 1

2 (a′ + b
√
d)). Recall that the fundamental

unit is the least unit with u > 1. Of these two possibilities, choose the unit with
the smaller value of a or a′. In this case, b = 1 gives d+ 4 = 32, d− 4 = 1. So
1
2 (1 +

√
5) is the fundamental unit in this case.
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