
Mathematical Tripos: IB Numerical Analysis

Contents

0 Numerical Analysis: Introduction i

0.1 The course . i

0.2 What is Numerical Analysis? . i

1 Polynomial Interpolation 1

1.1 The interpolation problem . 1

1.2 The Lagrange interpolation formula . 1

1.3 The Newton interpolation formula . 2

1.3.1 Calculating the Newton divided differences . 3

1.4 Examples (Unlectured) . 5

1.5 A property of divided differences . 6

1.6 Error bounds for polynomial interpolation . 7

1.6.1 Optimal choice of interpolation points . 9

2 Orthogonal Polynomials and Least-squares Approximation 11

2.1 Scalar products . 11

2.2 Orthogonal polynomials – definition, existence, uniqueness . 12

2.3 The three-term recurrence relation . 13

2.4 Examples . 13

2.5 Least-squares polynomial approximation . 14

3 Approximation of Linear Functionals 17

3.1 Linear functionals . 17

3.2 Numerical integration . 18

3.2.1 Gaussian quadrature . 20

3.2.2 Examples . 22

3.3 Numerical differentiation . 23

3.3.1 Examples (Unlectured) . 24

3.4 Error for approximation of linear functionals . 25

3.4.1 Taylor series expansion . 26

3.4.2 Exchanging the order of λ and integration . 26

3.4.3 Formula for eL(f) when K(θ) does not change sign . 28

3.4.4 Bounds for |eL(f)| . 29

Mathematical Tripos: IB Numerical Analysis a © G.Moore@maths.cam.ac.uk, Lent 2017

4 Initial Value Ordinary Differential Equations 31

4.1 One-step methods . 31

4.1.1 The Euler method . 32

4.1.2 Theta methods . 34

4.2 Multistep methods . 35

4.2.1 The order of a multistep method . 35

4.2.2 The convergence of multistep methods . 37

4.2.3 Adams and BDF methods . 38

4.3 Runge–Kutta methods . 41

4.3.1 Quadrature formulae . 41

4.3.2 General Runge–Kutta methods . 42

4.3.3 Examples of Runge–Kutta methods . 43

4.3.4 Implicit Runge–Kutta methods (Unlectured) . 46

4.4 Stiff equations . 47

4.4.1 Stiffness: the problem . 47

4.4.2 Linear stability domains and A-stability . 48

4.4.3 A-stability and the maximum principle . 50

4.5 Implementation of ODE methods . 52

4.5.1 Error control for multistep methods . 52

4.5.2 Error control for Runge–Kutta methods . 54

4.5.3 The Zadunaisky device . 54

4.5.4 Not the last word . 55

4.5.5 Solving nonlinear algebraic systems . 55

4.5.6 *A distraction* . 56

5 Square Linear Systems and the LU factorisation 57

5.1 Triangular matrices . 57

5.2 LU factorization and its generalization . 58

5.2.1 The construction of an LU factorization . 59

5.2.2 Relation to Gaussian elimination . 61

5.2.3 Pivoting to avoid breakdown . 62

5.2.4 Pivoting to maintain accuracy . 64

5.2.5 Further examples (Unlectured) . 65

5.3 LU factorization theory and application to structured A . 66

5.3.1 Existence and uniqueness of the LU factorization . 66

5.3.2 Symmetric matrices . 69

5.3.3 Positive definite matrices . 70

5.3.4 Symmetric positive definite matrices . 70

5.3.5 Sparse matrices . 71

Mathematical Tripos: IB Numerical Analysis b © G.Moore@maths.cam.ac.uk, Lent 2017

6 Linear Least Squares and the QR factorisation 74

6.1 The normal equations . 74

6.2 Orthogonal matrices . 77

6.3 The QR factorization . 78

6.4 Constructing a QR factorization . 80

6.4.1 The Gram–Schmidt orthogonalisation process . 80

6.4.2 Givens rotation matrices . 84

6.4.3 Householder reflection matrices . 89

6.5 Solving least squares problems with the QR factorisation . 95

6.5.1 Examples . 96

Mathematical Tripos: IB Numerical Analysis c © G.Moore@maths.cam.ac.uk, Lent 2017

0 Numerical Analysis: Introduction

0.1 The course

The Structure. The lectures will be mainly pedagogical, covering the theory, with relatively few con-
crete examples. The nuts and bolts of the implementation of the methods are mainly covered in
unlectured examples and in the Examples Sheets.

The Notes. These notes are heavily based on those of Arieh Iserles and Alexei Shadrin; however,
the lecturer takes responsibility for errors! Any corrections and suggestions should be emailed to
G.Moore@maths.cam.ac.uk. Previous versions are:

• Stephen Cowley’s notes (used upto 2016)

http://www.damtp.cam.ac.uk/user/sjc1/teaching/NAIB/notes.pdf

• Arieh Iserles’ handouts (an excellent summary in 32 pages instead of 76 are available at

http://www.damtp.cam.ac.uk/user/na/PartIB/

• Alexei Shadrin’s notes (which are for the old 12-lecture schedule, and cover about two-thirds
of the course) are available at

http://www.damtp.cam.ac.uk/user/na/PartIB_03/na03.html

The Book. There is also a book which covers most of the course:
Süli & Mayers, An Introduction to Numerical Analysis, CUP 2003 (ISBN 0 521 81026 4;

ISBN 0 521 00794 1)

The following book is especially useful for differential equations.
Arieh Iserles, A First Course in the Numerical Analysis of Differential Equations, CUP

2008 (ISBN-10: 0521734908; ISBN-13: 978-0521734905)

Demonstrations. There are a number of MATLAB demonstrations illustrating the course. These are
available at

http://www.maths.cam.ac.uk/undergrad/course/na/.

You are encouraged to download them and try them out.

0.2 What is Numerical Analysis?

Numerical Analysis is the study of algorithms that use numerical approximation (as opposed to symbolic
manipulation) to solve problems of mathematical analysis (as distinguished from discrete mathematics).1

The subject predates computers and is application driven, e.g. the Babylonians had calculated
√
2 to

about six decimal places sometime between 1800BC and 1600BC.

Numerical Analysis is often about obtaining approximate answers. Concern with error is therefore a re-
curring theme. Rounding errors arise because ‘computers’ (human as well as machine) use finite-precision
arithmetic (even if 16-digit), but there are other errors as well that are associated with approximations
in the solution, e.g. discretization errors, truncation errors. Other recurring themes include

• stability, a concept referring to the sensitivity of the solution of a given problem to small changes
in the data or the given parameters of the problem, and

• efficiency, or more generally computational complexity.

You will have already touched on the latter point in Vectors & Matrices where you saw that solving a n×n
linear system in general requires O((n+ 1)!) operations by Cramer’s rule, but only O(n3) operations by
Gaussian elimination. However, efficiency is not necessarily a straightforward concept in that its measure
can depend on the type of computer in use (e.g. the structure of computer memory, and/or whether the
computer has a parallel architecture capable of multiple calculations simultaneously).

1 See Wikipedia. Those of who are interested in algorithms for discrete mathematics might like to consult the 2010
on-line Algorithms course (see http://algorithms.soc.srcf.net/), and/or the follow-up 2011 on-line Data Structures and

Computational Complexity course (see http://algorithmstwo.soc.srcf.net/).

Mathematical Tripos: IB Numerical Analysis i © G.Moore@maths.cam.ac.uk, Lent 2017

http://www.damtp.cam.ac.uk/user/sjc1/teaching/NAIB/notes.pdf
http://www.damtp.cam.ac.uk/user/na/PartIB/
http://www.damtp.cam.ac.uk/user/na/PartIB_03/na03.html
http://www.maths.cam.ac.uk/undergrad/course/na/
http://algorithms.soc.srcf.net/
http://algorithmstwo.soc.srcf.net/

1 Polynomial Interpolation

First we must be clear about the two words in the title. We denote by Pn[x] the real linear space of all real
polynomials having degree at most n and we observe that each element of Pn[x] is uniquely defined by
its n+1 real coefficients. Hence such polynomials have n+1 degrees of freedom and dim(Pn[x]) = n+1.
Interpolation is a particular example of curve fitting: i.e. suppose that we have a number of given data
values at given distinct data points, then curve fitting tries to construct a function which closely fits
these values. (The key advantage of such a function being that it is not just defined at the data points.)
Interpolation is a specific case of curve fitting, in which the function must go exactly through the data
values at the data points, and in this case we usually talk about interpolation points.2 Crucially, with
polynomial interpolation, the function we try to construct will be restricted to be a polynomial.

1.1 The interpolation problem

Suppose that we are given n + 1 distinct real points x0, x1, . . . , xn, together with n + 1 real values
f0, f1, . . . , fn. We seek a p ∈ Pn[x] such that

p(xi) = fi, i = 0, 1, . . . , n.

Such a function is called a polynomial interpolant. Note that interpolation at x0, x1, . . . , xn imposes n+1
conditions and this intuitively justifies using a linear space of functions with dimension n + 1. However
this is not enough to guarantee that the polynomial interpolation problem is solvable and our first task
is to establish existence, uniqueness and constructability for solutions of this problem.

Remark. If [a, b] ⊂ R denotes some interval, it is not uncommon for the {fi}ni=0 to be the values at
{xi}ni=0 ⊂ [a, b] of some given continuous function f : [a, b] → R. In this case we will be interested
in how well p approximates f at other points in [a, b].

1.2 The Lagrange interpolation formula

Although we may set up (and then hopefully solve) a linear problem with n + 1 unknowns in order to
construct a polynomial interpolant, this approach has three disadvantages. The first theoretical disad-
vantage is that our (n+ 1)× (n+ 1) coefficient matrix is not obviously non-singular, although in fact it
is possible to prove this. The second practical disadvantage is that, if we choose our unknowns to be the
coefficients of xk for k = 0, 1, . . . , n, then our coefficient matrix can be arbitrarily close to being singular.
(The famous matrices that arise are called Vandermonde matrices.) The third practical disadvantage is
that solving an (n+ 1)× (n+ 1) linear system requires O(n3) operations in general, as we shall see later
in the course, whereas it is actually possible to solve the special polynomial interpolation problem in only
O(n2) operations using the explicit Lagrange formula constructed below. To achieve this, we use a special
basis for Pn[x], i.e. the Lagrange cardinal polynomials for the points x0, x1, . . . , xn defined by

ℓk(x) ≡
n∏

i=0
i6=k

x− xi

xk − xi
, k = 0, 1, . . . , n. (1.1a)

Note that these polynomials are independent of the data values {fi}ni=0, are exactly of degree n and
satisfy the key condition

ℓk(xj) = δkj j, k = 0, 1, . . . , n.

Theorem 1.1 (Existence, uniqueness and construction). Given n + 1 distinct real points {xi}ni=0 and
n+1 real numbers {fi}ni=0, there is exactly one polynomial p ∈ Pn[x], namely that given below by (1.1b),
such that p(xi) = fi for i = 0, . . . , n.

2 A different problem, which is closely related to interpolation, is the approximation of a complicated function by a
simple function, e.g. see Chebfun at http://www.maths.ox.ac.uk/chebfun/ .

Mathematical Tripos: IB Numerical Analysis 1 © G.Moore@maths.cam.ac.uk, Lent 2017

http://www.maths.ox.ac.uk/chebfun/

Proof. If we define p ∈ Pn[x] by

p(x) ≡
n∑

k=0

fkℓk(x) x ∈ R , (1.1b)

then existence and construction are immediately verified by

p(xj) =

n∑

k=0

fkℓk(xj) = fj , j = 0, 1, . . . , n. (1.1c)

In order to establish uniqueness, we employ a proof by contradiction and suppose that both p ∈ Pn[x]
and q ∈ Pn[x] solve the interpolation problem. But then r ≡ p− q ∈ Pn[x] vanishes at the n+ 1 distinct
interpolation points and the only element of Pn[x] that can achieve this is the zero polynomial. Hence
p− q ≡ 0 and the solution of the interpolation problem is unique.

Remarks.

(i) Let us introduce the so-called nodal polynomial

ω(x) ≡
n∏

i=0

(x− xi). (1.2a)

Then, in the expression (1.1a) for ℓk, the numerator is simply ω(x)/(x− xk) while the denominator
is equal to ω′(xk). With that, we arrive at a compact Lagrange form

p(x) =

n∑

k=0

fk ℓk(x) =

n∑

k=0

fk
ω′(xk)

ω(x)

x− xk
. (1.2b)

(ii) The Lagrange forms (1.1b) and (1.2b) for the unique interpolating polynomial are often the appro-
priate forms to use when we wish to manipulate this polynomial as part of a larger mathematical
expression. We will see an example of this in section §3.2.1 when we discuss Gaussian quadrature.
However they are not ideal for numerical evaluation, both because of speed of calculation (i.e.
complexity) and because of the accumulation of rounding error: e.g. see the Newton vs Lagrange
demonstration at

http://www.maths.cam.ac.uk/undergrad/course/na/ib/partib.php

An alternative is the Newton form of the interpolating polynomial, which has an adaptive (or
recurrent) nature: i.e. if an extra data point and data value is added, then the new interpolant (say
pn+1) can be constructed efficiently from the existing interpolant pn (rather than starting again
from scratch).

1.3 The Newton interpolation formula

Theoretically, the Lagrange formula in the previous subsection provides everything we need. We now
derive, however, an equally famous alternative representation of the interpolating polynomial, which has
important practical advantages (as we shall see).

We again suppose that real distinct {xi}ni=0 and real {fi}ni=0 are given and that we seek the unique
p ∈ Pn[x] such that p(xi) = fi for i = 0, . . . , n. To construct our new interpolation formula, we first
introduce the following additional polynomial interpolation problems: for k = 0, 1, ..., n, let pk ∈ Pk[x]
satisfy

pk(xi) = fi, i = 0, . . . , k.

We know from the previous subsection that each of these problems has a unique solution and now our
new formula is obtained by writing

p(x) ≡ pn(x) = p0(x) + {p1(x)−p0(x)} + {p2(x)−p1(x)}+ · · ·+ {pn(x)−pn−1(x)} . (1.3)

Mathematical Tripos: IB Numerical Analysis 2 © G.Moore@maths.cam.ac.uk, Lent 2017

http://www.maths.cam.ac.uk/undergrad/course/na/ib/partib.php

The key property of (1.3) is that both pk−1 and pk interpolate the same values {fi}k−1
i=0 at {xi}k−1

i=0 and
hence their difference is an element of Pk[x] that vanishes at these k distinct points. Thus we may write

pk(x) − pk−1(x) = Ak

k−1∏

i=0

(x− xi) k = 1, . . . , n, (1.4)

for some real constants {Ak}nk=1, and we note that these constants are equal to the leading coefficients of
{pk}nk=1. It follows that p ≡ pn can be built step-by-step as one constructs the sequence {p0, p1, . . . , pn},
with pk obtained from pk−1 by the addition of the term on the right-hand side of (1.4): thus we finally
obtain

p(x) ≡ pn(x) = p0(x) +

n∑

k=1

{pk(x)− pk−1(x)} = A0 +

n∑

k=1

Ak

k−1∏

i=0

(x− xi), (1.5)

where we start with p0 = A0 = f0.

In the next section, we describe an efficient algorithm for computing the constants {Ak}nk=0, which are
known as Newton divided differences and denoted

Ak ≡ f [x0, . . . , xk] k = 0, 1, . . . , n. (1.6)

This notation is appropriate, since Ak only depends on {xi}ki=0 and {fi}ki=0 as stated in the following
definition.

Definition 1.2 (Divided difference). Given the k + 1 distinct real points {xi}ki=0 and the k + 1 real
values {fi}ki=0 the Newton divided difference f [x0, ..., xk] is defined to be the leading coefficient of the
unique pk ∈ Pk which solves the interpolation problem for this data. This divided difference is said to be
of degree (or order) k.

Note that a divided difference f [x0, . . . , xk] is a symmetric function of its arguments and that (1.5) and
(1.6) allow us to state the following Newton formula for the unique interpolating polynomial.

Theorem 1.3 (Newton formula). Given n+1 distinct real points {xi}ni=0 and n+1 real values {fi}ni=0,
we may express the unique solution pn∈Pn of the polynomial interpolation problem in the Newton form

pn(x) =

n∑

k=0

f [x0, ..., xk]

k−1∏

i=0

(x− xi). (1.7)

1.3.1 Calculating the Newton divided differences

We now derive an efficient recurrence relation for calculating (1.6) by first generalising our divided dif-
ferences to

f [xj , . . . , xk] 0 6 j 6 k ≤ n :

the natural extension of Definition 1.2 being that these expressions denote the leading coefficients of the
unique q ∈ Pk−j [x] which solve the polynomial interpolation problems

q(xi) = fi i = j, . . . , k.

This then allows us to establish the following theorem.

Theorem 1.4 (Recurrence relation). Given n + 1 distinct real points {xi}ni=0 and n + 1 real values
{fi}ni=0, it follows that

f [xj , xj+1, . . . , xk] =
f [xj+1, . . . , xk]− f [xj , . . . , xk−1]

xk − xj
0 6 j < k 6 n. (1.8)

Mathematical Tripos: IB Numerical Analysis 3 © G.Moore@maths.cam.ac.uk, Lent 2017

Proof. Let q0, q1 ∈ Pk−j−1[x] and q2 ∈ Pk−j [x] be the unique solutions of the the following polynomial
interpolation problems:

q0(xi) = fi i = j, . . . , k − 1

q1(xi) = fi i = j + 1, . . . , k

q2(xi) = fi i = j, . . . , k.

Hence we have the relationship

q2(x) =
x− xj

xk − xj
q1(x) +

xk − x

xk − xj
q0(x) (1.9)

and comparing the leading coefficients of this expression gives the required result.

This recurrence relation now allows us to efficiently construct (1.6) from the following famous Newton
divided difference table.

Method 1.5. Recalling that f [xi] = fi i = 0, . . . , n, the recursive formula (1.8) is used to rapidly
evaluate each column of the following table in turn.

xi f [∗] = f(∗) f [∗, ∗] f [∗, ∗, ∗] . . . f [∗, ∗, . . . , ∗]

x0 → f [x0] ց
f [x0, x1] ց

x1 → f [x1]
ր

ց
f [x0, x1, x2] . . .

f [x1, x2]
ր

ց

x2 → f [x2]
ր

ց
f [x1, x2, x3]

. . .
f [x2, x3] ր

. . .
x3 → f [x3] ր

.
. . . f [x0, x1, . . . , xn]

xn−1 → f [xn−1] ց

. . . f [xn−2, xn−1, xn]
f [xn−1, xn]

ր

xn → f [xn]
ր

Table 1: The divided difference table

Remarks.

(i) The whole table can be evaluated in O(n2) operations. Only {f [x0, . . . , xk]}nk=0 are needed in (1.7),
i.e. the leading diagonal of the table, but their computation requires the other elements as well.

(ii) While it is usual for the points {xi}ni=0 to be in ascending order, there is no need for this condition to
be imposed. It also turns out that the cancellation that occurs when divided differences are formed
does not lose ‘information’, although it does reduce the number of leading digits that are reliable in
successive columns of the divided difference table (see question 5 on Example Sheet 1).

(iii) An important practical consideration arises if an extra interpolation point, say xn+1, and an extra
data value, say fn+1, are added at the bottom of the table in the first two columns. Then only the
additional diagonal

f [xk, . . . , xn+1] k = n, . . . , 0

needs to be computed in order to update the table and this merely requires O(n) operations using
the recurrence relation.

We end this subsection by reminding you how, once {f [x0, . . . , xk]}nk=0 have been computed, the famous
Horner’s scheme enables pn in (1.7) to be evaluated at any given point x̂∈R in only O(n) operations.
Thus the sequence of calculations

σ ← f [x0, . . . , xn]
for k = n− 1, . . . , 0

σ ← σ (x̂−xk) + f [x0, x1, . . . , xk]
end

Mathematical Tripos: IB Numerical Analysis 4 © G.Moore@maths.cam.ac.uk, Lent 2017

leads to σ finally containing pn(x̂).

Remarks.

(i) Horner’s scheme can be used similarly to evaluate efficiently any polynomial p(x) =
∑n

k=0 ckx
k for

any given x̂∈R.

(ii) An advantage of Newton’s formula over Lagrange’s formula is now evident. Suppose an extra inter-
polation point, say xn+1, and an extra data value, say fn+1 is added in order to improve accuracy.
Then in order to calculate the extra coefficient in (1.7), only an extra diagonal of the divided differ-
ence table need be calculated in O(n) operations, while to evaluate Newton’s formula at any given
point x̂ takes only O(n) operations. This is to be compared with O(n2) operations to obtain the
equivalent result using Lagrange’s formula.

(iii) The effect of rounding error on the evaluation of the Newton form compared with the Lagrange form
of the interpolating polynomial may be investigated using the Newton vs Lagrange demonstration
at

http://www.maths.cam.ac.uk/undergrad/course/na/ib/partib.php

1.4 Examples (Unlectured)

Given the data
xi 0 1 2 3

f(xi) −3 −3 −1 9
,

find the interpolating polynomial p ∈ P3[x] in both Lagrange and Newton forms.

Fundamental Lagrange polynomials:

ℓ0(x) = (x−1)(x−2)(x−3)
−6 = − 1

6 (x
3 − 6x2 + 11x− 6),

ℓ1(x) = x(x−2)(x−3)
2 = 1

2 (x
3 − 5x2 + 6x),

ℓ2(x) = x(x−1)(x−3)
−2 = − 1

2 (x
3 − 4x2 + 3x),

ℓ3(x) = x(x−1)(x−2)
6 = 1

6 (x
3 − 3x2 + 2x).

Lagrange form:

p(x) = (−3) · ℓ0(x) + (−3) · ℓ1(x) + (−1) · ℓ2(x) + 9 · ℓ3(x)

=
(
1
2 − 3

2 + 1
2 + 3

2

)
x3 +

(
−3 + 15

2 − 2− 9
2

)
x2 +

(
11
2 − 9 + 3

2 + 3
)
x− 3

= x3 − 2x2 + x− 3 .

Divided differences:
0 −3 ց

(−3)−(−3)
1−0 = 0 ց

1 −3 ր
ց

2−0
2−0 = 1 ց

(−1)−(−3)
2−1 = 2

ր
ց

4−1
3−0 = 1

2 −1 ր
ց

10−2
3−1 = 4 ր

9−(−1)
3−2 = 10 ր

3 9 ր

Newton form:

p(x) = −3 + 0 · (x− 0) + 1 · (x − 0)(x − 1) + 1 · (x− 0)(x− 1)(x− 2) .

Mathematical Tripos: IB Numerical Analysis 5 © G.Moore@maths.cam.ac.uk, Lent 2017

http://www.maths.cam.ac.uk/undergrad/course/na/ib/partib.php

Horner scheme:
p(x) =

{[
1 · (x− 2) + 1

]
· (x− 1) + 0

}
· (x− 0)−3 .

Exercise: Add a 5th point, x4 = 4, f(x4) = 0, and compare the effort to calculate the new interpolating
polynomial by the Lagrange and Newton formulae.

1.5 A property of divided differences

Suppose that our data values are derived from a particular function, i.e.

fi = f(xi) i = 0, . . . , n

for some smooth f . In the next subsection, we want to consider how the error

en(x) ≡ f(x)− pn(x)

depends on n and the choice of {xi}ni=0. (Of course this error is zero at the interpolation points, but how
about at other points?) In the present subsection, we will derive a useful preliminary result connecting
divided differences with derivatives and we start by reminding you of some standard notation for smooth
functions.

Definition 1.6 (Cs[a, b]). Let [a, b] be a closed interval of R. We denote by C[a, b] the linear space of all
continuous functions from [a, b] to R and let Cs[a, b], where s is a positive integer, stand for the linear
space of all functions in C[a, b] that possess s continuous derivatives on [a, b].

First we need a preparatory lemma.

Lemma 1.7. If g ∈ Cm[a, b] is zero at m + ℓ distinct points in [a, b], then g(m) has at least ℓ distinct
zeros in (a, b).

Proof. We just need to apply Rolle’s theorem m times. Firstly to deduce that g′ ∈ C(m−1)[a, b] has at
least (m−1)+ℓ distinct zeros in (a, b) and lastly to deduce that g(m) ∈ C[a, b] has at least ℓ distinct zeros
in (a, b).

Now we can connect divided differences for smooth functions with their derivatives.

Theorem 1.8 (divided differences and derivatives). If f ∈ Cn[a, b] and {xi}ni=0 ⊂ [a, b] are a set of
distinct points then there exists ξ ∈ (a, b) such that

f [x0, x1, . . . , xn] =
1
n!f

(n)(ξ). (1.10a)

Proof. With p ∈ Pn[x] being the unique solution of the polynomial interpolation problem, we just apply
Lemma 1.7 to e ≡ f − pn. Since e has distinct zeros {xi}ni=0 ⊂ [a, b], we deduce that e(n) ≡ f (n)−p(n)
must vanish for some ξ ∈ (a, b). Result (1.10a) then follows from

p(n)(ξ) = n! f [x0, . . . , xn] ,

because (by definition) f [x0, . . . , xn] is the leading coefficient of pn.

Application. A method of estimating a derivative, say f (n)(ξ) where ξ is now given, is to let the distinct
points {xi}ni=0 be suitably close to ξ, and to make the approximation

f (n)(ξ) ≈ n! f [x0, x1, . . . , xn] . (1.10b)

However, a drawback is that, although one achieves good accuracy in theory by picking such close
interpolation points, if f is smooth and if the precision of the arithmetic is finite, significant loss of
accuracy may occur due to cancellation of the leading digits of the function values.

Mathematical Tripos: IB Numerical Analysis 6 © G.Moore@maths.cam.ac.uk, Lent 2017

1.6 Error bounds for polynomial interpolation

We are now able to study the interpolation error

en(x) ≡ f(x)− pn(x) x ∈ [a, b] , (1.11)

when our distinct interpolation points {xi}ni=0 are contained in [a, b] and our data values {fi}ni=0 are
derived from a smooth function f over [a, b].

Most of the work in obtaining a useful expression for the interpolation error en ≡ f − pn is contained in
the following theorem, which basically states that the error is ‘like the next term’ in the Newton formula.

Theorem 1.9. Assume that our distinct interpolation points {xi}ni=0 ⊂ [a, b] and also that x̄ ∈ [a, b] with
x̄ 6∈{xi}ni=0. Also assume that our data values {fi}ni=0 are derived from a function f ∈C[a, b]. Then

en(x̄) = f [x0, ..., xn, x̄]ω(x̄), (1.12)

where ω ∈ Pn[x] was defined in (1.2a).

Proof. We think of xn+1 ≡ x̄ as an ’extra’ interpolation point and (like (1.4) and (1.6)) write

pn+1(x) = pn(x) + f [x0, ..., xn, x̄]ω(x) ∀x ∈ R ,

where pn+1 ∈ Pn+1[x] interpolates f at {xi}n+1
i=0 . Setting x = x̄ and using pn+1(x̄) = f(x̄) then gives the

required result.

By assuming sufficient smoothness on f , we can then simplify (1.12).

Theorem 1.10. Given f ∈ Cn+1[a, b] and distinct interpolation points {xi}ni=0 ⊂ [a, b], let pn ∈ Pn[x] be
the unique solution of the polynomial interpolation problem for data values {f(xi)}ni=0. Then, for every
x ∈ [a, b], ∃ ξx ∈ (a, b) such that

en(x) ≡ f(x) − pn(x) =
1

(n+ 1)!
f (n+1)(ξx)ω(x). (1.13)

Proof. The result is immediate if x is an interpolation point. Otherwise we just combine the results of
Theorem 1.9 and Theorem 1.8. (Note that ξx varies with x.)

Alternative Proof. (Unlectured, but useful for the Examples Sheet.) The formula (1.13) is true when
x = xj for j ∈ {0, 1, . . . , n}, since both sides of the equation vanish. Let x ∈ [a, b] be any other
point and define

φ(t) = [f(t)− p(t)]
n∏

i=0

(x − xi)− [f(x) − p(x)]
n∏

i=0

(t− xi), t ∈ [a, b].

We emphasise that the variable in φ is t, whereas x is a fixed parameter. Next, note that φ(xj) = 0,
j = 0, 1, . . . , n, and φ(x) = 0. Hence, φ has at least n + 2 distinct zeros in [a, b]. Moreover,
φ ∈ Cn+1[a, b].

We now apply Lemma 1.7. We deduce that φ′ has at least n + 1 distinct zeros in (a, b), that φ′′

vanishes at n points in (a, b), etc. We conclude that φ(s) vanishes at n+2−s distinct points of (a, b)
for s = 0, 1, . . . , n+ 1. Letting s = n+ 1, we have φ(n+1)(ξx) = 0 for some ξx ∈ (a, b) and hence

0 = φ(n+1)(ξx) = [f (n+1)(ξx)− p(n+1)(ξx)]

n∏

i=0

(x− xi)− [f(x)− p(x)](n + 1)! .

Since p(n+1) ≡ 0, we obtain (1.13). ✷

Mathematical Tripos: IB Numerical Analysis 7 © G.Moore@maths.cam.ac.uk, Lent 2017

Making use of the L∞-norm (or max-norm)

‖g‖∞ ≡ max
t∈[a,b]

|g(t)| g ∈ C[a, b]

enables us to replace (1.13) with the more useful bound

|f(x)− p(x)| 6 1

(n+ 1)!
|ω(x)| ‖f (n+1)‖∞ ∀x ∈ [a, b] . (1.14a)

In particular, we can now keep n and [a, b] fixed while investigating how this bound can be minimised
through the choice of distinct interpolation points ∆ ≡ {xi}ni=0 ⊂ [a, b], i.e.

‖f − p∆‖∞ 6
1

(n+ 1)!
‖ω∆‖∞ ‖f (n+1)‖∞ . (1.14b)

Introducing the lower index ∆ emphasizes the dependence on {xi}ni=0 and we are now trying to minimise
‖ω∆‖∞ with respect to ∆. The choice of ∆ can make a big difference!

Runge’s Example. We interpolate

f(x) =
1

1 + x2
, x ∈ [−5, 5], (1.15)

first at the equally-spaced knots xj = −5+10j/n, j = 0, 1, . . . , n, and then at the Chebyshev knots
xj = −5 cos 2j+1

2(n+1)π, j = 0, 1, . . . , n.

0

0.5

1

1.5

2

y

–4 –2 2 4
x

0

0.5

1

1.5

2

y

–4 –2 2 4
x

Interpolation at uniform knots {−5 + j}10j=0
. Interpolation at Chebyshev knots {−5 cos 2j+1

22
π}10j=0

.

In the case of equi-spaced points, note the growth in the error which occurs towards the end of
the range. As illustrated in the rightmost column of the table below, this arises from the nodal
polynomial term in (1.13). Moreover, adding more interpolation points makes the largest error

‖f−p‖∞ = max{|f(x)− p(x)| : −56x65} ,

even worse, as may be investigated using the Lagrange Interpolation demonstration at

http://www.maths.cam.ac.uk/undergrad/course/na/ib/partib.php

Errors in interpolating (1.15) at uniform knots: n = 15.

x f(x)− p(x)
∏n

i=0(x− xi)

0.75 3.2× 10−3 −2.5× 106

1.75 7.7× 10−3 −6.6× 106

2.75 3.6× 10−2 −4.1× 107

3.75 5.1× 10−1 −7.6× 108

4.75 4.0× 10+2 −7.3× 1010

Errors in interpolating (1.15) at uniform knots: n = 20.

A remedy to this state of affairs is to cluster points towards the end of the range. As illustrated in the

second figure above, a considerably smaller error is attained for xj = 5 cos (n−j)π
n , j = 0, 1, . . . , n, the

so-called Chebyshev points. It is possible to prove that this choice of points minimizes the magnitude
of maxx∈[−5,5] |

∏n
i=0(x− xi)|.

Mathematical Tripos: IB Numerical Analysis 8 © G.Moore@maths.cam.ac.uk, Lent 2017

http://www.maths.cam.ac.uk/undergrad/course/na/ib/partib.php

1.6.1 Optimal choice of interpolation points

We now begin to establish the results we want, by first minimising ‖ω‖∆ in (1.14b) for the special case
[a, b] = [−1, 1].

Definition 1.11. For n > 0, the Chebyshev3 polynomial of degree n on [−1, 1] is defined by

Tn(x) = cosnθ, where x = cos θ with θ ∈ [0, π]. (1.16)

Elementary trigonometrical formulae show that Tn ∈ Pn[x] and we also have the following key properties
of Tn on [−1, 1].

(i) Tn takes its maximal absolute value 1 (with alternating signs) n+ 1 times:

‖Tn‖∞ = 1, Tn(Yk) = (−1)k, Yk = cos πk
n , k = 0, 1, . . . , n. (1.17a)

(ii) Tn has n distinct zeros:

Tn(yk) = 0, yk = cos 2k−1
2n π, k = 1, 2, . . . , n. (1.17b)

Like all sets of orthogonal polynomials (as we shall see in the next section), Chebyshev polynomials satisfy
a three-term recurrence relation.

Lemma 1.12. The Chebyshev polynomials Tn satisfy the recurrence relation

T0(x) ≡ 1, T1(x) = x, (1.18a)

Tn+1(x) = 2xTn(x) − Tn−1(x), n > 1. (1.18b)

Proof. (1.18a) follows directly from (1.16) and (1.18b) is derived from the trigonometrical identity

cos(n+ 1)θ + cos(n− 1)θ = 2 cos θ cosnθ

via the substitution x = cos θ.

Remark. (1.18a) and (1.18b) confirm that Tn ∈ Pn[x] and that the leading coefficient is 2n−1 (for n > 1).

The reason for introducing Chebyshev polynomials now is that it is easy to show that they solve our
minimisation problem.

Theorem 1.13. On the interval [−1, 1], among all p ∈ Pn[x] with leading coefficient 1, it is 1
2n−1Tn that

satisfies
min(ai)

∥∥xn + an−1x
n−1 + · · ·+ a0

∥∥
∞ = 1

2n−1 ‖Tn‖∞ = 1
2n−1 . (1.19)

Proof. Suppose (by contradiction) ∃ qn ∈ Pn[x] with leading coefficient 1 and ‖qn‖∞ < 1
2n−1 . If we define

r ≡ 1
2n−1 Tn − qn ∈ Pn−1[x]

then, because (1.17a) states that Tn(Yk) = ±1 and |qn(Yk)| < 1
2n−1 for k = 0, . . . , n, it follows that r

alternates in sign at the distinct points {Yk}nk=0 ⊂ [−1, 1]. Hence, by the intermediate value theorem, r
has at least n distinct zeros in (−1, 1) and this contradicts r 6= 0.

Now it is clear that our ’best’ choice of interpolation points is derived from Chebyshev polynomials.

3 Alternative transliterations of Chebyshev include Chebyshov, Tchebycheff and Tschebyscheff: hence Tn.

Mathematical Tripos: IB Numerical Analysis 9 © G.Moore@maths.cam.ac.uk, Lent 2017

Corollary 1.14. Consider ω∆ ∈ Pn[x] for any distinct ∆ = {xi}ni=0 ⊂ [−1, 1]: then

min
∆
‖ω∆‖∞ = 1

2n (1.20a)

and this is achieved by the zeros of Tn+1 in (1.17b), i.e.

xk=cos 2k+1
2n+2π k = 0, . . . , n . (1.20b)

Thus we end up with our smallest error bound for polynomial interpolation.

Theorem 1.15. For f ∈Cn+1[−1, 1], the Chebyshev choice of interpolating points, as defined in (1.20b),
gives the best bound of the form (1.14b), i.e.

‖f − pn‖∞ 6 1
2n

1
(n+1)! ‖f

(n+1)‖∞ . (1.21)

Example. For f(x) = ex, and x ∈ [−1, 1], the error of approximation provided by interpolating polynomial
of degree 9 with 10 Chebyshev knots is bounded by

|ex − p9(x)| 6 1
29

1
10! e 6 1.5 · 10−9

Finally, we explain how it is easy to generalise the above theorems to an arbitrary finite interval [a, b],
rather than just the special interval [−1, 1] : thus obtaining the results stated in Runge’s example. By
using the linear transformation

x = b+a
2 + b−a

2 t , (1.22)

which maps t ∈ [−1, 1] to x ∈ [a, b], we see that Theorem 1.13, Corollary 1.14 and Theorem 1.15 can be
generalised to [a, b].

a) The analogue of Theorem 1.13 for the general interval [a, b] has solution

(b−a)n

22n−1 Tn

(
2

b−ax− b+a
b−a

)
:

i.e. this is the element of Pn[x], with leading coefficient 1, which has minimal ∞-norm over [a, b]. Note
how the inverse of the transformation (1.22) is used, so that the proof will take a similar form.

b) The analogue of Corollary 1.14 for the general interval [a, b] has

min
∆
‖ω∆‖∞ = (b−a)n+1

22n+1

and this is achieved by the zeros of Tn+1 under the mapping (1.22), i.e.

xk=
b+a
2 + b−a

2 cos 2k+1
2n+2π k = 0, . . . , n .

c) The analogue of Theorem 1.15 for the general interval [a, b] is

‖f − pn‖∞ 6
(b−a)n+1

22n+1
1

(n+1)! ‖f
(n+1)‖∞ ,

where the transformed zeros of Tn+1 are used as interpolation points.

Mathematical Tripos: IB Numerical Analysis 10 © G.Moore@maths.cam.ac.uk, Lent 2017

2 Orthogonal Polynomials and Least-squares Approximation

There are many other ways, apart from interpolation, of constructing polynomials with good approxi-
mation properties. In this section we look at polynomials which are optimal in a least-squares sense. We
shall see that this requires the construction of polynomials that are orthogonal with respect to the scalar
product that defines the least-squares problem.

2.1 Scalar products

We first need to significantly generalise the idea of a scalar product. Recall (e.g. from Vectors & Matrices)
that the simplest scalar product between two vectors x,y ∈ R

n is defined by

〈x,y〉 ≡
n∑

i=1

xiyi . (2.1a)

Given arbitrary fixed weights w1, w2, . . . , wn > 0, we may broaden this definition to

〈x,y〉 ≡
n∑

i=1

wixiyi . (2.1b)

In general, given a real linear vector space V, a scalar (or inner) product is any function V × V 7→ R

which satisfies the following axioms:

symmetry: 〈x,y〉 = 〈y,x〉 ∀ x,y ∈ V ,

linearity: 〈αx+ βy, z〉 = α 〈x, z〉+ β 〈y, z〉 ∀ x,y, z ∈ V & α, β ∈ R ,

non-negativity: 〈x,x〉 > 0 ∀ x ∈ V ,

non-degeneracy: 〈x,x〉 = 0 iff x = 0 .





(2.2)

In this section, we shall consider special scalar products defined on particular real vector spaces of func-
tions. Since we will be concerned with orthogonal polynomials, our vector spaces must contain Pn[x],
at least up to a certain degree. We must also make sure that the above axioms hold, especially the
non-degeneracy condition.

a) For s > 0 and [a, b] finite, let V ≡ Cs[a, b]. The scalar products we are interested in are defined by

〈f, g〉 =
∫ b

a

w(x)f(x)g(x) dx , (2.3)

where
• w ∈ C(a, b) is a fixed weight function,

• w(x) > 0 for x ∈ (a, b),

• w is integrable over [a, b].

In particular, this allows w to be zero at the endpoints or mildly unbounded there. (Many famous
sets of orthogonal polynomials, including Chebyshev, require this generality!) Since Pn[x] is a vector
subspace of Cs[a, b], these scalar products are also suitable for V ≡ Pn[x] for any n.

b) If our interval is infinite, e.g. [0,∞) or (−∞,∞), we can only use (2.3) if we put additional restric-
tions on the weight function. (Again, this generality is required by some famous sets of orthogonal
polynomials!) Even for V ≡ Pn[x], we must also require that

∫ b

a

w(x)xk dx exists for 1 6 k 6 2n.

For example, if

w(x) ≡ e−x for [0,∞) or w(x) ≡ e−x2

for (−∞,∞)

then these scalar products are suitable for V ≡ Pn[x] without any restriction on n. (Note however that
letting V be a vector space of smooth functions would require some restriction on their behaviour at
±∞.)

Mathematical Tripos: IB Numerical Analysis 11 © G.Moore@maths.cam.ac.uk, Lent 2017

c) If V ≡ Pn[x], a somewhat different possibility is the discrete scalar product

〈f, g〉 =
m∑

j=1

wjf(ξj) g(ξj) f, g ∈ V , (2.4)

where m > n+ 1, {ξj}mj=1 are fixed distinct points and {wj}mj=1 are fixed positive weights.

Finally, we state an obvious definition.

Definition 2.1. Having chosen a space V of functions and a scalar product for the space, we say that
f, g ∈ V are orthogonal if and only if 〈f, g〉 = 0.

2.2 Orthogonal polynomials – definition, existence, uniqueness

If V is a vector space of functions that contains Pn[x] ∀n > 0, together with a given scalar product, we
say that pn ∈ Pn[x] is the nth orthogonal polynomial if

〈pn, p〉 = 0 ∀p ∈ Pn−1[x] . (2.5)

This definition implies that 〈pm, pn〉 = 0 if m 6= n, i.e. orthogonal polynomials of different degrees are
orthogonal to each other.

Remarks.

(i) Different inner products lead to different sets of orthogonal polynomials.

(ii) Note that, if our vector space V only contains polynomials up to a certain degree, then we will
only be able to construct orthogonal polynomials up to this degree.

In order to establish uniqueness, we must impose some kind of normalisation on our orthogonal polyno-
mials.

Definition 2.2. A polynomial in Pn[x] is said to be monic if its coefficient of xn is one.

Remark. For theoretical simplicity, the usual normalisation for orthogonal polynomials is that they are
monic. However the standard definitions of some famous orthogonal polynomials (e.g. the Chebyshev
polynomials) satisfy other scalings.

Theorem 2.3. Given a vector space V containing Pn[x] ∀n > 0 and a scalar product defined on V, there
exists a unique monic orthogonal polynomial of degree n ∀n > 0. In addition, {pk}nk=0 form a basis for
Pn[x] ∀n > 0.

Proof. We prove both parts of the theorem simultaneously by induction over n: first noting that p0(x)≡1
starts the induction for n = 0.

Suppose {pk}nk=0 satisfies the induction hypothesis.

a) By choosing any monic qn+1 ∈Pn+1[x], e.g. qn+1(x)≡xn+1, we can construct pn+1 ∈ Pn+1[x] by the
Gram–Schmidt algorithm, i.e.

pn+1 = qn+1 −
n∑

k=0

〈qn+1, pk〉
〈pk, pk〉

pk . (2.6)

Since (by construction) this pn+1 is monic and satisfies 〈pn+1, pm〉 ∀m 6 n, it must also satisfy
〈pn+1, p〉 ∀p ∈ Pn[x] as required.

b) For uniqueness, we follow the usual contradiction argument and assume that pn+1, p̂n+1 ∈ Pn+1[x] are
both monic orthogonal polynomials. But then r ≡ pn+1−p̂n+1 ∈ Pn[x] and so

〈r, r〉 = 〈pn+1, r〉 − 〈p̂n+1, r〉 = 0

shows that r ≡ 0.

Mathematical Tripos: IB Numerical Analysis 12 © G.Moore@maths.cam.ac.uk, Lent 2017

c) Finally, to show that {pk}n+1
k=0 is a basis for Pn+1[x], we note that each p ∈ Pn+1[x] can be written

uniquely in the form
p = c pn+1 + q c ∈ R, q ∈ Pn[x] ,

where c is the coefficient of xn+1 in p. But, according to the induction hypothesis, {pk}nk=0 is already
a basis for Pn[x] and so our required result follows.

2.3 The three-term recurrence relation

As a practical method of construction, the Gram–Schmidt algorithm (2.6) in the proof of Theorem 2.3
can be considerably improved by making the clever choice of qn+1(x) ≡ xpn(x) there. (Note that the
monic orthogonal polynomial pn ∈Pn is available before qn+1 is required.) We also need to use the fact
that both (2.3) and (2.4), the scalar products we are interested in, satisfy

〈xf, g〉 = 〈f, xg〉 ∀f, g, xf, xg∈V . (2.7)

Theorem 2.4. Under the conditions of Theorem 2.3, our unique monic orthogonal polynomials can be
generated by the three-term recurrence relation

p0(x) ≡ 1 , p1(x) = [x− α0]p0(x) , (2.8a)

pn+1(x) = [x− αn]pn(x) − βnpn−1(x) n > 1 , (2.8b)

where

αn ≡
〈pn, xpn〉
〈pn, pn〉

n > 0 and βn ≡
〈pn, pn〉

〈pn−1, pn−1〉
> 0 n > 1 . (2.8c)

Proof. Obviously the unique monic polynomial of degree 0 must be p0(x)≡1. Also, by construction, our
given p1 ∈ P1[x] is monic and satisfies

〈p1, p0〉 = 〈xp0, p0〉 −
〈p0, xp0〉
〈p0, p0〉

〈p0, p0〉 = 0 ,

so it must be the unique monic orthogonal polynomial for n = 1.

For n > 1, using qn+1 ≡ xpn in the proof of Theorem 2.3 gives

pn+1 = x pn −
n∑

k=0

〈x pn, pk〉
〈pk, pk〉

pk

= [x− αn] pn −
〈pn, x pn−1〉
〈pn−1, pn−1〉

pn−1 ,

since x pk ∈ Pk+1[x] means that the other terms in the sum are zero. But then

〈pn, x pn−1〉 = 〈pn, pn + q〉 q ∈ Pn−1[x]

= 〈pn, pn〉

gives the required result.

2.4 Examples

Four of the most famous sets of orthogonal polynomials are illustrated in Table 2; note that none of them
are monic. In particular, the table lists the different intervals [a, b] ⊂ R and weight functions w that define
the scalar product (2.3). For plots of these polynomials, see the Orthogonal Polynomials demonstration
at

http://www.maths.cam.ac.uk/undergrad/course/na/ib/partib.php

Mathematical Tripos: IB Numerical Analysis 13 © G.Moore@maths.cam.ac.uk, Lent 2017

http://www.maths.cam.ac.uk/undergrad/course/na/ib/partib.php

Name Notation Interval w(x) Recurrence

Legendre Pn [−1, 1] 1 (n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x)

Chebyshev Tn [−1, 1] 1√
1−x2

Tn+1(x) = 2xTn(x)− Tn−1(x)

Laguerre Ln [0,∞) e−x (n+ 1)Ln+1(x) = (2n+ 1− x)Ln(x) − nLn−1(x)

Hermite Hn (−∞,∞) e−x2

Hn+1(x) = 2xHn(x) − 2nHn−1(x)

Table 2: Some famous orthogonal polynomials

We also note how the Chebyshev polynomials based on the scalar product

〈f, g〉 ≡
∫ 1

−1

1√
1− x2

f(x)g(x) dx (2.9)

link up with the previous definition

Tn(x) = cosnθ, x = cos θ, θ ∈ [0, π] (2.10)

in (1.16). This simply requires the change of variable x = cos θ in (2.9), i.e.

〈Tn, Tm〉 ≡
∫ 1

−1

1√
1− x2

Tn(x)Tm(x) dx

=

∫ π

0

cosnθ cosmθ dθ

= 1
2

∫ π

0

{cos(n+m)θ + cos(n−m)θ} dθ = 0 if m 6= n .

2.5 Least-squares polynomial approximation

Let us return to our original problem of curve fitting: suppose that we wish to fit a polynomial p ∈ Pn[x]
to a function f(x) for a6 x6 b or to function/data values f(ξj) for j =1, 2, . . . ,m > n + 1. Then it is
often a good idea to choose p ∈ Pn[x] by minimizing the least-squares expression

∫ b

a

w(x)[f(x) − p(x)]2 dx or

m∑

j=1

wj [f(ξj)− p(ξj)]
2 (2.11)

respectively, which are linked to the scalar products (2.3) and (2.4). This is an alternative to polynomial
interpolation and is called (weighted) least-squares approximation. The generality of the scalar product is
a useful flexibility in both the continuous and discrete cases. Note that our p ∈ Pn[x] achieves the least
value of the distance (or norm) ‖f − p‖ ≡ 〈f − p, f − p〉1/2.
The next theorem shows us that, once we have available the set of orthogonal polynomials with respect
to the scalar product that we are using, it is simple to write down a formula for the unique solution of
the least-squares approximation problem.

Theorem 2.5. Let {pk}nk=0 be the set of orthogonal polynomials with respect to the scalar product chosen
in (2.11), then the least-squares approximant p̂n ∈ Pn[x] is unique and given by the formula

p̂n =

n∑

k=0

ĉkpk , where ĉk ≡
〈f, pk〉
‖pk‖2

for k = 0, . . . , n. (2.12a)

Additionally, the minimum error achieved is

‖f − p̂n‖2 = ‖f‖2 −
n∑

k=0

〈f, pk〉2
‖pk‖2

. (2.12b)

Mathematical Tripos: IB Numerical Analysis 14 © G.Moore@maths.cam.ac.uk, Lent 2017

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 2.1: Least squares fit of a polynomial to discrete data.

Proof. Since {pk}nk=0 is a basis for Pn[x], our least-squares approximant is obtained by substituting
q ≡∑n

k=0 ckpk into ‖f − q‖2 and minimising with respect to {ck}nk=0 ⊂ R; i.e.

〈f − q, f − q〉 = 〈f, f〉 − 2〈f, q〉+ 〈q, q〉

= ‖f‖2 − 2
n∑

k=0

ck〈f, pk〉+
n∑

k=0

c2k‖pk‖2 , (2.13)

where we note that orthogonality removes the cross-terms from 〈q, q〉.
This last expression in (2.13) is a sum of quadratic functions for each ck separately and so is minimised
by setting

∂

∂ck
〈f − q, f − q〉 = −2〈pk, f〉+ 2ck〈pk, pk〉,

to zero for k = 0, 1, . . . , n; hence we obtain our formula (2.12a). (What we have constructed must be a
unique minimum since the coefficients of {c2k}nk=0 in (2.13) are all strictly positive.) Finally, by substituting
{ĉk}nk=0 into (2.13) we obtain (2.12b).

Remarks.

(i) Because our least-squares approximation (2.12a) satisfies

‖p̂n‖2 ≡ 〈p̂n, p̂n〉 =
n∑

k=0

ĉ2k 〈pk, pk〉 =
n∑

k=0

〈f, pk〉2
‖pk‖2

, (2.14a)

another way of understanding the error formula (2.12b) is that it corresponds to

‖f − p̂n‖2 + ‖p̂n‖2 = ‖f‖2 . (2.14b)

This is an analogue of the theorem of Pythagoras because

〈f − p̂n, pk〉 = 0 k = 0, . . . , n → 〈f − p̂n, q〉 = 0 ∀q ∈ Pn[x] (2.14c)

and so in particular 〈f − p̂n, p̂n〉 = 0.

(ii) Our error formula (2.12b) also helps us choose n so that ‖f − p̂n‖2 < ε, where ε > 0 is some desired
error tolerance. Since the sequence {σn}∞n=0, where

σn ≡
n∑

k=0

〈f, pk〉2
〈pk, pk〉

n = 0, 1, . . . , (2.15)

is monotonic, we can gradually increase n until (hopefully)

σn > ‖f‖2 − ε .

Mathematical Tripos: IB Numerical Analysis 15 © G.Moore@maths.cam.ac.uk, Lent 2017

(Note that the construction and evaluation of both pk and ĉk depends only on orthogonal polynomials
of degree k or less. It follows that it is not necessary to know the final value of n ≡ n(ε) when one
begins to form the sums in either (2.12a) or (2.15).)

(iii) Without further technical restrictions, we cannot deduce the Parseval identity

∞∑

k=0

〈f, pk〉2
〈pk, pk〉

= 〈f, f〉 ; (2.16)

which is necessary for the above error tolerance to be achievable ∀ε > 0. (Although monotonicity
of {σn} means that the infinite sum in (2.16) must converge.) However, when our vector space
V ≡ C[a, b] for a finite interval and our scalar product is (2.3), this result follows easily from a
famous theorem of Weierstrass (unproved).

Theorem 2.6 (Weierstrass approximation theorem). Given f ∈ C[a, b] and ε > 0, we can find
p̃n ∈ Pn[x] (for n sufficiently large) so that

‖f − p̃n‖∞ ≡ max
x∈[a,b]

|f(x) − p̃n(x)| < ε .

Combining this theorem with the scalar product (2.3), we know that (for any given ε > 0) it is
always possible to find p̃n ∈ Pn[x] (for n sufficiently large) such that

〈f − p̃n, f − p̃n〉1/2 6
(
‖w‖1‖f − p̃n‖2∞

)1/2
6 ‖w‖1/21 ε ,

where ‖w‖1 ≡
∫ b

a
w(x) dx. If however the Parseval identity (2.16) is not true, we can choose ε > 0

so that

0 < ‖w‖1/21 ε <

(
‖f‖2 −

∞∑

k=0

〈f, pk〉2
‖pk‖2

)1/2

.

But then we have a contradiction with the minimising property of p̂n, i.e.

(
‖f‖2 −

∞∑

k=0

〈f, pk〉2
‖pk‖2

)1/2

6 〈f − p̂n, f − p̂n〉1/2 6 〈f − p̃n, f − p̃n〉1/2 6 ‖w‖1/21 ε .

(iv) We have spent most of this subsection looking at least-squares polynomial approximation with
respect to the continuous scalar product (2.3). Least-squares problems with respect to the discrete
scalar product (2.4) often arise in practice for a different reason: i.e. {fi}mi=1 correspond to inexact
experimental data and we wish to construct a low-degree (n≪ m) polynomial that smooths out the
data errors. An example of an acceptable solution is shown in Figure 2.1.

Mathematical Tripos: IB Numerical Analysis 16 © G.Moore@maths.cam.ac.uk, Lent 2017

3 Approximation of Linear Functionals

In the previous two sections, we have considered the approximation of functions by polynomials. In the
present section, we shall again use polynomials to construct approximation formulae, but now for linear
functionals.

3.1 Linear functionals

In pure functional analysis, a linear functional is a linear mapping from a given vector space to the
underlying field of scalars. In this course, we shall be slightly more restrictive.

Definition 3.1. If V is a given real vector space of functions, a linear functional on V is a linear mapping
L : V 7→ R.

Below are some simple examples, where it is easy to verify that L is a linear functional on V.

(i) V = C[a, b] and L(f) ≡ f(ξ) for some fixed ξ ∈ [a, b].

(ii) V = C[a, b] with [a, b] finite and

L(f) ≡
∫ b

a

f(x)w(x) dx , (3.1a)

where the fixed weight function w is integrable over [a, b].

(iii) V = C1[a, b] and L(f) ≡ f ′(η) for some fixed η ∈ [a, b].

(iv) V = C1[a, b] and
L(f) ≡ f(β)− f(α)− β−α

2 [f ′(β) + f ′(α)] (3.1b)

for some fixed distinct α, β ∈ [a, b].

We shall be especially interested in approximating more complicated linear functionals (usually definite
integrals or derivative point-values of functions) by simpler linear functionals (usually linear combinations
of function point-values): e.g.

L(f) ≈
N∑

i=0

aif(xi) , (3.2)

where V = Cp[a, b] for some p > 0 and {xi}Ni=0 are given or chosen distinct points in [a, b]. {ai}ni=0 are
always chosen in some way so that the approximation (3.2) is acceptable ∀f ∈ V.

Remark. If L is defined by (3.1a), (3.2) is called numerical integration (or quadrature). (Sometimes we
can also consider approximating integrals over infinite intervals.) If L is defined by

L(f) ≡ f (k)(ξ) , for fixed ξ ∈ [a, b] and 1 6 k 6 p , (3.3)

then (3.2) is called numerical differentiation.

We can now describe two sensible methods for choosing the {ai}Ni=0 (and possibly also the {xi}Ni=0) so
that the approximation (3.2) is “good”.

Method 3.2. Interpolating formulae. {xi}Ni=0 ⊂ [a, b] are allowed to be an arbitrary set of distinct points,
but then {ai}Ni=0 are derived from the Lagrange interpolation formula (1.1b): i.e.

L(f) ≈ L

(
N∑

i=0

f(xi)ℓi

)
=

N∑

i=0

L(ℓi)f(xi). (3.4)

Mathematical Tripos: IB Numerical Analysis 17 © G.Moore@maths.cam.ac.uk, Lent 2017

Here {ℓi}Ni=0 are the Lagrange cardinal polynomials (1.1a) with respect to {xi}Ni=0 and so (by linearity)
we obtain the formulae ai = L(ℓi) for i = 0, . . . , N . The accuracy of (3.4) relies on the accuracy of
polynomial interpolation and an immediate result is that

f ∈ PN [x] ⇒ L(f) =

N∑

i=0

aif(xi) :

i.e. (3.4) is exact for f ∈ PN [x].

Method 3.3. Superaccurate formulae. We try to choose both {xi}Ni=0 and {ai}Ni=0 so that (3.2) is exact
for f ∈ P2N+1[x]. Since we have 2N + 2 free parameters available and dim (P2N+1[x]) = 2N + 2, this
approach is feasible; but whether it is actually achievable or not depends on the particular linear functional
L we are trying to approximate.

3.2 Numerical integration

Let us first consider the simpler idea of Method 3.2 above applied to (3.1a): thus we have V = C[a, b], for
some finite interval [a, b], and

L(f) ≡
∫ b

a

w(x)f(x) dx , (3.5)

with w integrable over [a, b]. If {xi}Ni=0 ⊂ [a, b] are distinct points, then

ai ≡
∫ b

a

w(x)ℓi(x) dx i = 0, . . . , N , (3.6)

where {ℓi}Ni=0 are the Lagrange cardinal polynomials with respect to {xi}Ni=0. Hence our approximation

∫ b

a

w(x)f(x) dx ≈
N∑

i=0

aif(xi) (3.7)

will be exact when f ∈ PN [x]. In certain commonly-occurring situations, we can slightly improve this
result.

Theorem 3.4. We make the following three restrictions.

• N is even.

• The weight function w is an even function with respect to [a, b], i.e. w(x− a+b
2) is an even function

for x ∈ [a−b
2 , b−a

2].

• {xi}Ni=0 are symmetrically placed in [a, b], i.e.

xN/2 = a+b
2 and xk + xN−k = a+ b for k = 0, . . . , N/2− 1 .

Then our coefficients in (3.6) satisfy

ak = aN−k k = 0, . . . , N/2− 1 (3.8)

and our approximation (3.7) is exact for f ∈ PN+1[x].

Proof. Since {xi}Ni=0 are symmetrically placed in [a, b], the nodal polynomial

ω(x) ≡
N∏

i=0

(x− xi) ,

Mathematical Tripos: IB Numerical Analysis 18 © G.Moore@maths.cam.ac.uk, Lent 2017

as defined in (1.2a), is an odd function with respect to [a, b]; thus w′ is an even function with respect to
[a, b]. If we then use (1.2b) to write our Lagrange cardinal polynomials in terms of ω, (3.6) becomes

ai ≡
∫ b

a

w(x) ω(x)
ω′(xi)[x−xi]

dx i = 0, . . . , N .

Thus for k = 0, . . . , N/2− 1,

aN−k − ak =

∫ b

a

w(x)
{

ω(x)
ω′(xN−k)[x−xN−k]

− ω(x)
ω′(xk)[x−xk]

}
dx

= xN−k−xk

dk

∫ b

a

w(x) ω(x)
(x−xN−k)(x−xk)

dx where dk ≡ ω′(xk) = ω′(xN−k)

must be zero because the integrand is odd with respect to [a, b].

The main part of the theorem is now simple and relies on the following decomposition: given any f ∈
PN+1[x], there is a unique c ∈ R and unique q ∈ PN [x] such that

f(x) = c (x− a+b
2)N+1 + q(x) , (3.9)

where c is the leading coefficient of f . Hence we only have to combine the following three results:

∫ b

a

w(x)f(x) dx =

∫ b

a

w(x)q(x) dx , (3.10a)

N∑

i=0

aif(xi) =

N∑

i=0

aiq(xi) , (3.10b)

∫ b

a

w(x)q(x) dx =

N∑

i=0

aiq(xi) . (3.10c)

(3.10a) is true because the first term on the right-hand side of (3.9) has been chosen to be odd with
respect to [a, b]. This fact, together with (3.8), is also used to establish (3.10b). Finally, (3.10c) is true
because we already know that (3.7) is exact on PN [x].

In practice, the restriction that the weight function w must be even usually occurs because it is constant.
The midpoint and Simpson rules in §3.2.2 rely on this theorem, with N = 0 and N = 2 respectively.

Not surprisingly, there is an analogous result with the properties of w and ω reversed.

Theorem 3.5. We make the following three restrictions.

• N is odd.

• The weight function w is an odd function with respect to [a, b], i.e. w(x − a+b
2) is an odd function

for x ∈ [a−b
2 , b−a

2].

• {xi}Ni=0 are symmetrically placed in [a, b], i.e.

xk + xN−k = a+ b for k = 0, . . . , (N − 1)/2 .

Then our coefficients in (3.6) satisfy

ak = −aN−k k = 0, . . . , (N − 1)/2

and our approximation (3.7) is exact for f ∈ PN+1[x].

We do not give a proof of this second theorem, because it is so similar to the proof of the first, e.g. the
nodal polynomial ω is now even with respect to [a, b]. The second theorem appears less often in practice,
because the condition on the weight function w occurs less often.

Mathematical Tripos: IB Numerical Analysis 19 © G.Moore@maths.cam.ac.uk, Lent 2017

3.2.1 Gaussian quadrature

In the present subsection, we explain how the superaccurate formulae of Method 3.3 are often achievable
for numerical integration. To do this we require the theory of orthogonal polynomials developed in §2
and so we must have an appropriate scalar product. Thus the linear functional we are now trying to
approximate is ∫ b

a

w(x)f(x) dx (3.11)

and the weight function w is restricted so that

〈f, g〉 ≡
∫ b

a

w(x)f(x)g(x) dx (3.12)

is a scalar product on Pn[x] for all n > 0. (The restrictions necessary on w, both for finite and infinite
intervals, are discussed in §2.1.) Of course, we can also only consider functions f such that the integral
in (3.11) exists.

We shall also slightly change our notation in this subsection, in order to conform to standard practice for
Gauss quadrature formulae: i.e. our approximation is

∫ b

a

w(x)f(x) dx ≈
ν∑

k=1

bkf(ck) , (3.13)

with nodes (or knots) {ck}νk=1 and weights {bk}νk=1. Thus to achieve Method 3.3, we must show how the
nodes and weights can be chosen so that (3.13) is exact for f ∈ P2ν−1[x]. Before proceeding with this,
however, we prove that it is impossible to do any better.

Claim 3.6. No choice of {ck}νk=1 ⊂ R can make (3.13) exact for f ∈ P2ν [x].

Proof. There is a simple proof by contradiction. Let c1, . . . , cν be arbitrary nodes and define q ∈ Pν [x] by

q(x) ≡
ν∏

k=1

(x − ck) .

But then ∫ b

a

w(x)q2(x) dx > 0 and

ν∑

k=1

bkq
2(ck) = 0

for any choice of weights b1, . . . , bν. Hence the integral and the quadrature do not match.

It will turn out that the nodes {ck}νk=1 necessary to achieve Method 3.3 are the zeros of pν , the orthogonal
polynomial of degree ν with respect to the scalar product (3.12). We must first show, however, that these
zeros have the appropriate properties. (The following theorem is a generalisation of (1.17b).)

Theorem 3.7. For n > 1, all the zeros of pn are real, distinct and lie in the interval (a, b).

Proof. Since p0 is constant, we know that

∫ b

a

w(x)pn(x) dx =

∫ b

a

w(x)p0(x)pn(x) dx = 〈p0, pn〉 = 0

for n > 1 by orthogonality: hence pn has at least one change of sign, i.e. at least one zero, in (a, b). Now
we assume that pn changes sign at {ξj}mj=1 ⊂ (a, b) and prove by contradiction that m < n is impossible.
If we define

q(x) ≡
m∏

j=1

(x− ξj) ∈ Pm[x] .

then q(x)pn(x) does not change sign in (a, b) and so 〈q, pn〉 cannot be zero. (Since it is a non-zero
polynomial, qpn can only be zero at a finite number of points.) On the other hand, if m < n we must
have 〈q, pn〉 = 0 by orthogonality: thus we have our contradiction.

Since pn can have at most n real zeros, we conclude that pn changes sign n times in (a, b) and that these
points are real, distinct zeros.

Mathematical Tripos: IB Numerical Analysis 20 © G.Moore@maths.cam.ac.uk, Lent 2017

Given any choice of nodes {ck}νk=1, we already know from (3.6) how to choose the weights {bk}νk=1 so
that (3.13) is exact for f ∈ Pν−1[x]. The following theorem simply restates this result using our current
notation.

Theorem 3.8. If {ℓk}νk=1 are the Lagrange cardinal polynomials with respect to the nodes {ck}νk=1, then
choosing

bk ≡
∫ b

a

w(x)ℓk(x) dx, k = 1, . . . , ν (3.14)

means that (3.13) is exact when f ∈Pν−1[x].

Proof. If f ∈ Pν−1[x] then

∫ b

a

w(x)f(x) dx =

∫ b

a

w(x)

{
ν∑

k=1

f(ck)ℓk(x)

}
dx =

ν∑

k=1

bkf(ck) .

Example: Trapezoidal Rule. When [a, b] is finite and w ≡ 1 in (3.12), then, for ν = 2 with c1 ≡ a and
c2 ≡ b, we obtain

b1 ≡
∫ b

a

x− b

a− b
dx = 1

2 (b − a) =

∫ b

a

x− a

b− a
dx ≡ b2 .

We finally show that the result in Theorem 3.8 can be much improved (i.e. can achieve Method 3.3) when
the nodes are specially chosen.

Theorem 3.9. If {ck}νk=1 are the zeros of pν and {bk}νk=1 are chosen as in Theorem 3.8, then (3.13) is
exact for f ∈P2ν−1[x]. In addition, bk > 0 for k = 1, . . . , ν (i.e. all the weights are positive).

Proof. We make use of the following key decomposition: for any f ∈ P2ν−1[x], there exist unique p, q ∈
Pν−1[x] such that f = qpν + r. On the one hand, this decomposition simplifies the integral because

∫ b

a

w(x)f(x) dx =

∫ b

a

w(x) {q(x)pν(x) + r(x)} dx =

∫ b

a

w(x)r(x) dx

by orthogonality. On the other hand, it also simplifies the quadrature because

ν∑

k=1

bkf(ck) =

ν∑

k=1

bk {q(ck)pν(ck) + r(ck)} =
ν∑

k=1

bkr(ck)

by the special choice of nodes. Hence (3.13) is exact for f , because we already know from Theorem 3.8
that it is exact for r.

The final part of the theorem follows from (3.13) being exact when f is replaced by any of {ℓ2k}νk=1 ∈
P2ν−2[x], where {ℓk}νk=1 are the Lagrange cardinal polynomials with respect to our special choice of
nodes: i.e. for k = 1, . . . , ν we have

0 <

∫ b

a

w(x)ℓ2k(x) dx =

ν∑

j=1

bjℓ
2
k(cj) =

ν∑

j=1

bjδjk = bk .

Definition 3.10. A quadrature with ν nodes that is exact on P2ν−1 is called Gaussian quadrature.

Mathematical Tripos: IB Numerical Analysis 21 © G.Moore@maths.cam.ac.uk, Lent 2017

3.2.2 Examples

The four famous sets of orthogonal polynomials mentioned in §2.4 (Legendre, Chebyshev, Laguerre,
Hermite) all generate important Gauss quadrature formulae for different intervals and weight functions.
Many other well-known numerical integration methods are not Gaussian, e.g. trapezoidal and Simpson’s
rules.

(i) If [a, b] = [−1, 1] and w(x) ≡ 1, the underlying orthogonal polynomials are the Legendre polynomials.
The first few polynomials are, with the traditional non-monic normalization,

P0(x) = 1 ,

P1(x) = x ,

P2(x) = 3
2x

2 − 1
2 ,

P3(x) = 5
2x

3 − 3
2x ,

P4(x) = 35
8 x4 − 15

4 x
2 + 3

8 .

It follows that the Gaussian quadrature nodes/weights for [a, b] = [−1, 1] and w(x) ≡ 1 are

ν bk ck ∈ [−1, 1] Exact For

1 b1=2 c1=0 P1

2 b1=1, b2=1 c1=−
√

1
3 , c2=

√
1
3 P3

3 b1=
5
9 , b2=

8
9 , b3=

5
9 c1=−

√
3
5 , c2=0, c3=

√
3
5 P5

4 b1=b4=
1
2 + 1

6

√
5
6 c1 = −c4, c4 =

(
3
7 + 2

7

√
6
5

) 1
2

P7

b2=b3=
1
2 − 1

6

√
5
6 c2 = −c3, c3 =

(
3
7 − 2

7

√
6
5

) 1
2

These Gauss quadrature rules can also be applied on a general finite interval [a, b], by making use
of the linear mapping (1.22).

(ii) For [a, b] = [−1, 1] and w(x) = (1− x2)−1/2, the orthogonal polynomials are the Chebyshev polyno-
mials and the quadrature rule is

Tν(x) = cos(ν arccosx), bk =
π

ν
, ck = cos

2k − 1

2ν
π, k = 1, . . . , ν.

Now generalising to [a, b] is no longer so simple, since (1.22) alters the weight function.

(iii) Here are some simple well-known, not necessarily Gaussian, quadrature methods for a finite interval
[a, b] with w ≡ 1.

Rule ν bk ck ∈ [a, b] Exact For Comment

Rectangle 1 b1=(b− a) c1=a or c1=b P0=Pν−1 1-point, non-Gaussian,

exact on constants.

Midpoint 1 b1=(b− a) c1=
1
2 (a+ b) P1=P2ν−1 1-point, Gaussian,

exact on linear fns.

Trapezoid(al) 2 b1=b2=
1
2 (b− a) c1=a, c2=b P1=Pν−1 2-point, non-Gaussian,

exact on linear fns.

Simpson’s 3 b1=b3=
1
6 (b− a) c1=a, c3=b P3 3-point, non-Gaussian,

b2=
2
3 (b− a) c2=

1
2 (a+ b) exact on cubics.

Mathematical Tripos: IB Numerical Analysis 22 © G.Moore@maths.cam.ac.uk, Lent 2017

Demonstration. For numerical examples, see the Gaussian Quadrature demonstration at

http://www.maths.cam.ac.uk/undergrad/course/na/ib/partib.php

Practicalities. If an approximation is required to an integral over a ‘large’ interval [a, b], then often the
interval will be split into M sub-intervals, [xi−1, xi] for i = 1, . . . ,M , with x0 = a and xM = b.
Gaussian quadrature, or another approximation, is then used in each sub-interval.

3.3 Numerical differentiation

In this subsection our vector space is V ≡ Ck[a, b], for a finite interval and some k > 1, and our linear
functional is

L(f) ≡ f (k)(ξ) (3.15)

for some fixed ξ ∈ [a, b]. For N > k, we seek distinct {xi}Ni=0 ⊂ [a, b] and {ai}Ni=0 ⊂ R so that

f (k)(ξ) ≈
N∑

i=0

aif(xi) (3.16)

is a “good” approximation. Just as in §3.2, we can apply Method 3.2 for any choice of distinct {xi}Ni=0

by setting

ai ≡ ℓ
(k)
i (ξ) i = 0, . . . , N , (3.17)

where {ℓi}Ni=0 are the Lagrange cardinal polynomials with respect to {xi}Ni=0. Then our approximation
(3.16) is exact when f ∈ PN [x]. (Note that our approximation takes a particularly simple form when
N = k: because then (3.4) gives

k∑

i=0

aif(xi) = p(k)(ξ) = k!f [x0, . . . , xk] ,

where p ∈ Pk[x] is the interpolating polynomial for f with respect to {xi}ki=0 and so we have made use
of (1.10a).)

As in §3.2, we can also slightly improve the above result in special cases.

Theorem 3.11. We make the following restrictions:

• k is even and ξ ≡ a+b
2 ;

• N is even and {xi}Ni=0 are symmetrically placed in [a, b], i.e.

xN/2 = a+b
2 and xi + xN−i = a+ b for i = 0, . . . , N/2− 1 .

Then our coefficients in (3.17) satisfy

ai = aN−i i = 0, . . . , N/2− 1 (3.18)

and our approximation (3.16) is exact for f ∈ PN+1[x].

Proof. The proof has the same pattern as the proof of Theorem 3.4, so we do not go into detail. The
nodal polynomial ω is odd with respect to [a, b] and hence

aN−i − ai =
dk

dxk

{
ω(x)

ω′(xN−i)[x−xN−i]
− ω(x)

ω′(xi)[x−xi]

}
x=a+b

2

= xN−i−xi

di

dk

dxk

{
ω(x)

(x−xN−i)(x−xi)

}
x= a+b

2

,

where di ≡ ω′(xi) = ω′(xN−i), is zero for i = 0, . . . , N/2− 1.

Mathematical Tripos: IB Numerical Analysis 23 © G.Moore@maths.cam.ac.uk, Lent 2017

http://www.maths.cam.ac.uk/undergrad/course/na/ib/partib.php

We again use the decomposition (3.9) and combine the following three results:

f (k)(a+b
2) = q(k)(a+b

2) , (3.19a)

N∑

i=0

aif(xi) =

N∑

i=0

aiq(xi) , (3.19b)

q(k)(a+b
2) =

N∑

i=0

aiq(xi) . . (3.19c)

The central difference formula (3.20c) is an example of this theorem.

We just state the analogous theorem.

Theorem 3.12. We make the following restrictions:

• k is odd and ξ ≡ a+b
2 ;

• N is odd and {xi}Ni=0 are symmetrically placed in [a, b], i.e.

xi + xN−i = a+ b for i = 0, . . . , (N − 1)/2 .

Then our coefficients in (3.17) satisfy

ai = −aN−i i = 0, . . . , (N − 1)/2

and our approximation (3.16) is exact for f ∈ PN+1[x].

The central difference formula (3.20b) is an example of this theorem.

Finally, we have to admit that no Method 3.3 formulae exist for numerical differentiation: i.e. there is no
analogue of Gaussian quadrature.

3.3.1 Examples (Unlectured)

N = k

Forward difference,
2-point, exact on linear fns:

f ′(x) ≈ f [x, x+ h] =
f(x+ h)− f(x)

h
, (3.20a)

Central difference,
2-point, exact on quadratics:

f ′(x) ≈ f [x− h, x+ h] =
f(x+ h)− f(x− h)

2h
, (3.20b)

2nd-order central difference,
3-point, exact on cubics:

f ′′(x) ≈ 2f [x− h, x, x+ h] =
f(x+ h)− 2f(x) + f(x− h)

h2
. (3.20c)

2 = N > k = 1. Suppose [a, b] = [0, 2], although one can, of course, transform any formula to any interval.
We claim that

f ′(0) ≈ p′2(0) = − 3
2f(0) + 2f(1)− 1

2f(2) . (3.21)

Given the nodes {xi}2i=0, in our case (0, 1, 2), we can find the corresponding coefficients {ai}2i=0 in
two ways.

(i) First determine the fundamental Lagrange polynomials ℓi

ℓ0(x) =
1
2 (x− 1)(x− 2), ℓ1(x) = −x(x − 2), ℓ2(x) =

1
2x(x − 1),

and then use (3.17) to obtain

a0 = ℓ′0(0) = − 3
2 , a1 = ℓ′1(0) = 2, a2 = ℓ′2(0) = − 1

2 .

Mathematical Tripos: IB Numerical Analysis 24 © G.Moore@maths.cam.ac.uk, Lent 2017

(ii) However, sometimes it is easier to solve the system of linear equations which arises if we require
the formula to be exact on monomials xj , j = 0, . . . , N (or elements of any other basis for PN),
i.e. if we require

f (k)(ξ) =

N∑

i=0

aif(xi) for f = xj , j = 0, . . . , n.

Hence for (3.21) and xi = 0, 1, 2





f(x) = 1 : 0 = a0 + a1 + a2
f(x) = x : 1 = a1 + 2a2
f(x) = x2: 0 = a1 + 4a2

⇒ a0 = − 3
2 , a1 = 2, a2 = − 1

2 .

3.4 Error for approximation of linear functionals

The general problem we have been considering throughout this section is the approximation of more
complicated linear functionals by linear combinations of simpler linear functionals; i.e.

L(f) ≈
N∑

i=0

aiLi(f) (3.22)

where {Li}Ni=0 and {ai}Ni=0 ⊂ R are chosen so that (3.22) is exact when f ∈ Pk[x] for some k > 0. Hence,
if we introduce the error for our approximation, i.e.

eL(f) ≡ L(f)−
N∑

i=0

Li(f) (3.23)

so that eL is also a linear functional, then (3.23) will be zero when f ∈ Pk[x].

Example. As a very simple example that can be used for illustrative purposes throughout this section,
we assume that α, β ∈ R are two distinct points and let L(f) ≡ f(β) be approximated by

f(α) +
β − α

2
{f ′(β) + f(α)} .

Hence our error functional is

eL(f) ≡ f(β)− f(α)− β − α

2
{f ′(β) + f ′(α)} (3.24)

(cf. (3.1b)) and it is easy to check that k = 2, i.e.

f ∈ P2[x]⇒ eL(f) = 0 .

Our aim in this section is to find useful formulae and bounds for our error functional eL. To achieve this,
we assume that our functionals L and {Li}Ni=0 can be defined on the vector space V ≡ Ck+1[a, b] for a
suitable finite interval [a, b]. (In the above example, any finite interval containing the two points α and β
is acceptable.) In this case, one of our error bounds will be

|eL(f)| 6 cL‖f (k+1)‖∞ ∀f ∈ Ck+1[a, b] (3.25)

for some constant cL; although we will also use other norms. It is also of interest whether cL is optimal,
in the sense of the following definition.

Definition 3.13. cL is said to be achievable if ∃f ∈ Ck+1[a, b] such that (3.25) is an equality. cL is said
to be sharp if, for any ǫ > 0, ∃fǫ ∈ Ck+1[a, b] such that

|eL(fǫ)| > (cL − ǫ) ‖f (k+1)
ǫ ‖∞ .

Mathematical Tripos: IB Numerical Analysis 25 © G.Moore@maths.cam.ac.uk, Lent 2017

3.4.1 Taylor series expansion

In order to obtain a simple formula for eL, we need to use the Taylor series with integral remainder for
f ∈ Ck+1[a, b], i.e.

f(x) = f(a)+ (x− a)f ′(a)+
(x− a)2

2!
f ′′(a)+ · · ·+ (x− a)k

k!
f (k)(a)+

1

k!

∫ x

a

(x− θ)kf (k+1)(θ) dθ (3.26a)

for x ∈ [a, b]. It is convenient to make the range of integration independent of x by introducing the
notation

(x − θ)k+ ≡
{

(x− θ)k x > θ
0 x < θ

, (3.26b)

so that we then have

f(x) =

k∑

r=0

1

r!
(x− a)rf (r)(a) +

1

k!

∫ b

a

(x − θ)k+f
(k+1)(θ) dθ ∀x ∈ [a, b] . (3.26c)

(Note that, when k = 0, we may write (x− θ)+ = H(x− θ), where H is the Heaviside/step function.) If
λ is a linear functional such that λ(p) = 0 for p∈Pk, it then follows by linearity that

λ(f) = λ

(
1

k!

∫ b

a

(x− θ)k+f
(k+1)(θ) dθ

)
∀f ∈ Ck+1[a, b] . (3.27)

So if we identify λ with our error functional eL, then we have obtained an exact error formula.

Example. Since k = 2 for (3.24), in this case we obtain

eL(f) = eL

(
1
2

∫ b

a

(x−θ)2+f ′′′(θ) dθ

)
∀f ∈ C3[a, b] . (3.28)

3.4.2 Exchanging the order of λ and integration

We will now assume that the order of action of
∫

and λ in (3.27) can be exchanged. Since our error
functionals typically involve linear combinations of integrals and point values of functions and derivatives,
this assumption will hold. The following results, involving the remainder term

g(x) ≡
∫ b

a

(x−θ)k+ f (k+1)(θ) dθ , (3.29)

are stated without proof.

(i) Suppose that λ(f) ≡ f(ξ) with ξ ∈ [a, b]: then

λ(g) ≡
(∫ b

a

(ξ − θ)k+f
(k+1)(θ) dθ

)∣∣∣∣∣
x=ξ

=

∫ b

a

(ξ − θ)k+f
(k+1)(θ) dθ

≡
∫ b

a

λ
(
(x− θ)k+

)
f (k+1)(θ) dθ .

(ii) Suppose that λ(f) ≡
∫ b

a β(x) f(x) dx, where β∈C[a, b]: then

λ(g) ≡
∫ b

a

β(x)

(∫ b

a

(x − θ)k+f
(k+1)(θ) dθ

)
dx =

∫ b

a

(∫ b

a

β(x)(x − θ)k+f
(k+1)(θ) dx

)
dθ

≡
∫ b

a

λ
(
(x− θ)k+

)
f (k+1)(θ) dθ .

Mathematical Tripos: IB Numerical Analysis 26 © G.Moore@maths.cam.ac.uk, Lent 2017

(iii) Suppose that λ(f) ≡ dℓf
dxℓ (η), with 16ℓ6k−1 and η ∈ [a, b]: then

λ(g) ≡ dℓ

dxℓ

(∫ b

a

(x− θ)k+f
(k+1)(θ) dθ

)∣∣∣∣∣
x=η

=

∫ b

a

dℓ

dxℓ

(
(x − θ)k+

)∣∣∣∣
x=η

f (k+1)(θ) dθ

≡
∫ b

a

λ
(
(x− θ)k+

)
f (k+1)(θ) dθ .

Then, for our error functionals, we can simplify (3.27) to

λ(f) =
1

k!

∫ b

a

λ
(
(x − θ)k+

)
f (k+1)(θ) dθ ∀f ∈ Ck+1[a, b] , (3.30)

noting that λ acts on (x − θ)k+ ∈ Ck−1[a, b] as a function of x with θ held constant, and arrive at the
following famous theorem.

Theorem 3.14 (Peano kernel theorem). Let λ be a linear functional on Ck+1[a, b] such that λ(f) = 0

for all f ∈ Pk[x]. Suppose also that λ applied to
∫ b

a (x−θ)k+ f (k+1)(θ) dθ commutes with the integration
sign. Then we may write

λ(f) =
1

k!

∫ b

a

K(θ)f (k+1)(θ) dθ ∀f ∈ Ck+1[a, b] , (3.31a)

where the Peano kernel function

K(θ) ≡ λ((x − θ)k+) for a 6 θ 6 b (3.31b)

is independent of f .

Proof. Since it is assumed that

λ

(∫ b

a

(x−θ)k+ f (k+1)(θ) dθ

)
=

∫ b

a

λ
(
(x−θ)k+f (k+1)(θ)

)
dθ , (3.32a)

it follows from (3.27) and the linearity of λ that

λ(f) =
1

k!

∫ b

a

λ
(
(x− θ)k+f

(k+1)(θ)
)
dθ =

1

k!

∫ b

a

λ
(
(x− θ)k+

)
f (k+1)(θ) dθ . (3.32b)

The formula (3.31a) follows from the definition of K(θ).

Examples.

(i) We continue our previous example from (3.24) and (3.28). If we assume (without loss of generality)
that α < β, we may use the obvious result

d

dx
(x − θ)k+ = k(x− θ)k−1

+ k > 1

to obtain

K(θ) ≡ eL
(
(x− θ)2+

)

= (β−θ)2+ − (α−θ)2+ − 1
2 (β−α) (2 (β−θ)+ + 2 (α−θ)+)

=

{
0 a6θ6α and β6θ6b

(α−θ) (β−θ) α6θ6β
. (3.33)

Hence our error formula from the Peano kernel theorem is

eL(f) =
1
2

∫ β

α

(α−θ) (β−θ) f ′′′(θ) dθ (3.34a)

Mathematical Tripos: IB Numerical Analysis 27 © G.Moore@maths.cam.ac.uk, Lent 2017

for f ∈ C3[α, β] and, after integrating by parts, we also obtain

eL(f) =
1
2

∫ β

α

(α+β−2 θ) f ′′(θ) dθ . (3.34b)

This last result could also have been derived by applying the Peano kernel theorem with k=1.

(ii) Consider the approximation (3.21), i.e.

f ′(0) ≈ − 3
2f(0) + 2f(1)− 1

2f(2) .

The error of this approximation is the linear functional

eL(f) ≡ f ′(0) + 3
2f(0)− 2f(1) + 1

2f(2)

and (as may be verified by trying f(x) = 1, x, x2) eL(f) = 0 for f ∈ P2[x]. Hence the Peano kernel
theorem tells us that, for f ∈ C3[0, 2],

eL(f) =
1
2

∫ 2

0

K(θ)f ′′′(θ) dθ ,

where

K(θ) ≡ eL((x − θ)2+)

= 2(0− θ)+ + 3
2 (0− θ)2+ − 2(1− θ)2+ + 1

2 (2 − θ)2+

=

{
−2(1− θ)2 + 1

2 (2− θ)2 = 2θ − 3
2θ

2 0 6 θ 6 1
1
2 (2 − θ)2 1 6 θ 6 2

. (3.35)

Remark. It is clear from the above examples that we can always evaluate K(θ) for any θ ∈ R. This simple
idea provides a check on our calculations, because we now explain why K(θ) = 0 for θ /∈ (a, b). On the
one hand, if θ 6 a then

K(θ) ≡ λ
(
(x− θ)k+

)
= λ

(
(x− θ)k

)
(3.36)

and so K(θ) = 0 because f ∈ Pk[x] ⇒ λ(f) = 0. On the other hand, if θ > b then
(
(x − θ)k+

)
is the zero

function and so (by linearity of λ) K(θ) = 0.

Indeed, we can extend this idea by letting [α, β] ⊂ [a, b] be the smallest subinterval such that λ(f) is
independent of {f(x) : a6x<α} and {f(x) : β<x6b}. By the same reasoning as above, we can conclude
that K(θ) = 0 for θ /∈ (α, β).

3.4.3 Formula for eL(f) when K(θ) does not change sign

In this commonly occurring situation, we obtain two useful extra results.

Theorem 3.15. If K does not change sign in (a, b), then for each f ∈ Ck+1[a, b] we have

|eL(f)| 6
1

k!

∫ b

a

|K(θ)| dθ ‖f (k+1)‖∞ (3.37a)

and

eL(f) =
1

k!

∫ b

a

K(θ) dθ f (k+1)(ξ) . (3.37b)

In (3.37a) the constant is achievable (cf. Definition 3.13) and in (3.37b) the point ξ ∈ (a, b) depends on
f .

Mathematical Tripos: IB Numerical Analysis 28 © G.Moore@maths.cam.ac.uk, Lent 2017

Proof. The first result follows directly from (3.31a) and the constant is achieved by f(x) ≡ xk+1 because
then f (k+1) is constant. The second result is just a form of the integral mean value theorem: i.e. we can
assume (without loss of generality) that K > 0 and so

m

k!

∫ b

a

K(θ) dθ 6 λ(f) 6
M

k!

∫ b

a

K(θ) dθ ,

where
m ≡ min

x∈[a,b]
f (k+1)(x) and M ≡ max

x∈[a,b]
f (k+1)(x) .

Hence

m 6
k!λ(f)

∫ b

a
K(θ) dθ

6 M

and the intermediate value theorem gives the result.

Examples.

(i) We continue the previous example from (3.33) and so K 6 0 on [α, β] with
∫ β

α
K(θ) dθ = − 1

6 (β−α)3.
Hence

|eL(f)! 6 1
12 (β−α)3‖f ′′′‖∞ is achievable (3.38a)

and

eL(f) = − 1
12 (β−α)3f ′′′(ξ) for some ξ ∈ (α, β) . (3.38b)

(ii) We continue the previous example from (3.35) and so K>0 with

∫ 2

0

K(θ) dθ =

∫ 1

0

(
2θ − 3

2θ
2
)
dθ +

∫ 2

1

1
2 (2 − θ)2 dθ = 1

2 + 1
6 = 2

3 .

Consequently

!eL(f)| 6 1
3‖f ′′′‖∞ is achievable (3.39a)

and

eL(f) =
1
3f

′′′(ξ) for some ξ ∈ (0, 2) . (3.39b)

Comment. As an alternative to determining
∫ b

a K(θ) dθ analytically, we can use the fact that (3.31a) is

valid for all f ∈Ck+1[a, b]. Hence, for the particular case f(x)≡ xk+1 (so that f (k+1)(x) = (k+1)!) we
deduce that ∫ b

a

K(θ) dθ =
1

k+1
eL
(
xk+1

)
. (3.40)

Furthermore, since eL(p)=0 ∀p∈Pk[x], (3.40) remains true if xk+1 is replaced by any monic q ∈ Pk+1[x]:
hence we can choose such a q for which the evaluation of eL(q) is straightforward.

3.4.4 Bounds for |eL(f)|

For a finite interval [a, b], the three most important norms for g ∈ C[a, b] are

1-norm: ‖g‖1 =
∫ b

a

|g(x)| dx ; (3.41a)

2-norm: ‖g‖2 =
{∫ b

a

[g(x)]2 dx

}1/2

; (3.41b)

∞-norm: ‖g‖∞ = max
x∈[a,b]

|g(x)| . (3.41c)

Mathematical Tripos: IB Numerical Analysis 29 © G.Moore@maths.cam.ac.uk, Lent 2017

By employing the Cauchy–Schwarz inequality

∣∣∣∣∣

∫ b

a

f(x)g(x) dx

∣∣∣∣∣ 6 ‖f‖2‖g‖2

and ∣∣∣∣∣

∫ b

a

f(x)g(x) dx

∣∣∣∣∣ 6 ‖f‖∞
∫ b

a

|g(x)| dx = ‖f‖∞‖g‖1 ,

which are both valid ∀f, g ∈ C[a, b], we may use (3.31a) to derive the three different bounds

|eL(f)| 6
1

k!
‖K‖2‖f (k+1)‖2 (3.42a)

|eL(f)| 6
1

k!
‖K‖∞

∫ b

a

|f (k+1)(θ)| dθ =
1

k!
‖K‖∞ ‖f (k+1)‖1 (3.42b)

|eL(f)| 6
1

k!

∫ b

a

|K(θ)| dθ ‖f (k+1)‖∞ =
1

k!
‖K‖1 ‖f (k+1)‖∞ . (3.42c)

No sign condition on K was needed to deduce these inequalities. If however K(θ) does not change sign
on [a, b] then the constants in (3.42a) and (3.42c) are achieved by f(x) ≡ xk+1.

Example. Simpson’s rule (see the table on page 22)

L(f) ≡
∫ 1

−1

f(t) dt ≈ 1
3f(−1) + 4

3f(0) +
1
3f(1)

is exact for quadratics (as well as cubics) and so the error formula

eL(f) =

∫ 1

−1

f(t) dt− 1
3f(−1)− 4

3f(0)− 1
3f(1) =

1
2!

∫ 1

−1

K(θ)f ′′′(θ) dθ

is valid for all f ∈ C3[−1, 1]. The Peano kernel

K(θ) = eL((t− θ)2+) =

∫ 1

−1

(t− θ)2+ dx− 1
3 (−1− θ)2+ − 4

3 (0− θ)2+ − 1
3 (1− θ)2+

=

{
1
3 (1− θ)3 − 4

3θ
2− 1

3 (1 − θ)2

1
3 (1− θ)3 − 1

3 (1 − θ)2
=

{
− 1

3 θ (1 + θ)2, θ ∈ [−1, 0]
− 1

3 θ (1− θ)2, θ ∈ [0, 1]

changes sign at θ = 0 and so

‖K‖1 ≡
∫ 2

0

|K(θ)| dθ =

∫ 0

−1

| − 1
3 θ (1 + θ)2| dθ +

∫ 1

0

| − 1
3 θ (1 − θ)2| dθ = 2 · 13

(
1
2 − 2

3 + 1
4

)
= 1

18 ,

gives the error bound
|eL(f)| 6 1

2!
1
18 ‖f ′′′‖∞ = 1

36 ‖f ′′′‖∞
from (3.42c).

Mathematical Tripos: IB Numerical Analysis 30 © G.Moore@maths.cam.ac.uk, Lent 2017

4 Initial Value Ordinary Differential Equations

The aim of this section is to discuss some elementary numerical methods for approximating the exact
solutions of the ordinary differential equation (ODE)

y′(t) = f(t,y(t)), 0 6 t 6 T : (4.1)

here our data is f : R×R
N 7→ R

N and T > 0, and we seek a solution y : [0, T] 7→ R
N . (Later on, in §4.4,

we shall consider some of the difficulties connected with letting T →∞.)

In order to guarantee existence and uniqueness for y in (4.1), we need both a smoothness restriction on
f and to augment (4.1) with suitable side conditions. The assumption we shall make on f is slightly (but
crucially!) stronger than continuity.

Definition 4.1 (Lipschitz continuity). f is continuous on [0, T]× R
N and ∃λ > 0 such that

‖f(t,x)− f(t, x̂)‖ 6 λ‖x− x̂‖ ∀t ∈ [0, T] , ∀x, x̂ ∈ R
N . (4.2)

Any norm on RN can be used in this definition, since only the value of the constant λ would be changed.

The side condition that we add to (4.1) will always be

y(0) = y0 (4.3)

for a given y0 ∈ RN , and this is why the words “initial value” appear in the title of this section. Thus we
know both y(t) and y′(t) at t = 0.

The numerical approximations for (4.1) and (4.3) that we will consider all have the same form: i.e. given
a small time-step h > 0, we will construct

yn ≈ y(tn) n = 1, 2, . . . (4.4)

where tn ≡ nh. Thus we start with the exact solution y0 = y(0) and can continue while n 6 ⌊T/h⌋, the
integral part of T/h. Our hope is that the approximations in (4.4) will become more accurate if we choose
a smaller value for h. For the sake of simplicity, tn− tn−1 will always be held constant in this course. For
the sake of efficiency, tn − tn−1 is always allowed to vary in software packages: hence this will be briefly
discussed in §4.5.

Finally we note that, although (4.2) is a sufficient condition for existence and uniqueness of solutions for
(4.1) plus (4.3), we shall always assume that both f and the exact solution y are as smooth as we like:
i.e. f and y can always be expanded in a Taylor series as desired.

4.1 One-step methods

In principle yn in (4.4) could depend on y0,y1, . . . ,yn−1 and we will consider some such schemes later.
However we start by studying the relatively simple one-step methods.

Definition 4.2 (Explicit one-step methods). This is a map

yn+1 = ϕh(tn,yn) ϕh : R× R
N 7→ R

N : (4.5)

i.e. an algorithm which allows us to compute yn+1 from tn, yn, h and f (through the ODE (4.1)).

Note that, since y0 is known from (4.3), (4.5) allows us to compute y1,y2,

Mathematical Tripos: IB Numerical Analysis 31 © G.Moore@maths.cam.ac.uk, Lent 2017

4.1.1 The Euler method

This is the simplest numerical method for approximating (4.1) and (4.3), and is defined by

yn+1 = yn + hf(tn,yn), n = 0, 1, (4.6)

We can see the basic idea for the case n = 0: the exact solution

y(h) = y(0) + hy′(0) + 1
2h

2y′′(0) + · · ·

is approximated by the truncated Taylor series

y1 = y0 + hf(t0,y0) ,

because y′(0) = f(t0,y0). The same idea is used for n > 1 but, because y1 only approximates y(h), we
must expect {yn} to gradually “drift away” from {y(tn)} as n increases.

We now give a proof of convergence for the Euler method, but first we have to be clear what is meant by
convergence (as h→ 0) of a general numerical method, like (4.5), to the exact solution y(t) of (4.1) and
(4.3).

Definition 4.3 (Convergence). For each h > 0, our numerical method produces yn for n = 0, 1, . . . , ⌊T/h⌋:
the method is said to converge if, as h→ 0 and nh→ t,

yn → y(t) uniformly for t ∈ [0, T].

The key point in this definition is that we have two limiting processes: h→ 0 and n→∞, but constrained
so that nh→ t.

Theorem 4.4 (Convergence of Euler). If en ≡ yn − y(tn) denotes the error for Euler’s method then
∃ c > 0 (independent of h, n and t) such that

‖en‖ 6 ch
eλT − 1

λ
0 6 n 6 ⌊T/h⌋ . (4.7)

Hence Euler’s method converges.

Proof. To derive (4.7), we split the proof into two parts. (This is the correct approach for any numerical
approximation of initial value ordinary differential equations, not just for Euler’s method!)

a) We insert the exact solution into Euler’s method and obtain

y(tn+1) = y(tn) + hf (tn,y(tn)) +Rn ,

where

Rn ≡
∫ tn+1

tn

(tn+1 − θ)y′′(θ) dθ

is the integral remainder term in Taylor series because y′(tn) = f(tn,y(tn)). Hence

‖Rn‖∞ 6 ch2 with c ≡ 1
2‖y

′′‖∞ ,

where
‖y′′‖∞ ≡ max

t∈[0,T]
‖y′′(t)‖∞ .

b) Now we construct a formula for en+1 in terms of en, i.e.

en+1 ≡ yn+1 − y(tn+1)

= {yn + hf(tn,yn)} − {y(tn) + hf(tn,y(tn) +Rn} .

Mathematical Tripos: IB Numerical Analysis 32 © G.Moore@maths.cam.ac.uk, Lent 2017

raoxj
Highlight
Need the fact that y is u. continuous.

Hence, using the Lipschitz condition on f ,

‖en+1‖∞ 6 (1 + hλ)‖en‖∞ + ch2 n = 0, . . . , ⌊T/h⌋ − 1

and so, since e0 = 0,

‖en‖∞ 6 ch2
n−1∑

j=0

(1 + hλ)j =
ch

λ
{(1 + hλ)n − 1} n = 0, . . . , ⌊T/h⌋ .

Finally, we use the bound

1 + hλ 6 eλh ⇒ (1 + hλ)n 6 eλhn 6 eλT

to obtain

‖en‖∞ 6 ch
eλT − 1

λ
n = 0, . . . , ⌊T/h⌋ .

The final part of the theorem relies on the uniform continuity of the exact solution y on [0, T]: i.e. given
ǫ > 0, ∃ δ > 0 such that for any s, t ∈ [0, T]

|s− t| < δ ⇒ ‖y(s)− y(t)‖∞ < ǫ .

Hence the triangle inequality

‖yn − y(t)‖∞ 6 ‖en‖∞ + ‖y(t)− y(tn)‖∞
means that the limit

lim
h→0
nh→t

‖yn − y(t)‖∞ = 0 (4.8)

is uniform for t ∈ [0, T].

We make two remarks about this proof.

• We have used the ∞-norm on RN , but any other vector norm is possible.

• We have tacitly assumed λ > 0: since λ = 0 corresponds to the relatively trivial case when f is
independent of y. It is easy to work through the proof in this special case and end up with

‖en‖∞ 6 chT n = 0, . . . , ⌊T/h⌋ .
This links up with

lim
λ→0

eλT − 1

λ
= T .

We can use the above convergence proof for Euler’s method to illustrate two important pieces of termi-
nology which apply to all numerical methods for initial value ordinary differential equations.

(i) The local truncation error (l.t.e.) for a general multistep method (see §4.2)

yn+1 = ϕh(tn,y0,y1, . . . ,yn) (4.9a)

is obtained by inserting the exact solution y(t) into the numerical method; thus obtaining

ηn+1 ≡ y(tn+1)−ϕh(tn,y(t0),y(t1), . . . ,y(tn)) . (4.9b)

This is the same as the specific notation Rn used in the convergence proof for Euler’s method and
denotes the inexactness of our numerical method over the single time-step [tn, tn+1].

(ii) The order of a numerical method is the largest integer p > 1 such that

ηn+1 ≡ y(tn+1)−ϕh(tn,y(t0),y(t1), . . . ,y(tn)) = O
(
hp+1

)
: (4.10)

here h > 0 and tn+1 ∈ [0, T], but f in (4.1) is assumed to be as smooth as desired. Thus we see
that Euler’s method has order 1 and the convergence proof shows that our uniform global error is
‖en‖∞ = O(h). In general, the uniform global error of a numerical method differs by one power of
h from the local truncation error for that method. Later we shall see that, unless p > 1, a ‘method’
is an unsuitable approximation for (4.1): in particular, p > 1 is necessary for convergence (see
Theorem 4.10).

Mathematical Tripos: IB Numerical Analysis 33 © G.Moore@maths.cam.ac.uk, Lent 2017

raoxj
Sticky Note

4.1.2 Theta methods

These are the next simplest one-step methods beyond Euler’s method.

Definition 4.5 (Theta methods). For fixed θ ∈ [0, 1], a theta method is defined by

yn+1 = yn + h
{
θf (tn,yn) + (1− θ)f (tn+1,yn+1)

}
n = 0, 1, (4.11)

For θ = 1, we just recover Euler’s method. The two other most important choices are θ = 0 and θ = 1
2 ,

which are known respectively as

Backward Euler: yn+1 = yn + hf(tn+1,yn+1) , (4.12a)

Trapezoidal rule: yn+1 = yn + 1
2h[f(tn,yn) + f(tn+1,yn+1)] . (4.12b)

For θ ∈ [0, 1) the most important fact about (4.11) is that these methods are implicit : i.e. the unknown
vector yn+1 appears on the right-hand side and so we should replace (4.5) with

yn+1 = ϕh(tn,yn,yn+1) . (4.13)

Thus, in contrast to Euler’s method, we now need to solve a (in general, nonlinear) algebraic system of
N equations in order to determine yn+1. This requires an iterative method and we illustrate the three

most common choices; in each case starting the iteration with y
[0]
n+1 ≡ yn.

Direct iteration: y
[j+1]
n+1 = ϕh(tn,yn,y

[j]
n+1) ;

Newton: y
[j+1]
n+1 = y

[j]
n+1 −

[
I −∇ϕh(tn,yn,y

[j]
n+1)

]−1 {
y
[j]
n+1 −ϕh(tn,yn,y

[j]
n+1)

}
;

Modified Newton: y
[j+1]
n+1 = y

[j]
n+1 −

[
I −∇ϕh(tn,yn,y

[0]
n+1)

]−1 {
y
[j]
n+1 −ϕh(tn,yn,y

[j]
n+1)

}
.

(Here ∇ϕh denotes the N×N Jacobian matrix of ϕh with respect to the argument yn+1.) We will return
to this topic later (in §4.5.5), but emphasise here that the advantages of implicit methods (including
higher order) often outweigh the extra work involved.

Finally, we show how a simple Taylor series expansion about t = tn enables us to determine the order of
theta methods: i.e. (4.10) and (4.11) give

ηn+1 = y(tn+1)− y(tn)− h {θy′(tn) + [1− θ]y′(tn+1)}
= [θ − 1

2]h
2y′′(tn) + [12θ − 1

3]h
3y′′′(tn) +O

(
h4
)
. (4.14)

Thus theta methods are in general of order 1, except that the trapezoidal rule (θ = 1
2) is of order 2. In

Figures 4.2 and 4.3, we see how accuracy can be improved by decreasing h and/or increasing order.

0 2 4 6 8 10
-14

-12

-10

-8

-6

-4

-2

time

ln
 |e

rr
or

|

Euler’s method

h=.5

h=.1

h=.02

0 2 4 6 8 10
-18

-16

-14

-12

-10

-8

-6

-4

time

ln
 |e

rr
or

|

Trapezoidal rule

h=.5

h=.1

h=.02

Figure 4.2: Error between the numerical solution and the exact solution of the equation y′ = −y, y(0) = 1
for both Euler’s method (first order) and the trapezoidal method (second order).

Mathematical Tripos: IB Numerical Analysis 34 © G.Moore@maths.cam.ac.uk, Lent 2017

0 2 4 6 8 10
-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

time

ln
 |e

rr
or

|

Euler’s method

h=.5

h=.1

h=.02

0 2 4 6 8 10

-20

-15

-10

-5

time

ln
 |e

rr
or

|

Trapezoidal rule

h=.5

h=.1

h=.02

Figure 4.3: Error between the numerical solution and the exact solution of the equation y′ = −y+2e−t cos 2t,
y(0) = 0 for both Euler’s method (first order) and the trapezoidal method (second order).

4.2 Multistep methods

One-step methods just use the previously computed approximate solution yn ≈ y(tn) in order to calculate
the next approximate solution yn+1 ≈ y(tn+1): in contrast multistep methods aim for higher accuracy
(i.e. higher order) by making use of extra past solution approximations, e.g. yn−1 ≈ y(tn−1). An example
of a 2-step method (as we shall see in §4.2.3) is the Adams–Bashforth4 method

yn+2 = yn+1 +
1
2h
{
3f(tn+1,yn+1)− f (tn,yn)

}
. (4.15)

Note that it is standard notation for the next approximate solution to be yn+2 ≈ y(tn+2), while the two
previously computed solution approximations are yn+1 ≈ y(tn+1) and yn ≈ y(tn). (We shall use (4.15)
repeatedly as a simple example of a multistep method.) More generally, we can consider s-step methods.

Definition 4.6 (Multistep methods). Assuming that yn,yn+1, . . . ,yn+s−1 are available, where s > 1, we
say that

s∑

ℓ=0

ρℓyn+ℓ = h

s∑

ℓ=0

σℓf (tn+ℓ,yn+ℓ), n = 0, 1, . . . , (4.16)

where ρs ≡ 1, is an s-step method. If σs = 0, the method is explicit, otherwise it is implicit.

Since we can multiply through (4.16) by an arbitrary non-zero constant, the insistence on ρs ≡ 1 is just
the traditional scaling for multistep methods. Note that our example (4.15) is an explicit method.

Remark. An important practical point is that, if s > 2, we cannot start using an s-step method until
we obtain extra starting values y1, . . . ,ys−1 in some way. One possibility is to use the higher-order
one-step methods in §4.3.

Finally, we emphasise that proving convergence for multistep methods (as we shall see in section §4.2.2)
is more complicated than for one-step methods.

4.2.1 The order of a multistep method

When choosing the coefficients {ρℓ}s−1
ℓ=0 and {σℓ}sℓ=0 in the general s-step method (4.16), ones first thought

is to make the order as high as possible. As described in (4.10), the order of a multistep method is
determined by inserting the exact solution y(t) into it.

Theorem 4.7. The multistep method (4.16) is of order p > 1 if and only if 5

s∑

ℓ=0

ρℓ = 0 and

s∑

ℓ=0

ρℓℓ
k = k

s∑

ℓ=0

σℓℓ
k−1 for k = 1, . . . , p. (4.17)

4 Adams, as in Adams Road.
5 With the standard convention that 00 = 1.

Mathematical Tripos: IB Numerical Analysis 35 © G.Moore@maths.cam.ac.uk, Lent 2017

Proof. Substituting the exact solution and expanding in Taylor series about tn, we obtain

s∑

ℓ=0

ρℓy(tn+ℓ)− h

s∑

ℓ=0

σℓy
′(tn+ℓ) =

s∑

ℓ=0

ρℓ

∞∑

k=0

(ℓh)k

k!
y(k)(tn)− h

s∑

ℓ=0

σℓ

∞∑

k=1

(ℓh)k−1

(k − 1)!
y(k)(tn)

=

(
s∑

ℓ=0

ρℓ

)
y(tn) +

∞∑

k=1

hk

k!

(
s∑

ℓ=0

ρℓℓ
k − k

s∑

ℓ=0

σℓℓ
k−1

)
y(k)(tn) .

Thus, to obtain a local truncation error of order O
(
hp+1

)
regardless of the choice of y, it is necessary

and sufficient that the coefficients of hk vanish for k 6 p, i.e. that (4.17) is satisfied.

Remarks.

(i) Since the Taylor series expansion of polynomials of degree p contains only terms of O
(
hk
)
with

k 6 p, the multistep method (4.16) is of order p iff

s∑

ℓ=0

ρℓ Q(tn+ℓ) = h
s∑

ℓ=0

σℓQ
′(tn+ℓ) , ∀ Q ∈ Pp[x] . (4.18)

In particular taking Q(x) = xk for k = 0, . . . , p, tn+ℓ = ℓ and h = 1, we obtain (4.17).

(ii) If the desire is to have a order p method, then (4.17) might be viewed as p + 1 equations for the
2s+ 1 variables ρℓ (ℓ = 0, . . . , s− 1) and σℓ (ℓ = 0, . . . , s). A key question is how to choose the ρℓ
and σℓ (given that if 2s > p there is some wriggle room).

Example: the 2-step Adams–Bashforth method. The coefficients for (4.15) are ρ0 = 0, ρ1 = −1, ρ2 = 1,
σ0 = − 1

2 , σ1 = 3
2 , σ2 = 0. Hence (4.17) gives

2∑

ℓ=0

ρℓ = 0− 1 + 1 = 0 ,

2∑

ℓ=0

ρℓℓ−
2∑

ℓ=0

σℓℓ
0 = (0− 1 + 2)−

(
− 1

2 + 3
2 + 0

)
= 0 ,

2∑

ℓ=0

ρℓℓ
2 − 2

2∑

ℓ=0

σℓℓ =
(
0− 1 + 22

)
− 2

(
0 + 3

2 + 0
)
= 0 ,

2∑

ℓ=0

ρℓℓ
3 − 3

2∑

ℓ=0

σℓℓ
2 =

(
0− 1 + 23

)
− 3

(
0 + 3

2 + 0
)
= 5

2 6= 0 .

and the 2-step Adams–Bashforth method is of order 2.

The conditions (4.17) are algebraic: equivalent analytic conditions for order can be defined in terms of
the two polynomials

ρ(w) ≡
s∑

ℓ=0

ρℓw
ℓ and σ(w) ≡

s∑

ℓ=0

σℓw
ℓ . (4.19)

Note that these polynomials just depend on the coefficients of our general s-step method (4.16).

Theorem 4.8. The multistep method (4.16) is of order p > 1 iff

ρ(ez)− zσ(ez) = O
(
zp+1

)
as z → 0. (4.20)

Mathematical Tripos: IB Numerical Analysis 36 © G.Moore@maths.cam.ac.uk, Lent 2017

Proof. Expanding in Taylor series about z = 0 gives

ρ(ez)− zσ(ez) ≡
s∑

ℓ=0

ρℓe
ℓz − z

s∑

ℓ=0

σℓe
ℓz

=

s∑

ℓ=0

ρℓ

(∞∑

k=0

1

k!
ℓkzk

)
− z

s∑

ℓ=0

σℓ

(∞∑

k=0

1

k!
ℓkzk

)

=

∞∑

k=0

1

k!

(
s∑

ℓ=0

ℓkρℓ

)
zk −

∞∑

k=1

1

(k − 1)!

(
s∑

ℓ=0

ℓk−1σℓ

)
zk

=

(
s∑

ℓ=0

ρℓ

)
+

∞∑

k=1

1

k!

(
s∑

ℓ=0

ℓkρℓ − k

s∑

ℓ=0

ℓk−1σℓ

)
zk.

The theorem then follows from (4.17).

Note that our order conditions include ρ(1) = 0 and so the polynomial ρ(w) must have a root at w = 1.

Remarks

(i) The reason that (4.20) is equivalent to (4.17) (and their proofs are almost identical) is because of
the relation between Taylor series and the exponent ehD, where D is the differentiation operator.
Namely

f(x+ h) = (I + hD + 1
2h

2D2 + . . .)f (x) = ehDf (x) . (4.21)

(ii) By using the change of variable w = ez, an equivalent statement of the theorem is that the multistep
method (4.16) is of order p > 1 iff

ρ(w)− log(w)σ(w) = O
(
|w − 1|p+1

)
, as w→ 1. (4.22)

Example: the 2-step Adams–Bashforth method. The polynomials for (4.15) are

ρ(w) ≡ w2 − w and σ(w) ≡ 3
2w − 1

2 (4.23a)

and hence

ρ(ez)− zσ(ez) =
[
1 + 2z + 2z2 + 4

3z
3
]
−
[
1 + z + 1

2z
2 + 1

6z
3
]
− 3

2z
[
1 + z + 1

2z
2
]
+ 1

2z +O
(
z4
)

= 5
12z

3 +O
(
z4
)
. (4.23b)

As before, we conclude that the 2-step Adams–Bashforth method is of order 2.

4.2.2 The convergence of multistep methods

Proving convergence for multistep methods is more complicated than for one-step methods and we shall
only state the required conditions in Theorem 4.10 below. It is however possible to illustrate the problem
with a very simple example.

Example: absence of convergence. The explicit 2-step method

yn+2 + 4yn+1 − 5yn = h
{
4f(tn+1,yn+1) + 2f(tn,yn)

}
(4.24)

has order 3; as may be verified by using the two polynomials

ρ(w) ≡ w2 + 4w − 5 and σ(w) ≡ 4w + 2 .

If we apply this method to the trivial scalar initial value ODE

y′(t) = 0 y(0) = 1 , (4.25)

Mathematical Tripos: IB Numerical Analysis 37 © G.Moore@maths.cam.ac.uk, Lent 2017

which of course has exact solution y(t) = 1, we obtain the second-order difference equation

yn+2 + 4yn+1 − 5yn = 0 n > 0 .

Since the roots of the polynomial ρ are 1 and −5, the general solution of this difference equation is

yn = c1(1)
n + c2(−5)n for n = 0, 1, . . . ,

where c1, c2 are arbitrary constants. Our initial condition y0 = 1 will force these constants to satisfy
c1 + c2 = 1, but the second equation for c1 & c2 (which is y1 = c1 − 5c2) depends on the value of
y1 used to start (4.24). (See the remark after Definition 4.6.) In general we cannot expect y1 to be
exact (i.e. y1 = 1), but merely satisfy y1 = 1+O(hp) for some p > 1: hence c2 will not be zero, but
will depend on h and merely satisfy limh→0 c2(h) = 0. Because our second root of ρ is greater than
1 in modulus, this is insufficient for our numerical method to converge: e.g. we do not satisfy

lim
h→0
nh→t

yn = 1 .

Exercise (with a large amount of algebra). Consider the ODE y′(t) = −y(t), y(0) = 1, which has
the exact solution y(t) = e−t. Show that if y1 = e−h, the sequence {yn}∞n=0 grows like h

4(−5)n.

The extra condition that a multistep method must satisfy in order to be convergent is contained in the
following definition. If a multistep method does not satisfy this condition then, no matter how high its
order, it is not usable.

Definition 4.9 (root condition). A multistep method satisfies the root condition if all the zeros of its
polynomial ρ(w) lie in the unit disc |w| 6 1 and any zeros of unit modulus are simple. (Sometimes one
just says that ρ satisfies the root condition.)

In section 4.2.1 we saw that a multistep method of order p > 1 must have its polynomial satisfy ρ(1) = 0.
The other roots of ρ have nothing to do with the solution of our initial value ODE and Definition 4.9
ensures that they do not “swamp” it.

Now we can state the most famous theorem on the convergence of multistep methods.

Theorem 4.10 (The Dahlquist equivalence theorem). The multistep method (4.16) is convergent iff it
is of order p > 1 and the polynomial ρ obeys the root condition.

Proof. See Part III.

Definition. If ρ obeys the root condition, the multistep method (4.16) is sometimes said to be zero-stable:
we will not use this terminology.

Examples. For the Adams–Bashforth method (4.15) we have ρ(w) ≡ (w − 1)w and the root condition is
obeyed. However, for (4.24) we obtain ρ(w) ≡ (w− 1)(w+5), the root condition fails and it follows
that there is no convergence.

4.2.3 Adams and BDF methods

A sensible strategy for constructing convergent multistep methods is to first satisfy the root condition in
Definition 4.9 and secondly to maximise the order. For example, if we aim to construct an s-step implicit
method then:-

• choose the polynomial ρ so that ρ(1) = 0 and the root condition holds;

• choose the polynomial σ so that

σ(w) =
ρ(w)

logw
+O

(
|w − 1|s+1

)
. (4.26a)

Mathematical Tripos: IB Numerical Analysis 38 © G.Moore@maths.cam.ac.uk, Lent 2017

raoxj
Sticky Note

raoxj
Sticky Note
simple?

Since an implicit method gives us s + 1 free coefficients in σ, (4.26a) can be satisfied by expanding in a
Taylor series about w = 1. (Note that the simple root of logw at w = 1 is no problem, since ρ(1) = 0.)
If we change variable with w = ez then (4.26a) becomes

ρ(ez)− zσ(ez) = O
(
zs+2

)
(4.26b)

and we see from (4.20) that we have constructed an s-step method of order at least s+ 1.

If our aim is to construct an s-step explicit method then (because σs = 0) we only have s free coefficients
in σ. Hence we can only expect to construct an s-step explicit method of order s.

The most popular class of multistep methods that utilise the above strategy are Adams methods, which
choose ρ(w) ≡ ws−1(w − 1). Thus ρ has a simple root at 1 (as required) but all its other roots are zero.
(One could therefore argue that Adams methods “best” satisfy the root condition!) Thus Adams methods
have the form

yn+s − yn+s−1 = h

s∑

ℓ=0

σℓf (tn+ℓ,yn+ℓ), n = 0, 1, . . . : (4.27)

they are called Adams–Bashforth if explicit and Adams–Moulton if implicit.

Example. The 2-step, 3rd-order Adams–Moulton method

yn+2 − yn+1 = h
{
− 1

12f(tn,yn) +
2
3f(tn+1,yn+1) +

5
12f(tn+2,yn+2)

}

is derived from

w(w − 1)

logw
=

ξ + ξ2

log(1 + ξ)
=

ξ + ξ2

ξ − 1
2ξ

2 + 1
3 ξ

3 − · · · =
1 + ξ

1− 1
2ξ +

1
3ξ

2 − · · ·
= (1 + ξ)[1 + (12 ξ − 1

3ξ
2) + (12ξ − 1

3ξ
2)2 +O

(
ξ3
)
] = 1 + 3

2ξ +
5
12ξ

2 +O
(
ξ3
)

= 1 + 3
2 (w − 1) + 5

12 (w − 1)2 +O
(
|w − 1|3

)

= − 1
12 + 2

3w + 5
12w

2 +O
(
|w − 1|3

)
,

where ξ ≡ w − 1. Thus the coefficients of σ(w) are calculated from the Taylor series expansion of
w(w − 1)/log(w) about w = 1.

Note that we have already shown that (4.15) is a 2-step Adams–Bashforth method of order 2.

0 2 4 6 8 10
-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

time

lo
g|

er
ro

r|

2-step Adams-Bashforth

h=.5
h=.1

h=.02

h=.004

0 2 4 6 8 10
-30

-25

-20

-15

-10

-5

0

time

lo
g|

er
ro

r|

2-step Adams-Moulton

h=.5

h=.1

h=.02
h=.004

Figure 4.4: Error between the numerical solution and the exact solution of the equation y′ = −y, y(0) = 1
for both the 2-step Adams–Bashforth method (second order) and the 2-step Adams–Moulton method (third
order).

Another popular class of implicit multistep methods is based on a different philosophy to Adams methods.
Instead of insisting that the polynomial ρ has a simple form, they choose an s-step method with σ(w) ≡

Mathematical Tripos: IB Numerical Analysis 39 © G.Moore@maths.cam.ac.uk, Lent 2017

0 2 4 6 8 10 12 14
0

0.5

1

1.5

2

2.5

time

th
e

nu
m

er
ic

al
 s

ol
ut

io
n

Absence of convergence

h=.025

h=.05

h=.1

Figure 4.5: The numerical solution to the equation is y′ = −y, y(0) = 1 using the 2-step method with
ρ(w) = w2 − 2.01w + 1.01, σ(w) = 0.995w− 1.005. Thus, ρ has a zero at 1.01, the method is not convergent,
and the smaller h the worse the solution.

5 6 7 8 9 10
-6

-5

-4

-3

-2

-1

0

1

time

lo
g|

er
ro

r|

Increase in the error near singularity

h=.01

c=12

c=15

c=18

c=21

Figure 4.6: Plot showing that accuracy may deteriorate near a singularity. Plotted is the error to the
solution of y′ = 2y/t+(y/t)2, y(1) = 1/(c− 1) using the 2-step Adams–Bashforth method, for various values
of c. The exact solution is y(t) = t2/(c− t), with singularity at c. Accuracy worsens the nearer we are to the
singularity.

Mathematical Tripos: IB Numerical Analysis 40 © G.Moore@maths.cam.ac.uk, Lent 2017

σsw
s for some σs 6= 0 (see section §4.4.2 for the justification). These are called backward differentiation

(BDF) methods and take the form

s∑

ℓ=0

ρℓyn+ℓ = hσsf(tn+s,yn+s), n = 0, 1, (4.28)

The coefficients of ρ are now chosen to maximise the order and the very simplest example of a BDF
method occurs when s = 1: i.e. we then obtain the one-step backward Euler method of Definition 4.11.

Lemma 4.11. An s-step BDF method of order s is obtained by choosing

ρ(w) ≡ σs

s∑

ℓ=1

1

ℓ
ws−ℓ(w − 1)ℓ, with σs =

(
s∑

ℓ=1

1

ℓ

)−1

. (4.29)

This value of σs being necessary to force the standard scaling ρs ≡ 1 of Definition 4.6.

Proof. Using (4.22), we need to construct ρ so that

ρ(w) = σsw
s logw +O

(
|w − 1|s+1

)
. (4.30)

This easy if we write

logw = − log

(
1

w

)
= − log

(
1− w − 1

w

)
=

∞∑

ℓ=1

1

ℓ

(
w − 1

w

)ℓ

,

because then we see that choosing ρ as in (4.29) means that (4.30) is satisfied.

Examples

(i) Let s = 2. Then substitution in (4.29) yields σ2 = 2
3 , and some straightforward algebra results in

ρ(w) = w2 − 4
3w + 1

3 = (w − 1)(w − 1
3). Hence ρ satisfies the root condition, and the 2-step BDF is

yn+2 − 4
3yn+1 +

1
3yn = 2

3hf(tn+2,yn+2) . (4.31a)

(ii) Similarly for s = 3 we find that ρ satisfies the root condition, and that the 3-step BDF is

yn+3 − 18
11yn+2 +

9
11yn+1 − 2

11yn = 6
11hf(tn+3,yn+3) . (4.31b)

Convergence of BDF methods. There is no guarantee that BDF methods satisfy the root condition and
hence no guarantee that BDF methods converge. For s 6 6, it can be verified that the root condition
actually does hold. BDF methods with larger s should not be used!

4.3 Runge–Kutta methods

These are sophisticated one-step methods: capable of much higher accuracy than the one-step methods of
§4.1, but also much more complicated to derive and work with. In the pre-computer and early computer
days (1960’s), these methods were almost completely ignored; because multistep methods were much
easier to use in practice. Nowerdays they are very popular and the optimal order implicit Runge–Kutta
methods have very strong theoretical properties.

4.3.1 Quadrature formulae

As motivation for the structure of Runge–Kutta methods, we recall the quadrature formulae of §3.2; i.e.

∫ 1

0

f(t)dt ≈ h

ν∑

ℓ=1

bℓf(cℓ) , (4.32)

where the nodes {cℓ}νℓ=1 and the weights {bℓ}νℓ=1 are chosen so that (4.32) is exact for polynomials of a
certain degree. In particular, we restate the following two results from §3.2.

Mathematical Tripos: IB Numerical Analysis 41 © G.Moore@maths.cam.ac.uk, Lent 2017

• For any set of distinct nodes, we can choose weights so that (4.32) is exact for f ∈ Pν−1[x].

• If the nodes are chosen to be the zeros of the Legendre polynomial Pν (transformed from [−1, 1]
to [0, 1] by the linear mapping (1.22)), then we can choose the weights so that (4.32) is exact for
f ∈ P2ν−1[x].

These results can be immediately applied to the “trivial” initial value ODE

y′(t) = f(t) , y(0) = y0 (4.33a)

(i.e. f has no dependence on y) because integrating (4.33a) over a single time step gives

y(tn+1) = y(tn) +

∫ tn+1

tn

f(t)dt . (4.33b)

Hence we can use the quadrature formula (4.32) (transformed from [0, 1] to [tn, tn+1]) to generate the
one-step method

yn+1 = yn + h

ν∑

ℓ=1

bℓf(tn + cℓh) n = 0, 1, (4.33c)

This would be an example of a ν-stage Runge–Kutta method. Note that, in order for (4.32) to be exact
when f is a constant, we must have

∑ν
ℓ=1 bℓ = 1.

This is all well and good, but how do we extend the idea from the special case (4.33a) to the general
ODE (4.1)? Integrating (4.1) over a single time step gives

y(tn+1) = y(tn) +

∫ tn+1

tn

f(t,y(t))dt (4.34a)

and, after applying the quadrature formula (4.32), we arrive at the “one-step method”

yn+1 = yn + h

ν∑

ℓ=1

bℓf (tn + cℓh,y(tn + cℓh)) . (4.34b)

But we certainly don’t know the exact values {y(tn + cℓh)}νℓ=1, so in some way we have to approxi-
mate these values and/or {f(tn + cℓh,y(tn + cℓh)}νℓ=1. In the next section, we explain the Runge–Kutta
philosophy behind making these approximations.

4.3.2 General Runge–Kutta methods

ν-stage Runge–Kutta methods for (4.1) over [tn, tn+1], i.e. for approximating (4.34b), have the general
form

yn+1 = yn + h

ν∑

ℓ=1

bℓkℓ , (4.35a)

where

kℓ = f


tn + cℓh,yn + h

ν∑

j=1

aℓ,jkj


 ℓ = 1, 2, . . . , ν . (4.35b)

To explain what is going on here, we list the following points.

a) Different Runge–Kutta methods are obtained by different choices for the real parameters {bℓ}νℓ=1,
{cℓ}νℓ=1 and {aℓ,j}νℓ,j=1. Thus we need the extra parameters {aℓ,j}νℓ,j=1 in order to approximate the
general ODE (4.1) rather than just the special case (4.33a).

Mathematical Tripos: IB Numerical Analysis 42 © G.Moore@maths.cam.ac.uk, Lent 2017

b) {kℓ}νℓ=1 ⊂ RN have to be computed from (4.35b). We can think of {kℓ}νℓ=1 approximating {f(tn +
cℓh,y(tn + cℓh)}νℓ=1 in (4.35a), as well as the approximations

yn + h

ν∑

j=1

aℓ,jkj ≈ y(tn + cℓh) ℓ = 1, . . . , ν

in (4.35b).

c) In general we are describing implicit Runge–Kutta methods, because (4.35b) are a set of nonlinear
algebraic equations that need to be solved for {kℓ}νℓ=1 simultaneously. If, however, we restrict our
choice of parameters so that

1 6 ℓ 6 j 6 ν ⇒ aℓ,j = 0 , (4.36)

then these Runge–Kutta methods are explicit because (4.35b) just gives formulae for {kℓ}νℓ=1 one-by-
one. (No solution of algebraic equations is necessary!)

d) The accuracy of any Runge–Kutta method depends on its order and this is determined as in (4.10):
i.e. we insert the exact solution y(t) of our initial value ODE into (4.35a) and (4.35b). Thus our local
truncation error is

ηn+1 ≡ y(tn+1)− y(tn)− h

ν∑

ℓ=1

bℓkℓ , (4.37a)

where

kℓ = f


tn + cℓh,y(tn) + h

ν∑

j=1

aℓ,jkj


 ℓ = 1, 2, . . . , ν , (4.37b)

and if ηn+1 = O
(
hp+1

)
then the order is p. Because the parameters for Runge–Kutta methods (unlike

the parameters for multistep methods) appear inside f , the Taylor series expansions required to
determine order rapidly become unmanageable. (Nowerdays symbolic algebra packages do this job!)

The two simplest order conditions on parameter choice are

ν∑

ℓ=1

bℓ = 1 and cℓ =

ν∑

j=1

aℓ,j ℓ = 1, . . . , ν .

The optimal choice of parameters can achieve order 2ν and we show how this can be done in §4.3.4:
of course this is an implicit method and can be regarded as the ODE equivalent of Gauss quadrature
in §3.2.1.

e) Because Runge–Kutta methods are one-step methods, the only criterion for convergence is order p > 1.
There is no extra restriction, like the root condition for multistep methods.

The standard notation used to describe Runge–Kutta methods is the Butcher table:-

c A

bT
=

c1 a1,1 a1,2 · · · a1,ν
c2 a2,1 a2,2 · · · a2,ν
...

...
...

. . .
...

cν aν,1 aν,2 · · · aν,ν
b1 b2 · · · bν

, (4.38)

where b, c ∈ Rν and A ∈ Rν×ν . Note that an explicit RK method corresponds to the case when aℓ,j = 0
for ℓ 6 j, i.e. the matrix A is strictly lower triangular.

4.3.3 Examples of Runge–Kutta methods

1) We first show how the parameters in a 2-stage explicit RK method can be chosen to maximise order.
Thus we have three free parameters and our method is

yn+1 = yn + h {b1k1 + b2k2} , (4.39a)

Mathematical Tripos: IB Numerical Analysis 43 © G.Moore@maths.cam.ac.uk, Lent 2017

where

k1 = f (tn,yn) (4.39b)

k2 = f (tn + c2h,yn + c2hk1) . (4.39c)

(Note that we have already introduced the order condition a21 = c2.) Inserting the exact solution
y(tn) into (4.39b) and (4.39c) gives

k1 = y′(tn)

and

k2 = f(tn + c2h,y(tn) + c2hy
′(tn))

= f(tn,y(tn)) + c2h

{
∂f

∂t
(tn,y(tn)) +∇f (tn,y(tn))y

′(tn)

}
+O

(
h2
)

= y′(tn) + c2hy
′′(tn) +O

(
h2
)
.

Hence inserting these results back into (4.39a) shows that our local truncation error is

ηn+1 ≡ y(tn+1)− y(tn)− h {b1k1 + b2k2)}
= [1− b1 − b2]hy

′(tn) +
[
1
2 − b2c2

]
h2y′′(tn) +O

(
h3
)
. (4.40)

Thus we have a 1-parameter family of order 2 methods under the conditions

b1 + b2 = 1 and b2c2 =
1

2
.

(That no explicit 2-stage RK method can be of third order or greater can be demonstrated by applying
it to the scalar ODE y′ = λy.) A popular choice is b1 = 0, b2 = 1 and c2 = 1

2 (e.g. see Figure 4.7).

2) The most famous explicit RK method is the 4-stage order 4 method

yn+1 = yn + h
6 {k1 + 2k2 + 2k3 + k4} ,

where

k1 = f(tn,yn)

k2 = f(tn + 1
2h,yn + 1

2hk1)

k3 = f(tn + 1
2h,yn + 1

2hk2)

k4 = f(tn + h,yn + hk3) .

Its Butcher table is
0
1
2

1
2

1
2 0 1

2
1 0 0 1

1
6

1
3

1
3

1
6

.

3) Consider the 2-stage method implicit method

yn+1 = yn + 1
4h {k1 + 3k2} , (4.41a)

where

k1 = f
(
tn,yn + 1

4h[k1 − k2]
)

(4.41b)

k2 = f
(
tn + 2

3h,yn + 1
12h[3k1 + 5k2]

)
. (4.41c)

In order to analyse the order of this method, we restrict our attention to scalar, autonomous equations
of the form y′ = f(y) (although this procedure might lead to loss of generality for methods of order

Mathematical Tripos: IB Numerical Analysis 44 © G.Moore@maths.cam.ac.uk, Lent 2017

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1
False asymptotic behaviour

h = 0.19

Correct

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

h = 0.25

False

Figure 4.7: Solutions to the equation y′ = αy(1− y) using the 2nd order RK method

k1 = f(yn) , k2 = f
(

yn + 1

2
hk1

)

, yn+1 = yn + hk2 (i.e. b1 = 0, b2 = 1 and c2 = 1

2
).

For every α > 0 and every y0 > 0 it is straightforward to verify that limt→∞ y(t) = 1. However, an unwise
choice of h in the RK method can produce trajectories that tend to wrong limits. Here α = 10 and it can be
seen that quite small ‘excess’ in the value of h can be disastrous: h = 0.19 is good, whilst h = 0.25 is bad. An
important aspect of this example is that, although the second graph displays a wrong solution trajectory, it
looks ‘right’ – there are no apparent instabilities, no chaotic components, no oscillation on a grid scale, no
tell-tale signs that something has gone astray. Thus – and this is lost on many users of numerical methods –
it is not enough to use your eyes. Use your brain as well!

greater than or equal to 5). For brevity, we use the convention that all functions are evaluated at
y = y(tn), e.g. fy = df

dy (y(tn)). Thus,

k1 = f + 1
4h(k1 − k2)fy +

1
32h

2(k1 − k2)
2fyy +O

(
h3
)
,

k2 = f + 1
12h(3k1 + 5k2)fy +

1
288h

2(3k1 + 5k2)
2fyy +O

(
h3
)
.

Hence k1, k2 = f +O(h), and so substitution in the above equations yields

k1 = f +O
(
h2
)

and k2 = f + 2
3hffy +O

(
h2
)
.

Substituting again, we obtain

k1 = f − 1
6h

2ff2
y +O

(
h3
)
,

k2 = f + 2
3hffy + h2

(
5
18ff

2
y + 2

9f
2fyy

)
+O

(
h3
)

and hence

yn+1 = y + hf + 1
2h

2ffy +
1
6h

3(ff2
y + f2fyy) +O

(
h4
)
.

But y′ = f , and hence
y′′ = ffy and y′′′ = ff2

y + f2fyy .

We deduce from Taylor’s theorem that the method is at least of order 3.

Mathematical Tripos: IB Numerical Analysis 45 © G.Moore@maths.cam.ac.uk, Lent 2017

Remark. It is possible to verify that it is not of order 4, for example applying it to the equation
y′ = λy.

Remark. A better way of deriving the order of Runge–Kutta methods is based on graph-theoretic
approaches.

4) The optimal 2-stage order 4 implicit RK method has Butcher table

1
6

(
3−
√
3
)

1
4

1
12

(
3− 2

√
3
)

1
6

(
3 +
√
3
)

1
12

(
3 + 2

√
3
)

1
4

1
2

1
2

(4.42)

In the next section, we shall see how these parameters can be obtained.

4.3.4 Implicit Runge–Kutta methods (Unlectured)

In this section we explain (without proof) how the parameters in implicit ν-stage RK methods can be
chosen to achieve high order. It is only necessary to consider the scalar ODE

y′(t) = f(t, y(t)) (4.43)

over the single time step [tn, tn+1].

For any choice of distinct points {ci}νi=1 ⊂ [0, 1], the collocation method for approximately solving (4.43)
is to construct p ∈ Pν [x] satisfying

p(tn) = yn and p′(tn + cih) = f(tn + cih, p(tn + cih)) i = 1, . . . , ν . (4.44)

(Thus we can think of collocation as “interpolating” our ODE!) If h ≡ tn+1 − tn is sufficiently small,
relative to the Lipschitz constant for f , it can be shown that this set of ν+1 equations in ν+1 unknowns
has a unique solution. The approximation to y(tn+1) is then provided by yn+1 ≡ p(tn+1).

In fact it is easy to verify that collocation methods are equivalent to implicit RK methods.

Lemma 4.12. Let {ℓi}νi=1 ⊂ Pν−1[x] be the Lagrange cardinal polynomials with respect to {ci}νi=1. Then
the above collocation method is identical to the ν-stage implicit RK method with parameters

bi ≡
∫ 1

0

ℓi(τ) dτ i = 1, . . . , ν and aij ≡
∫ ci

0

ℓj(τ) dτ i, j = 1, . . . , ν . (4.45)

Proof. If p satisfies (4.44), we show that (4.35a) and (4.35b) are satisfied by

ki ≡ p′(tn + cih) i = 1, . . . , ν .

Firstly, using the change of variable t = tn + τh, (4.35a) is obtained from

yn+1 − yn =

∫ tn+1

tn

p′(t) dt

= h

∫ 1

0

p′(tn + τh) dτ

= h

∫ 1

0

ν∑

i=1

p′(tn + cih)ℓi(τ) dτ

= h

ν∑

i=1

biki .

Secondly, for (4.35b) it is sufficient to show that

p(tn + cih) = yn + h

ν∑

j=1

aijkj i, j = 1, . . . , ν .

Mathematical Tripos: IB Numerical Analysis 46 © G.Moore@maths.cam.ac.uk, Lent 2017

This follows from

p(tn + cih) = p(tn) +

∫ tn+cih

tn

p′(t) dt

= yn + h

∫ ci

0

p′(tn + τh) dτ

= yn + h

∫ ci

0

ν∑

j=1

p′(tn + cjh)ℓj(τ) dτ

= yn + h

ν∑

j=1

aijkj .

Now we can state our required result.

Theorem 4.13 (No proof). Let {ci}νi=1 be chosen so that the nodal polynomial ω(τ) ≡ ∏ν
i=1(τ − ci) is

orthogonal on the interval [0, 1] to all q ∈ Ps[x], where we must have s 6 ν − 1. Then the ν-stage implicit
RK method with parameters (4.45) is of order ν + s+ 1.

The highest order of a ν-stage implicit RK method is 2ν, and corresponds to collocation at zeros of the
transformed Legendre polynomial Pν (Gauss–Legendre RK method).

4.4 Stiff equations

When approximating an initial value problem for the ODE (4.1), one is not only interested in the accuracy
of our numerical approximation. Since the 1960’s, another important consideration has been: does the
approximation preserve any important “structure” of (4.1)? Of course this question is too vague as it
stands and we need to state precisely what kind of structure we are interested in. This section on stiff
equations is interested is concerned with the preservation of one particular structural property.

4.4.1 Stiffness: the problem

Suppose that the exact solutions of (4.1), independent of the initial value y(0) = y0, exist for [0, T] ∀T > 0
and satisfy

lim
t→∞

y(t) = 0 :

will the approximate solutions for our numerical method satisfy the analogous property

lim
n→∞

yn = 0

without imposing severe retrictions on the size of h? Of course one will guess immediately that the answer
depends on our choice of numerical method.

To illustrate what can happen, we look at two simple numerical methods applied to two linear scalar
constant-coefficient examples.

a) Consider the initial value ODE

y′(t) = −0.1y(t) y(0) = 1 , (4.46a)

whose exact solution is
y(t) ≡ e−0.1t ∀t > 0 .

If one applies Euler’s method (4.6) to (4.46a), then our numerical approximation is yn = (1− 0.1h)
n
n >

0. Thus the property limn→∞ yn = 0 is preserved, provided the weak restriction 0 < h < 20 holds.
If one applies the backward Euler method (4.12a) to (4.46a), then our numerical approximation is
yn = (1 + 0.1h)

−n
n > 0. Thus the property limn→∞ yn = 0 is preserved ∀h > 0.

Mathematical Tripos: IB Numerical Analysis 47 © G.Moore@maths.cam.ac.uk, Lent 2017

b) Consider the initial value ODE

y′(t) = −100y(t) y(0) = 1 , (4.46b)

whose exact solution is
y(t) ≡ e−100t ∀t > 0 .

If one applies Euler’s method to (4.46b), then our numerical approximation is yn = (1− 100h)n n > 0.
Thus the property limn→∞ yn = 0 is now only preserved, provided the severe restriction 0 < h < 0.02
holds. If one applies the backward Euler method to (4.46b), then our numerical approximation is
yn = (1 + 100h)−n n > 0. Thus the property limn→∞ yn = 0 is again preserved ∀h > 0.

Thus as the exact solution of our ODE converges faster to 0 as t → ∞ (e−100t compared to e−0.1t), we
need a much more severe restriction on the steplength h (h < 0.02 compared to h < 20) for the explicit
Euler method to ensure limn→∞ yn = 0. On the other hand, the implicit backward Euler method achieves
limn→∞ yn = 0 without any restriction on h.

In this course, we shall only discuss the problem of stiffness for scalar linear constant-coefficient equations
of the form

y′(t) = λy(t) y(0) = 1 (4.47)

for λ ∈ C. This is not quite such a limitation as it sounds, because our analysis will also be valid for
linear constant-coefficient systems of the form

y′(t) = Ay(t) (4.48)

where A ∈ RN×N . (If A is diagonalisable, this follows directly from an eigenvector decomposition. Other-
wise we have to use the matrix exponential function defined by

etA ≡
∞∑

k=0

1

k!
tkAk . (4.49a)

Since
d

dt

(
etA
)
=

∞∑

k=1

1

(k − 1)!
tk−1Ak = AetA , (4.49b)

it follows that the solutions of (4.48) are

y(t) ≡ etAy(0) . (4.49c)

Note that all the exact solutions of (4.48) satisfy limt→∞ y(t) = 0 if and only if all the eigenvalues λ of
A satisfy Reλ < 0. That is why we must consider (4.47) with λ ∈ C.) However the problem of stiffness
for general linear systems of the form

y′(t) = A(t)y(t) ,

and even more so for (4.1), is a subject of current research and well beyond the scope of this course.

4.4.2 Linear stability domains and A-stability

The exact solution of (4.47) satisfies limt→∞ y(t) = 0 if and only if Reλ < 0. If we apply a chosen
numerical method to (4.47) then we obtain the following analogous definition.

Definition 4.14 (Linear stability domain). The linear stability domain for a numerical method applied
to (4.47) is the subset of C defined by

D ≡
{
hλ ∈ C : lim

n→∞
yn = 0

}
.

Examples.

Mathematical Tripos: IB Numerical Analysis 48 © G.Moore@maths.cam.ac.uk, Lent 2017

(i) Euler’s method applied to (4.47) has solution yn = (1 + hλ)n n > 0 and so its linear stability
domain is

D = {z ∈ C : |1 + z| < 1} ;
i.e. the domain inside the unit circle centered on -1, as illustrated in Figure 4.8.

(ii) The backward Euler method applied to (4.47) has solution yn = (1−hλ)−n and so its linear stability
domain is

D = {z ∈ C : |1− z| > 1} ;
i.e. the domain outside the unit circle centred on 1.

(iii) The trapezoidal rule (4.12b) applied to (4.47) has solution

yn =

(
1 + 1

2hλ

1− 1
2hλ

)n

,

provided that λh 6= 2, and so its linear stability domain is

D =

{
z ∈ C :

∣∣∣∣
2 + z

2− z

∣∣∣∣ < 1

}
.

Since this inequality is merely saying that z must be closer to -2 than it is to 2; we have D equal to
the left half-plane C

− = {z ∈ C : Re z < 0}.

-2 -1.5 -1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Forward Euler

-3 -2 -1 0 1 2 3

-2

-1

0

1

2

Two-stage implicit RK

Figure 4.8: Linear stability domains: Euler’s method and a 2-stage implicit RK. See also the A-Stabilty

demonstration at http://www.maths.cam.ac.uk/undergrad/course/na/ib/partib.php.

Now we introduce a definition that tests whether a numerical method preserves the structure of solutions
for (4.47).

Definition 4.15 (A-stability). A numerical method is A-stable if C− ⊆ D.

Thus we have shown that both the backward Euler method and the trapezoidal rule are A-stable, but
Euler’s method is not. (Note that A-stability does not mean that any step size will do! We still need to
choose h small enough to ensure the required accuracy.)

In general it is very difficult for either multistep methods or explicit methods to be A-stable, as the
following two famous results state.

(i) No multistep method of order p > 3 can be A-stable. (This is called the second Dahlquist barrier
theorem.) The p = 2 barrier is attained by the trapezoidal rule, which can be viewed as the 1-step
Adams-Moulton method.

(ii) No explicit RK method can be A-stable. (Although, as we shall see in the next section, implicit RK
methods may be A-stable.)

Mathematical Tripos: IB Numerical Analysis 49 © G.Moore@maths.cam.ac.uk, Lent 2017

http://www.maths.cam.ac.uk/undergrad/course/na/ib/partib.php

-7 -6 -5 -4 -3 -2 -1 0 1
-3

-2

-1

0

1

2

3

2-step Adams-Moulton

-2 -1 0 1 2 3 4 5

-2

-1

0

1

2

2-step BDF

Figure 4.9: Linear stability domains: 2-step Adams-Moulton and 2-step BDF. See also the A-Stabilty

demonstration at http://www.maths.cam.ac.uk/undergrad/course/na/ib/partib.php.

Although no multistep method of order p > 3 may be A-stable, the convergent BDF methods of sec-
tion 4.2.3 are often satisfactory for many stiff equations; even though only the 2-step BDF method is
A-stable. This is because in many ‘real-life’ stiff linear6 systems, the eigenvalues are not just in C

− but
also well away from iR and often near the negative real axis. Hence numerical schemes whose linear
stability domains only include this part of C− can still be useful. This is the case for all BDF methods of
order p 6 6 (i.e. all convergent BDF methods), since their linear stability domains include a wedge about
(−∞, 0) in C

−. (Such methods are said to be A0-stable.)

4.4.3 A-stability and the maximum principle

Often the easiest way of proving that a numerical method is A-stable is by making use of the maximum
principle in complex analysis. This supposes that our numerical method applied to (4.47) has solution

yn = [r(hλ)]
n

n > 0 ,

where r is a rational function. Thus the linear stability domain is

D = {z ∈ C : |r(z)| < 1}

and so our numerical method is A-stable if we can prove that

z ∈ C
− ⇒ |r(z)| < 1 .

We need the following form of the maximum principle from Complex Analysis7.

Theorem 4.16 (Maximum modulus principle). Let Ω ⊂ C be an open set and suppose g : Ω 7→ C is
analytic and non-constant: then |g| has no maximum in Ω.

We the apply this theorem with Ω ≡ C
− and g ≡ r, checking the following conditions:

• r is analytic in C
−;

• |r(it)| 6 1 ∀t ∈ R;

• lim|z|→∞ ,Re z<0 |r(z)| 6 1.

We have stated that, unlike multistep methods, implicit high-order RK methods may be A-stable; thus
we give two simple examples where Theorem 4.16 can easily establish this result.

6 The analysis of nonlinear stiff equations is difficult and well outside the scope of this course.
7 If you are taking Complex Methods then this is your chance to learn the statement of the maximum modulus principle.

Mathematical Tripos: IB Numerical Analysis 50 © G.Moore@maths.cam.ac.uk, Lent 2017

http://www.maths.cam.ac.uk/undergrad/course/na/ib/partib.php

1) Consider the 2-stage 3rd-order method (4.41a)-(4.41c): so applying this scheme to (4.47) gives

hk1 = hλ
(
yn + 1

4hk1 − 1
4hk2

)
,

hk2 = hλ
(
yn + 1

4hk1 +
5
12hk2

)
.

This is a linear system for hk1 and hk2, whose solution is

[
hk1
hk2

]
=

[
1− 1

4hλ
1
4hλ

− 1
4hλ 1− 5

12hλ

]−1 [
hλyn
hλyn

]
=

hλyn

1− 2
3hλ+ 1

6 (hλ)
2

[
1− 2

3hλ
1

]
,

and therefore

yn+1 = yn + 1
4hk1 +

3
4hk2 =

1 + 1
3hλ

1− 2
3hλ+ 1

6h
2λ2

yn .

Thus we have yn+1 = r(hλ)yn, where

r(z) ≡ 1 + 1
3z

1− 2
3z +

1
6z

2
,

and so
yn = [r(hλ)]n n > 0 .

Since the poles of the rational function r are 2±
√
2i, we know that r is analytic in C

−. |r| 6 1 on the
imaginary axis, because

|r(it)|2 =
36 + 4t2

36 + 4t2 + t4
.

|r| tends to zero on the rest of the boundary of C−, because the denominator is of higher degree than
the numerator. Hence we can apply Theorem 4.16 to prove that |r| < 1 in C

− and so the method is
A-stable.

2) Consider the 2-stage order 4 Gauss–Legendre method in (4.42), so applying this numerical scheme to
(4.47) gives

hk1 = z
(
yn + 1

4hk1 +
(
1
4 −

√
3
6

)
hk2

)
, (4.50a)

hk2 = z
(
yn +

(
1
4 +

√
3
6

)
hk1 +

1
4hk2

)
. (4.50b)

This is a linear system for hk1 and hk2, whose solution is

[
hk1
hk2

]
=

[
1− 1

4z −(14 −
√
3
6)z

−(14 +
√
3
6)z 1− 1

4z

]−1 [
zyn

zyn

]

=
1

det(B)

[
1− 1

4z (14 +
√
3
6)z

(14 −
√
3
6)z 1− 1

4z

][
zyn

zyn

]
,

where

B ≡
[

1− 1
4z −(14 −

√
3
6)z

−(14 +
√
3
6)z 1− 1

4z

]
.

Since we only need
hk1 + hk2 = 2z

det(B) yn = 2z
1− 1

2 z+
1
12 z

2 yn ,

it is easy to obtain

yn+1 = yn + 1
2 (hk1 + hk2) =

1 + 1
2z +

1
12z

2

1− 1
2z +

1
12z

2
yn ; (4.51)

thus yn = [r(z)]n, where

r(z) ≡ 1 + 1
2z +

1
12z

2

1− 1
2z +

1
12z

2
. (4.52)

Mathematical Tripos: IB Numerical Analysis 51 © G.Moore@maths.cam.ac.uk, Lent 2017

r is a rational function, and its only singularities are the poles 3± i
√
3 which lie in the right half-lane;

hence r is analytic in C−. On the imaginary axis, we have |r| = 1: similarly

lim
|z|→∞

|r(z)| = 1 .

Hence we can apply Theorem 4.16 to prove that |r| < 1 in C
− and so this Gauss–Legendre method is

A-stable. (Moreover, since r(z) = 1
r(−z) , we deduce the equality D = C

−.)

4.5 Implementation of ODE methods

Throughout this chapter on numerical methods for computing approximations to exact solutions of initial-
value ODEs, we have simplified matters by assuming that the step size h is constant. In practice, and
especially under control of a well-written software package, this will not be the case: i.e. the step size
hn ≡ tn+1 − tn will vary with n. Moreover, the step size h is not a pre-ordained quantity chosen by the
user, but a parameter of the method. More precisely, the basic input for a software package (i.e. chosen
by the user) is not the step size but rather an error tolerance: this being the accuracy of the numerical
approximation that the user requires. The software package then chooses the step length hn (varying with
n in general) to bound a local estimate of the error by the user-given error tolerance. It is this strategy
that is called a time-stepping algorithm. In the present section, we shall briefly describe a few of the key
ideas behind such algorithms for error control.

4.5.1 Error control for multistep methods

As a simple example, suppose that we wish to monitor the error for the trapezoidal rule

yn+1 = yn + 1
2h
{
f(tn,yn) + f(tn+1yn+1)

}
, (4.53a)

which we already know has order 2. If we substitute the exact solution y(t) into (4.53a) then (as in (4.14)
with θ = 1

2) we deduce that

y(tn+1)− y(tn)− 1
2h {y

′(tn) + y′(tn+1)} = cTRh
3y′′′(tn) +O

(
h4
)
, (4.53b)

where

cTR = − 1
12 . (4.53c)

To estimate the local error in this single step from tn to tn+1, we assume that yn = y(tn) (i.e. no error
has been committed so far) and use (4.53a) and (4.53b) to produce the approximation

y(tn+1)− yTR
n+1 ≈ cTRh

3y′′′(tn) +O
(
h4
)
. (4.53d)

Even this estimate does not seem much help, since the value y′′′(tn) is unknown. We will see however
that this objection can be circumvented.

Definition. cTR is called the error constant for the trapezoidal rule.

Each multistep method (but not RK!) has its own error constant, and this can be obtained from its local
truncation error. For example, the 2nd order 2-step Adams–Bashforth method of (4.15),

yn+1 − yn = 1
2h
{
3f(tn,yn)− f (tn−1,yn−1)

}
, (4.54a)

has error constant cAB ≡ 5
12 in (4.23b), i.e.

y(tn+1)− yAB
n+1 ≈ cABh

3y′′′(tn) +O(h4) . (4.54b)

Milne’s device is a technique for estimating the local error and thus choosing the step size h to achieve a
given error tolerance. It uses two multistep methods of the same order, one explicit and one implicit. It is
the implicit method that produces our approximation for the exact solution y(tn+1); the explicit method

Mathematical Tripos: IB Numerical Analysis 52 © G.Moore@maths.cam.ac.uk, Lent 2017

is just used to provide a local error estimate for this approximation. We illustrate the use of Milne’s
device with the above two 2nd order multistep methods; the explicit Adams–Bashforth method (4.54a)
and the implicit trapezoidal rule (4.53a). For both of these we have the local error estimates (4.54b) and
(4.53d) so that, if we neglect the higher powers of h, we may eliminate y′′′(tn) and obtain a computable
local error estimate for the trapezoidal rule: i.e.

y(tn+1)− yTR
n+1 ≈ −

cTR

cAB − cTR

[
yAB
n+1 − yTR

n+1

]
= 1

6

(
yAB
n+1 − yTR

n+1

)
. (4.55)

In the next paragraph, we shall explain how this estimate can be used to choose the step length h.

Remark. TR is a far better method than AB: it is A-stable, hence its global behaviour is superior.
Employing AB to estimate the local error adds very little to the overall cost of TR, since AB is an
explicit method.

The usual way of setting up error control for multistep methods is to employ a predictor-corrector pair :
that is, we use two multistep methods of the same order, one explicit (the predictor) and the other
implicit (the corrector). For example, the 2nd order Adams–Bashforth method and the trapezoidal rule
just discussed. A slightly less simple example would be the third-order Adams–Bashforth and Adams–
Moulton pair, i.e.

Predictor : yP
n+2 = yn+1 + h

[
5
12f(tn−1,yn−1)− 4

3f (tn,yn) +
23
12f(tn+1,yn+1)

]
, (4.56a)

Corrector : yC
n+2 = yn+1 + h

[
− 1

12f(tn,yn) +
2
3f(tn+1,yn+1) +

5
12f(tn+2,yn+2)

]
. (4.56b)

The predictor is employed not just to estimate the local error for the corrector using Milne’s device,
but also to provide a good initial guess for the solution of the implicit corrector equations. (This topic is
briefly discussed in §4.5.5.) Typically, for nonstiff ODEs we iterate the correction equations at most twice;
while stiff ODEs require iteration to convergence, otherwise the usual superior features of the corrector
are lost.

Depending on whether an error tolerance has been achieved, we amend the step size h. To this end let
εTOL > 0 be a user-specified tolerance: the maximal error that we wish to allow in approximating the
ODE. Having completed a single step and estimated the error, there are three possibilities:

(a) α εTOL 6 ‖ error‖ 6 εTOL, say with α = 1
10 : accept the step, continue to tn+2 with the same step

size;

(b) ‖ error‖ < αεTOL: accept the step and increase the step length;

(c) ‖ error‖ > εTOL: reject the step, recommence integration from tn with smaller h.

In the case of (b) and (c), we have to ask the question: how are the unknown previous approximations
(e.g. yn and yn−1 in (4.56a)) obtained if the step length is changed? The answer is that they are obtained
by suitable polynomial interpolation from the other approximations calculated with different step lengths.

Error estimation per unit step. Let e be our estimate of local error. Then e/h is our estimate for the
global error in an interval of unit length. It is usual to require the latter quantity not to exceed
εTOL since good implementations of numerical ODEs should monitor the accumulation of global
error. This is called error estimation per unit step.

Demonstration. See also the Predictor-Corrector Methods demonstration at

http://www.maths.cam.ac.uk/undergrad/course/na/ib/partib.php.

Mathematical Tripos: IB Numerical Analysis 53 © G.Moore@maths.cam.ac.uk, Lent 2017

http://www.maths.cam.ac.uk/undergrad/course/na/ib/partib.php

4.5.2 Error control for Runge–Kutta methods

The strategy used for error control of multistep methods (i.e. Milne’s device with predictor-corrector
pairs) cannot be applied to RK methods. This is because the nonlinear nature of RK methods means
that the leading term in the local truncation error is no longer simply an error constant multiplying a
derivative of the exact solution. We replace the idea of predictor-corrector pairs by embedded Runge–Kutta
methods, where a lower-order RK method is “hidden inside” a higher-order RK method.

In slightly more detail, the embedded RK approach requires two (typically explicit) RK methods: one
having ν stages and order p, while the other has ν + ℓ stages (with ℓ > 1) and order p + 1. The key
restriction is that the first ν stages of both methods must be identical. This restriction ensures that
the cost of implementing the higher-order method is marginal, once we have computed the lower-order
approximation. A simple example would be

k1 =f (tn,yn),

k2 =f
(
tn + 1

2h,yn + 1
2hk1

)
,

y
[1]
n+1 =yn + hk2;





order 2, local error O
(
h3
)

k3 =f(tn + h,yn − hk1 + 2hk2),

y
[2]
n+1 =yn + 1

6h(k1 + 4k2 + k3) .





order 3, local error O
(
h4
)

Here we can estimate the error for the order 2 method by

y
[1]
n+1 − y(tn+1) ≈ y

[1]
n+1 − y

[2]
n+1 . (4.57)

(While it might look paradoxical, at least at first glance, the only purpose of the higher-order method is
to provide an error estimate for the lower-order one.) Once a local error estimate is available, so that it
can be compared with the user-supplied error tolerance, the time-stepping strategy described in the last
section can be carried out.

0 2 4 6 8 10

-20

-18

-16

-14

-12

-10

-8

time

lo
g

|e
rr

or
|

Variable step

TOL=1e-4

TOL=1e-5

TOL=1e-6

TOL=1e-7

TOL=1e-8

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

time

st
ep

 s
iz

e

Variable steps

Figure 4.10: Adjustments of the step size in the solution of the equation y′ = −y + 2e−t cos 2t, y(0) = 0.

4.5.3 The Zadunaisky device

This is a general technique for obtaining error estimates for numerical approximations of initial-value
ODEs.

Suppose we have used an arbitrary numerical method of order p to approximate (4.1) and that we have
stored the previously computed values yn,yn−1, . . . ,yn−p. (The time steps hi ≡ ti+1−ti i = n−p, . . . , n−1
need not be equal.) We construct the pth degree interpolating polynomial (with vector coefficients) d,
such that

d(tn−i) = yn−i i = 0, 1, . . . , p ,

Mathematical Tripos: IB Numerical Analysis 54 © G.Moore@maths.cam.ac.uk, Lent 2017

and consider the initial-value ODE

z′(t) = f(t, z(t)) +
{
d′(t)− f (t,d)

}
t ∈ [tn, tn+1] (4.58)

with z(tn) = yn. There are two important observations with regard to (4.58):

(i) Since d(t) − y(t) = O
(
hp+1

)
and y′(t) ≡ f (t,y(t)), the term d′(t) − f(t,d) is usually small.

Therefore, (4.58) is a small perturbation of the original ODE.

(ii) The exact solution of (4.58) is z(t) = d(t).

So, having applied our numerical method to (4.1) to produce yn+1, we apply exactly the same numerical
method and implementation details to (4.58) to produce zn+1. We then evaluate the error in zn+1, namely
zn+1 − d(tn+1), and use it as an estimate of the error in yn+1.

4.5.4 Not the last word

There is still very much more that we could say on the numerical solution of ODEs (let alone PDEs).
We have tended to concentrate on the accuracy of solutions and error control. However, many equations
have extra properties that we have not addressed, e.g. the solutions might be constrained to surfaces, or
in physics, the system might conserve energy (in which case it might be good if the numerical scheme
conserved ‘energy’). A preliminary discussion of one of these points is given on the Symplectic Integrators
page at

http://www.maths.cam.ac.uk/undergrad/course/na/ib/partib.php.

There it is shown that in certain circumstances a modified first-order Euler method can have advantages
over a higher-order adaptive RK method.

4.5.5 Solving nonlinear algebraic systems

We have already observed that the implementation of an implicit ODE method, whether multistep or
RK, requires the solution of a nonlinear (in general) system of algebraic equations at each step. We use
the simple backward Euler method to illustrate the two commonest types of iterative nonlinear solver.

a) Functional iteration

y
[k+1]
n+1 = yn + hf(tn+1,y

[k]
n+1) y

[0]
n+1 = yn . (4.59)

b) Newton’s method

[
I− hJ[k]

]
z[k] = y

[k]
n+1 −

{
yn + hf(tn+1,y

[k]
n+1)

}
y
[0]
n+1 = yn , (4.60)

where y
[k+1]
n+1 ≡ y

[k]
n − z[k] and

J[k] ≡∇f (tn+1,y
[k]
n+1) ∈ R

N×N

is the Jacobian matrix for f .

We make the following remarks about the suitability of these two iterative methods for general implicit
numerical methods applied to (4.1).

1) Unlike Newton’s method, functional iteration requires neither the solution of N × N linear systems
nor the computation of Jacobian matrices for f . Hence it has a much lower computational cost than
Newton’s method.

2) Functional iteration can only be guaranteed to converge under the step length restriction λh < 1,
where λ is the Lipschitz constant for f in (4.2). Especially for stiff equations, this restriction can lead
to very small time-steps and a large amount of computation.

Mathematical Tripos: IB Numerical Analysis 55 © G.Moore@maths.cam.ac.uk, Lent 2017

http://www.maths.cam.ac.uk/undergrad/course/na/ib/partib.php

3) It is possible to use variants of Newton’s method, which may be more efficient. For example, the
so-called modified Newton’s method replaces (4.60) with

[
I− hJ[0]

]
z[k] = y

[k]
n+1 −

{
yn + hf(tn+1,y

[k]
n+1)

}
y
[0]
n+1 = yn . (4.61)

Thus only one Jacobian matrix needs to be evaluated at each time-step and only N×N linear systems
with the same coefficient matrix (but different rhs’s!) need to be solved. As we shall see in §5.2, this
can lead to substantial savings. Hence in some cases, (4.61) may be preferred to (4.60): despite the
fact that, in general, (4.61) requires more iterations to converge than (4.60).

4) The only role the Jacobian matrix plays in (4.60) and (4.61) is to ensure convergence: its precise value

makes no difference to limk→∞ y
[k]
n . Therefore we might replace it with a finite-difference approxima-

tion and/or evaluate it once every several steps.

4.5.6 *A distraction*

In Part IB we only discuss the numerical solution of ordinary differential equations; in Part II the numerical
solution of partial differential equations will be touched upon.

One of the most well-known nonlinear partial differential equations is the Navier-Stokes equation which
describes Newtonian viscous flow. There are very few analytical solutions for this important equation,
with the result that numerical solutions play a crucial role in fields ranging from the motion of bacteria
and other living organisms, aerodynamics and climate change.

To see numerical solutions of the Navier-Stokes equation in real time you can download FI1.2.zip to a
Windows computer from

www.imperial.ac.uk/aeronautics/fluiddynamics/FI/InteractiveFlowIllustrator.htm

More information can be found at this URL, but one of the main goals of this Interactive Flow Illustrator
is easiness to use, so, rather than reading manuals etc. one should just download it, unzip it, click on
IFI.exe, and see if one can make sense of what one gets.

Some technical details. Flow Illustrator solves the Navier-Stokes equations on a uniform Cartesian grid,
with the grid step equal to one pixel of the input bitmap. Finite differences are used. The embedded
boundary method is used to represent the body shape. This means that the equations are solved
in a rectangular domain including the areas inside the body, and a body force is added inside the
body so as to make the velocity of the fluid equal to the velocity of the body. Both viscous and
inviscid terms are modelled implicitly, so that there are no stability constraints on the time step.
The pressure equation is solved (or, rather, a projection on a solenoidal subspace is done) using fast
Fourier transforms. Velocity is prescribed on the left boundary of the computational domain, and
soft boundary conditions are applied on other boundaries.

Mathematical Tripos: IB Numerical Analysis 56 © G.Moore@maths.cam.ac.uk, Lent 2017

www.imperial.ac.uk/aeronautics/fluiddynamics/FI/InteractiveFlowIllustrator.htm

5 Square Linear Systems and the LU factorisation

In this section, we shall be concerned with one of the most basic problems in computational linear algebra.

Problem 5.1. Given A ∈ R
n×n and b ∈ R

n, find x ∈ R
n to satisfy

Ax = b . (5.1)

Remark. This is the fourth time that the solution of linear equations has been addressed in the Tripos,
and it will not be the last. This level of attention gives an indication of the importance of the subject
(if not its excitement).

As discussed in Vectors & Matrices, the theoretical situation for Problem 5.1 is clear.

• If A is non-singular then, for each b ∈ Rn, there is a unique x ∈ Rn that satisfies (5.1).

• If A is singular then, depending on b ∈ Rn, either there is no x ∈ Rn that satisfies (5.1) or there
are infinitely many x ∈ Rn that satisfy (5.1).

We shall mainly be interested in the case of non-singular A, although some results for singular A will be
mentioned. Moreover, our primary concern is the description of efficient practical algorithms for solving
(5.1). As also discussed in Vectors & Matrices, if A is non-singular we can write

(
A−1

)
i,j

=
1

detA
∆j,i i, j = 1, . . . , n , (5.2a)

where ∆i,j is the cofactor of the (i, j)th element of the matrix A. The required determinants can be
evaluated by

detA =
∑

i1i2...in

εi1i2...inAi1,1Ai2,2 . . . Ain,n , (5.2b)

or using the recursive definition of a determinant: hence, using these formulae, (5.1) can be solved explicitly
by Cramer’s rule. Unfortunately, the number of operations increases like (n + 1)! and thus, on a 1010

flop/sec. computer, the time required is

n = 10 ⇒ 10−5 sec, n = 20 ⇒ 1 3
4 min, n = 30 ⇒ 4× 104 years.

This is impractical and so we will look at more efficient algorithms for both solving (5.1) and computing
detA.

5.1 Triangular matrices

Problem 5.1 is easy to deal with (both theoretically and practically) when A is a triangular matrix.

If L ∈ Rn×n is a lower triangular matrix, i.e. Li,j = 0 if i < j, then

det L =

n∏

i=1

Li,i . (5.3a)

Hence the singularity or non-singularity of L is immediately obvious. Moreover the problem Lx = b can
be solved in O

(
n2
)
computional operations8 by so-called forward substitution

xi =
1

Li,i



bi −

i−1∑

j=1

Li,jxj



 , i = 1, . . . , n . (5.3b)

8 Where, as usual, we only bother to count multiplications/divisions.

Mathematical Tripos: IB Numerical Analysis 57 © G.Moore@maths.cam.ac.uk, Lent 2017

(Here the standard convention for limits of sums is used.) For example




1
−2 1
3 −1 1






x1

x2

x3


 =




2
−2
5



↓
↓
↓
⇒ x =




2
2
1


 .

This approach also gives us the columns of L−1 by solving

Lyj = ej j = 1, . . . , n , (5.4)

where ej ∈ Rn denotes the jth unit vector (i.e. the jth column of I ∈ Rn×n). In addition, solving (5.4) by
means of (5.3b) immediately shows that L−1 is also lower triangular.

Similarly, if U ∈ Rn×n is an upper triangular matrix, i.e. Ui,j = 0 if i > j, then

detU =

n∏

i=1

Ui,i . (5.5a)

Hence the singularity or non-singularity of U is again immediately obvious. Moreover the problem Ux = b

can be solved in O
(
n2
)
operations by so-called back substitution

xi =
1

Ui,i



bi −

n∑

j=i+1

Ui,jxj



 , i = n, . . . , 1 . (5.5b)

For example 

−3 2 3

2 0
1






x1

x2

x3


 =




2
2
1



↑
↑
↑
⇒ x =




1
1
1


 .

This approach again gives us the columns of U−1 by solving

Uyj = ej j = 1, . . . , n . (5.6)

In addition, solving (5.6) by means of (5.5b) immediately shows that U−1 is also upper triangular.

We can combine the above two results in a clever idea: if we could factorize a general A ∈ Rn×n as

A = LU ,

where L ∈ Rn×n and U ∈ Rn×n are lower and upper triangular matrices respectively, then the solution of
(5.1) just becomes Ax = LUx = L(Ux) = b: i.e. we can split (5.1) into the two simple cases

Ly = b and Ux = y . (5.7)

Both latter systems are triangular and can be solved in O
(
n2
)
operations using (5.3b) and (5.5b) respec-

tively (see also (5.12b)).

5.2 LU factorization and its generalization

In the light of the final paragraph of the previous section, we introduce the following definition.

Definition 5.2 (LU factorisation). If A ∈ Rn×n then A = LU is an LU factorization of A if U ∈ Rn×n is
an upper triangular matrix and L ∈ Rn×n is a unit lower triangular matrix.

Thus in picture form we have the following decomposition.




 =




❅
❅

❅


×


❅❅

❅


 .

Remarks

Mathematical Tripos: IB Numerical Analysis 58 © G.Moore@maths.cam.ac.uk, Lent 2017

(a) A unit triangular matrix has ones down the principal diagonal and hence is non-singular.

(b) It is only by tradition/convention that L is chosen unit lower triangular; it would be equally valid
for U to be chosen unit upper triangular. In order for an LU factorisation to have a chance of being
unique however, some normalisation for L and/or U must be imposed.

(c) We permit the possibility of A being singular in our definition: thus L is non-singular, but A and U

are either both singular or both non-singular. However, we will be mainly concerned with the case of
non-singular A.

(d) A non-singular A may have no LU factorization, e.g.

A ≡
[
0 1
1 1

]
∈ R

2×2 :

if one exists however, it is unique and U is non-singular.

(e) A singular A may have an LU factorization, e.g. see Question 1 on Example Sheet 3, but in this case
U must also be singular. We will return to this point subsequently (e.g. see Theorem 5.10 and the
examples following it).

5.2.1 The construction of an LU factorization

Let {lj}nj=1 ⊂ R
n denote the columns of L and let

{
uT
i

}n
i=1

denote the rows of U, where {ui}ni=1 ⊂ R
n. We

follow a systematic plan for calculating {l1,u1}, {l2,u2}, . . . , {ln,un} in turn. The conditions required
to avoid breakdown of this algorithm will give us sufficient conditions for an LU factorisation to exist.

We may write the A = LU equation in terms of the above rows and columns, i.e.

A = LU = [l1 l2 · · · ln]




uT
1

uT
2
...

uT
n


 (5.8a)

=

∗
∗ ∗
∗ ∗ . . .

∗ ∗ ∗
l1 l2 ln

×

∗ ∗ ∗ ∗ uT
1

∗ ∗ ∗ uT
2

. . .

∗ uT
n

=

n∑

k=1

lku
T
k . (5.8b)

Since the first (k − 1) elements of lk and uk are all zero for k > 2, each rank-one matrix lku
T
k ∈ Rn×n

has zeros in its first (k − 1) rows and columns. Pictorially this gives

A =

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

l1u
T
1

+

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
l2u

T
2

+ ∗ ∗
∗ ∗

l3u
T
3

+ · · · +
∗

lnu
T
n

. (5.8c)

We see from (5.8c) that only the product l1u
T
1 contributes to the first row and column of A: the first

row of this product being L1,1u
T
1 = uT

1
9 and the first column being U1,1l1.

10 Hence, introducing the
notation A(0) ≡ A, we have

uT
1 = [the first row of A(0)], l1 = [the first column of A(0)]/A

(0)
1,1.

9 Similarly, it follows that the kth row of lku
T
k

is Lk,ku
T
k

= uT
k
.

10 Similarly, the kth column of lku
T
k

is Uk,klk.

Mathematical Tripos: IB Numerical Analysis 59 © G.Moore@maths.cam.ac.uk, Lent 2017

After having obtained l1 and u1, we construct the matrix

A(1) ≡ A(0) − l1u
T
1 =

n∑

k=2

lku
T
k ∈ R

n×n . (5.9)

Thus from (5.8b) we see that, not only are the first row and column of A(1) both zero, but also only the
product l2u

T
2 contributes to the second row and column of A(1). Since the second row of this product is

uT
2 and its second column is U2,2l2, we obtain

uT
2 = [the second row of A(1)], l2 = [the second column of A(1)]/A

(1)
2,2.

Continuing this way we can formulate the entire algorithm: starting with A(0) ≡ A and performing the
following calculations for k = 1, . . . , n.

Uk,j = A
(k−1)
k,j , j = k, . . . , n, (5.10a)

Li,k =
A

(k−1)
i,k

A
(k−1)
k,k

, i = k, . . . , n, (5.10b)

A
(k)
i,j = A

(k−1)
i,j − Li,kUk,j , i, j > k. (5.10c)

(Note that, since A(n) is zero, (5.10c) is not needed for k = n.)

Remarks.

(i) The above construction shows that the condition

A
(k−1)
k,k 6= 0 , k = 1, . . . , n− 1 , (5.11)

is a sufficient condition for an LU factorization to exist and be unique. A
(0)
1,1 is just A1,1, but

the other values are only derived during construction. We shall see in §5.3.1 how to obtain
equivalent conditions in terms of the original matrix A.

(ii) For the k-th step of the above algorithm, we see from (5.10b) and (5.10c) that (n−k) divisions
are required to determine the components of lk and (n− k)2 multiplications to construct A(k).
Hence the total number of operations required for a successful LU factorisation is

NLU =

n−1∑

k=1

[
(n− k)2 + (n− k)

]
= 1

3 n
3 +O(n2) . (5.12a)

Remember, from (5.3b) and (5.5b), that

NF = NB =

n∑

k=1

k ∼ 1
2 n

2 (5.12b)

operations are required to solve triangular systems of equations, i.e. with coefficient matrix L

or U.

(iii) Construction of an A = LU factorisation is one of the best ways of obtaining detA: i.e. we use
the formula

detA = det L detU =

(
n∏

k=1

Lk,k

)(
n∏

k=1

Uk,k

)
=

(
n∏

k=1

Uk,k

)
. (5.13)

(iv) We have seen in (5.4) and (5.6) that the columns of L−1 and U−1 may be obtained by forward
and backward substitution respectively. If we have a factorisation A = LU, then this means
A−1 = U−1L−1. More directly (and efficiently), we can calculate each column of A−1 in turn
by solving

Axj = ej j = 1, . . . , n . (5.14)

Mathematical Tripos: IB Numerical Analysis 60 © G.Moore@maths.cam.ac.uk, Lent 2017

Of course we use an A = LU factorisation to solve (5.14), i.e.

Lyj = ej , Uxj = yj j = 1, . . . , n .

Thus the construction of A−1 requires a single A = LU factorisation followed by n forward
substitutions and n backward substitutions.

Example.

A =




2 3 −5
4 8 −3
−6 1 4


 → l1=




1
2
−3


 , uT

1 = [2 3 −5], l1u
T
1 =




2 3 −5
4 6 −10
−6 −9 15


 ,

A(1) =


 2 7

10 −11


 → l2=




0
1
5


 , uT

2 = [0 2 7], l2u
T
2 =


 2 7

10 35


 ,

A(2) =




−46


 → l3=




0
0
1


 , uT

3 = [0 0 −46], l3u
T
3 =A(2),

so that

A =




2 3 −5
4 8 −3
−6 1 4


 = LU, L =




1
2 1
−3 5 1


 , U =




2 3 −5
2 7
−46


 .

Remark. All elements in the first k rows and columns of A(k) are zero. Hence, we can use the storage of
the original A to accumulate L and U, and to store the elements of the matrices A(k). Thus for our
example: 


2 3 −5
4 8 −3
−6 1 4


→




2 3 −5
2 2 7
−3 10 −11


→




2 3 −5
2 2 7
−3 5 −46


 .

Algorithm. From (5.10a), (5.10b) and (5.10c), the following pseudo-code computes the LU factorization
by overwriting A:

for k = 1:n-1

for i = k+1:n % Calculate only non-unit elements of L

A(i,k) = A(i,k)/A(k,k); % L(i,k) = A(i,k)/A(k,k)

for j = k+1:n % U(k,j) = A(k,j), so do nothing

A(i,j) = A(i,j) - A(i,k)*A(k,j); % A(i,j) = A(i,j) - L(i,k)*U(k,j)

end

end

end

5.2.2 Relation to Gaussian elimination

At the kth step of the LU-algorithm, the operation A(k) = A(k−1) − lku
T
k has the property that the ith

row of A(k) is the ith row of A(k−1) minus Li,k times uT
k (the kth row of A(k−1)), i.e.

[the ith row of A(k)] = [the ith row of A(k−1)] − Li,k× [the kth row of A(k−1)],

where the multipliers Li,k = A
(k−1)
i,k /A

(k−1)
k,k are chosen so that, at the outcome, the kth column of A(k) is

zero. This construction is analogous to Gaussian elimination for solving Ax = b.

Example.




2 3 −5
4 8 −3
−6 1 4




2nd−1st· 2

3rd−1st· (−3)
→




2 3 −5
0 2 7
0 10 −11


 3rd−2nd· 5

→




2 3 −5
0 2 7
0 0 −46


 .

Mathematical Tripos: IB Numerical Analysis 61 © G.Moore@maths.cam.ac.uk, Lent 2017

If at each step we put the multipliers Li,k into the spare sub-diagonal part of A, then we obtain
exactly the same form of the LU factorization as above.




2 3 −5
4 8 −3
−6 1 4




2nd−1st· 2

3rd−1st· (−3)
→




2 3 −5
2 2 7
−3 10 −11


 3rd−2nd· 5

→




2 3 −5
2 2 7
−3 5 −46


 .

Remark. An important difference between the LU approach and Gaussian elimination is that in LU we
do not consider the right hand side b until the factorization is complete. This is useful, for example,
when there are many right hand sides; in particular if not all the b’s are known at the outset
(e.g. as in multi-grid methods). In Gaussian elimination the solution for each new b would require
O(n3) computational operations: in contrast, with the LU algorithm, O(n3) operations are only
required for the single initial factorisation; but then the solution for each new b only requires O(n2)
operations (for the back- and forward substitutions).

5.2.3 Pivoting to avoid breakdown

We have seen in §5.2.1 that not all A ∈ R
n×n have an LU factorisation (even if A is non-singular), so in

order to solve Ax = b efficiently we need to generalise our approach.

Definition 5.3 (Permutation matrix). P ∈ Rn×n is a permutation matrix if its rows are a re-arrangement
(a permutation!) of the rows of the identity matrix I ∈ Rn×n.

(Hence z = Py just means that the elements of y, z ∈ Rn are related through this permutation. Similarly,
C = PBmeans that the rows of B,C ∈ Rn×n are related through this permutation.) Our aim in the present
section is to show that, for any A ∈ Rn×n, there exists a permutation matrix P ∈ Rn×n such that PA has
an LU factorisation; i.e. PA = LU. It is then easy to solve Ax = b because

Ax = b ⇒ PAx = Pb ⇒
{

Ly = Pb

Ux = y
.

Of course there can be no uniqueness here: in general there will be many suitable permutation matrices.

We now work through the A = LU algorithm in (5.10) again; showing how breakdown can be avoided by
introducing appropriate permutation matrices.

1. For k = 1, we only have breakdown if A
(0)
1,1 ≡ A1,1 = 0. In this case, we choose p > 1 and make use

of the permutation matrix

P1 ≡ I− (e1 − ep)(e1 − ep)
T ∈ R

n×n .

(Thus P1z just interchanges components 1 and p of z ∈ Rn, while leaving the other components
unchanged: i.e. P1 performs a very simple permutation!) p > 1 is chosen so that step (5.10b) of the
algorithm does not breakdown when applied to P1A

(0).

• P1A
(0) has a non-zero element in the (1, 1) position.

• Construct l1 ∈ Rn from P1A
(0) as in (5.10a).

• Construct u1 ∈ Rn from P1A
(0) as in (5.10b).

• Set
A(1) ≡ P1A

(0) − l1u
T
1 (5.15)

as in (5.10c).

The only time we cannot find a suitable p > 1 is when the whole first column of A(0) ≡ A is zero. But
in this case we can just choose P1 ≡ I, l1 ≡ e1 and uT

1 ≡ [the first row of A(0)]; before constructing
A(1) as in (5.15). (This is not the only way of ensuring that A(1) has zero first row and column, but
is certainly the simplest.) Note that in this case, both A and U are singular.

Of course, if A
(0)
1,1 6= 0 then we do not have breakdown and we can just set p = 1, i.e. P1 ≡ I, and

proceed as in (5.10)

Mathematical Tripos: IB Numerical Analysis 62 © G.Moore@maths.cam.ac.uk, Lent 2017

2. For 1 < k 6 n− 1, we only have breakdown if A
(k−1)
k,k = 0, i.e.

A(k−1) =




0 · · · · · · · · · · · · · · · 0
...

. . .
. . .

. . .
. . .

. . .
...

...
. . . 0 0 0 · · · 0

...
. . . 0 0 A

(k−1)
k,k+1 · · · A

(k−1)
k,n

...
. . . 0 A

(k−1)
k+1,k A

(k−1)
k+1,k+1 · · · A

(k−1)
k+1,n

...
. . .

...
...

...
. . .

...

0 · · · 0 A
(k−1)
n,k A

(k−1)
n,k+1 · · · A

(k−1)
n,n




. (5.16)

In this case, we choose p > k and make use of the permutation matrix

Pk ≡ I− (ek − ep)(ek − ep)
T ∈ R

n×n ,

i.e.

Pk =




1 0
. . .

1
0 1

1
. . .

1
1 0

1
. . .

0 1




← row k

← row p

. (5.17)

(Thus Pkz just interchanges components k and p of z ∈ Rn, while leaving the other components
unchanged.) p > k is chosen so that step (5.10b) of the algorithm does not breakdown when applied
to P1A

(k−1).

• PkA
(k−1) has a non-zero element in the (k, k) position.

• Construct lk ∈ Rn from PkA
(k−1) as in (5.10a).

• Construct uk ∈ R
n from PkA

(k−1) as in (5.10b).

• Set
A(k) ≡ PkA

(k−1) − lku
T
k (5.18)

as in (5.10c).

The only time we cannot find a suitable p > k is when the whole kth column of A(k−1) is zero. But in
this case we can just choose Pk ≡ I, lk ≡ ek and uT

k ≡ [the kth row of A(k−1)]; before constructing
A(k) as in (5.18). (Again, this is not the only way of ensuring that A(k) has zero kth row and column,
but is certainly the simplest.) Note that in this case, both A(k) and U are singular. (This can only
happen when our original matrix A is singular!)

Of course, if A
(k−1)
k,k 6= 0 then we do not have breakdown and we can just set p = k, i.e. Pk ≡ I, and

proceed as in (5.10)

Having avoided any breakdown in our algorithm, by introducing possible interchanges Pk at each step
k = 1, . . . , n− 1, we need to examine carefully what kind of LU factorisation has been constructed. Our
fundamental recurrence formulae are

A(k) ≡ PkA
(k−1) − lku

T
k k = 1, . . . , n ; (5.19)

Mathematical Tripos: IB Numerical Analysis 63 © G.Moore@maths.cam.ac.uk, Lent 2017

where A(0) ≡ A and A(n) is the zero matrix. (Also Pn ≡ I, because there is no possible interchange at step
k = n.) By combining (5.19), we see that

A(1) = P1A− l1u
T
1

A(2) = P2P1A− (P2l1)u
T
1 − l2u

T
2

A(3) = P3P2P1A− (P3P2l1)u
T
1 − (P3l2)u

T
2 − l3u

T
3

and eventually
PA = LU , (5.20)

where P ∈ Rn×n is the permutation matrix defined by

P ≡ Pn−1 . . .P2P1 .

Also our triangular matrices in (5.20) are defined by

L =
[
l̃1 l̃2 . . . l̃n

]
, and U =




uT
1

uT
2
...

uT
n


 , (5.21)

where
l̃n ≡ ln , l̃n−1 ≡ ln−1 and l̃k ≡ Pn−1 . . .Pk+1lk for k = n− 2, . . . , 1 .

So we see that, although the interchanges do not explicitly appear in the rows of U, they do affect the
columns of L. In practice, as described by the examples in §5.2.4 and §5.2.5, at each step k the possible
interchange matrix Pk is applied to the portion of L that has already been constructed, i.e. the first k− 1
columns l1, . . . , lk−1.

Note that we also need to record the product of the interchanges in the permutation matrix P of (5.20),
so that Ax = b can be solved or detA calculated.

5.2.4 Pivoting to maintain accuracy

In the previous section, we have shown how every A ∈ Rn×n (even singular matrices!) have an LU

factorisation, provided that the rows of A are also allowed to be permuted: this is the essence of the key
formula (5.20). For practical computation with inexact arithmetic however, this is not good enough. It
is not sufficient to use pivoting just to avoid algorithm breakdown, it should also be used so that the
accuracy of our results is as high as possible.

At each step 1 6 k 6 n− 1, the key decision about any interchange is made by examining

A(k−1) ≡




0 · · · · · · · · · · · · · · · 0
...

. . .
. . .

. . .
. . .

. . .
...

...
. . . 0 0 0 · · · 0

...
. . . 0 A

(k−1)
k,k A

(k−1)
k,k+1 · · · A

(k−1)
k,n

...
. . . 0 A

(k−1)
k+1,k A

(k−1)
k+1,k+1 · · · A

(k−1)
k+1,n

...
. . .

...
...

...
. . .

...

0 · · · 0 A
(k−1)
n,k A

(k−1)
n,k+1 · · · A

(k−1)
n,n




. (5.22)

Instead of just interchanging rows of A(k−1) when A
(k−1)
k,k = 0, we identify k 6 p 6 n such that

∣∣∣A(k−1)
p,k

∣∣∣ = max
k6i6n

∣∣∣A(k−1)
i,k

∣∣∣ (5.23)

and use this p to define our interchange at step k. Hence we swap rows p and k of A(k−1) using Pk as
defined in (5.17) and then use the same algorithm as in the previous section: i.e. we construct lk and uk

from PkA
(k−1) and then form A(k) as in (5.18).

Mathematical Tripos: IB Numerical Analysis 64 © G.Moore@maths.cam.ac.uk, Lent 2017

Example.




2 1 1

4 1 0

−2 2 1








2

1

3





→




4 1 0

2 1 1

−2 2 1


→




4 1 0
1
2

1
2 1

− 1
2

5

2
1








2

3

1





→




4 1 0

− 1
2

5
2 1

1
2

1
2 1


→




4 1 0

− 1
2

5
2 1

1
2

1
5

4
5


 ,

PA = LU ⇒ A = PTLU, P =




0 1 0

0 0 1

1 0 0


 , L =




1

− 1
2 1
1
2

1
5 1


 , U =




4 1 0
5
2 1

4
5


 ,

where P is the permutation matrix that sends row 2 to row 1, row 3 to row 2, and row 1 to
row 3.

Partial pivoting. Interchanging according to (5.23) is known as partial pivoting and has the important
advantage of forcing

|Li,j| 6 1 i, j = 1, . . . , n .

It also enables theoretical bounds for

|Ui,j | i, j = 1, . . . , n and |A(k)
i,j | i, j = 1, . . . , n ; k = 1, . . . , n− 1

to be established and these control the errors introduced by inexact arithmetic. There is also another
form of pivoting that replaces (5.23) with

∣∣∣A(k−1)
p,q

∣∣∣ = max
k6i6n

k6j6n

∣∣∣A(k−1)
i,j

∣∣∣ (5.24)

and uses both row interchanges (k ↔ p) and column interchanges (k ↔ q) to bring this largest-in-
modulus component to the (k, k) position. (Post-multiplication by a permutation matrix permutes
columns!) This is known as total pivoting and has stronger theoretical properties than partial
pivoting. In practice however, the extra computational effort required for total pivoting is not
regarded as worthwhile and partial pivoting remains the standard choice.

5.2.5 Further examples (Unlectured)

LU factorization.




−3 2 3 −1
6 −2 −6 0
−9 4 10 3
12 −4 −13 −5




2nd−1st· (−2)

3rd−1st· 3

4th−1st· (−4)
→




−3 2 3 −1
−2 2 0 −2
3 −2 1 6
−4 4 −1 −9




3rd−2nd· (−1)

4th−2nd· 2
→




−3 2 3 −1
−2 2 0 −2
3 −1 1 4
−4 2 −1 −5




4th−3rd· (−1)
→




−3 2 3 −1
−2 2 0 −2
3 −1 1 4
−4 2 −1 −1




i.e.

A = LU, L =




1
−2 1
3 −1 1
−4 2 −1 1


 , U =




−3 2 3 −1
2 0 −2

1 4
−1




Mathematical Tripos: IB Numerical Analysis 65 © G.Moore@maths.cam.ac.uk, Lent 2017

Forward and back substitution. The solution to the system

Ax = b, b = [3,−2, 2, 0]T

proceeds in two steps

Ax = L Ux︸︷︷︸
y

= b ⇒ 1) Ly = b, 2) Ux = y.

1) Forward substitution




1
−2 1
3 −1 1
−4 2 −1 1







y1
y2
y3
y4


 =




3
−2
2
0




↓
↓
↓
↓
⇒ y =




3
4
−3
1


 ,

2) Back substitution




−3 2 3 −1
2 0 −2

1 4
−1







x1

x2

x3

x4


 =




3
4
−3
1




↑
↑
↑
↑
⇒ x =




1
1
1
−1


 ,

LU factorization with pivoting.




−3 2 3 −1
6 −2 −6 0

−9 4 10 3

12 −4 −13 −5












4
2
3
1









→




12 −4 −13 −5
6 −2 −6 0

−9 4 10 3

−3 2 3 −1



→




12 −4 −13 −5
1
2 0 1

2
5
2

− 3
4 1 1

4 − 3
4

− 1
4 1 − 1

4 − 9
4












4
3
2
1









→




12 −4 −13 −5
− 3

4 1 1
4 − 3

4

1
2 0 1

2
5
2

− 1
4 1 − 1

4 − 9
4



→




12 −4 −13 −5
− 3

4 1 1
4 − 3

4

1
2 0 1

2
5
2

− 1
4 1 − 1

2 − 3
2



→




12 −4 −13 −5
− 3

4 1 1
4 − 3

4

1
2 0 1

2
5
2

− 1
4 1 −1 1




i.e.

A = PTLU, P =




1

1

1

1



, L =




1

− 3
4 1
1
2 0 1

− 1
4 1 1 1



, U =




12 −4 −13 −5
1 1

4 − 3
4

1
2

5
2

1




5.3 LU factorization theory and application to structured A

In this section we first derive some existence and uniqueness results for A = LU factorisation and then
apply these to matrices A with special form. We are looking at particular conditions that allow us, either
theoretically or practically, to avoid pivoting.

5.3.1 Existence and uniqueness of the LU factorization

We first relate the breakdown conditions (5.11) to explicit properties of the coefficient matrix A.

Definition 5.4 (Leading principal submatrices). The leading principal submatrices Ak ∈ Rk×k (for
k = 1, . . . , n) of A ∈ R

n×n are defined by

(Ak)i,j = Ai,j i, j = 1, . . . , k . (5.25)

Mathematical Tripos: IB Numerical Analysis 66 © G.Moore@maths.cam.ac.uk, Lent 2017

Theorem 5.5. A sufficient condition for both the existence and uniqueness of an A = LU factorization
is that

det (Ak) 6= 0 k = 1, . . . , n− 1 .

Proof. (Unlectured.) We use induction on n, the size of the matrix. For n = 1, the result is clear.

Assume the result is true for (n− 1)× (n− 1) matrices and partition A ∈ Rn×n as

A =


 An−1 b

cT An,n


 . (5.26a)

We require

A = LU with L =


 Ln−1 0

xT 1


 , U =


 Un−1 y

0T Un,n


 , (5.26b)

where Ln−1,Un−1 ∈ R(n−1)×(n−1), x,y ∈ Rn−1 and Un,n are to be determined. Multiplying out these
block matrices, we see that we want to have

A =


 An−1 b

cT An,n


 =


 Ln−1Un−1 Ln−1y

xTUn−1 xTy + Un,n


 . (5.26c)

By virtue of the induction assumption Ln−1 and Un−1 exist and are unique; further, Un−1 is non-singular
since it is assumed that An−1 is non-singular. Hence Ln−1y = b and xTUn−1 = cT can be uniquely solved
to obtain

y = L−1
n−1b, xT = cTU−1

n−1, Un,n = An,n − xTy. (5.26d)

So, by construction, there exists a unique factorization A = LU.

Corollary 5.6. Our breakdown conditions in (5.11) are related to the leading principal submatrices of A
by

A
(0)
1,1 = det (A1) and A

(k−1)
k,k =

det (Ak)

det (Ak−1)
k = 2, . . . , n . (5.27)

Proof. From (5.26b) and (5.26c)

det(An) = det(A) = det(L) det(U) = det(U) = Un,n det(Un−1) ,

det(An−1) = det(Ln−1) det(Un−1) = det(Un−1) .

So det(An) = Un,n det(An−1), and thence by induction

Uk,k =
det(Ak)

det(Ak−1)
k = 2, . . . , n . (5.28)

Further U1,1 = A1,1 = det(A1) and, from (5.10a) with j = k, we have that Uk,k = A
(k−1)
k,k for k =

1, . . . , n.

Note that A being non-singular (det(An) 6= 0!) is not required in Theorem 5.5 and, since U = L−1A, A
and U are either both singular or both non-singular. If we do include this condition, then a useful stronger
result is obtained.

Theorem 5.7. If det (Ak) 6= 0 for k = 1, . . . , n then A ∈ Rn×n has a unique factorization of the form

A = LDU ; (5.29)

where L ∈ Rn×n is unit lower triangular, U ∈ Rn×n is unit upper triangular and D ∈ Rn×n is a non-
singular diagonal matrix.

Mathematical Tripos: IB Numerical Analysis 67 © G.Moore@maths.cam.ac.uk, Lent 2017

Proof. From Theorem 5.5 we have A = LÛ, where Û is non-singular and upper triangular; so we just
write Û = DU, where U is unit upper triangular.

In pictorial form, this last result is

A =
[
l1 l2 · · · ln

]




D1,1 0 · · · 0

0 D2,2
. . .

...
...

. . .
. . . 0

0 · · · 0 Dn,n







uT
1

uT
2
...

uT
n


 =

n∑

k=1

Dk,klku
T
k , (5.30)

where lk is the kth column of L and uT
k is the kth row of U.

We end this section with some results of mainly theoretical interest.

Theorem 5.8. If A is non-singular and an LU factorization of A exists then

• Ak is non-singular for k = 1, . . . , n− 1,

• this LU factorization is unique.

Proof. The first part follows from (5.28), i.e.

det (A) =
n∏

i=1

Ui,i 6= 0 ⇒ det (Ak) =
k∏

i=1

Ui,i 6= 0 .

The second part then follows from Theorem 5.5.

It is also possible to prove the second part of the last theorem directly.

Theorem 5.9 (Uniqueness). If A is non-singular, it is impossible for more than one LU factorization to
exist, i.e.

A = L1U1 = L2U2 implies both L1 = L2 and U1 = U2.

Proof. If A is non-singular, then both U1 and U2 are non-singular, and hence the equality L1U1 = L2U2

implies L−1
2 L1 = U2U

−1
1 = V. The product of lower/upper triangular matrices is lower/upper triangular

and, as already noted in (5.4) and (5.6), the inverse of a lower/upper triangular matrix is lower/upper
triangular. Consequently, V is simultaneously lower and upper triangular, hence it is diagonal. Since L−1

2 L1
has unit diagonal, we obtain V = I.

Finally, we just state the converse of Theorem 5.5.

Theorem 5.10 (Unproved). If at least one of {Ak}n−1
k=1 is singular, then either no LU factorization exists

or the LU factorization is not unique.

Examples.

(i) There is no LU factorization for [
0 1
1 0

]
,

or, indeed, for any non-singular n× n matrix A such that det (Ak) = 0 for some k = 1, . . . , n− 1.

(ii) Some singular matrices may be LU factorized in many ways, e.g.

[
0 1
0 1

]
=

[
1 0
0 1

] [
0 1
0 1

]
=

[
1 0
1
2 1

] [
0 1
0 1

2

]
.

Mathematical Tripos: IB Numerical Analysis 68 © G.Moore@maths.cam.ac.uk, Lent 2017

5.3.2 Symmetric matrices

If A ∈ Rn×n is symmetric, then one can try to construct different kinds of “symmetric” LU factorisation.

Theorem 5.11. If A ∈ Rn×n is symmetric and non-singular, with

det (Ak) 6= 0 k = 1, . . . , n− 1 ;

then a unique factorization of the form
A = LDLT. (5.31)

exists, with L ∈ Rn×n unit lower triangular and D ∈ Rn×n a non-singular diagonal matrix.

Proof. From Theorem 5.7 we have

LDU = A = AT = UTDLT :

hence, by uniqueness, U = LT.

Remark. Clearly this form of LU factorisation is a suitable exploitation of symmetry and requires roughly
half the storage of conventional LU. Specifically, to compute this factorization, we let A(0) = A and
for k = 1, 2, . . . , n let lk be the multiple of the kth column of A(k−1) such that Lk,k = 1. We then
set

Dk,k = A
(k−1)
k,k and form A(k) = A(k−1) −Dk,klkl

T
k . (5.32)

Example. Let A = A(0) =

[
2 4
4 11

]
. Hence l1 =

[
1
2

]
, D1,1 = 2 and

A(1) = A(0) −D1,1l1l
T
1 =

[
2 4
4 11

]
− 2

[
1 2
2 4

]
=

[
0 0
0 3

]
.

We deduce that l2 =

[
0
1

]
, D2,2 = 3 and

A =

[
1 0
2 1

] [
2 0
0 3

] [
1 2
0 1

]
.

Remark. Even with symmetric matrices, some form of pivoting is generally necessary, both to avoid
breakdown and to maintain accuracy when using inexact arithmetic. Clearly, permuting the rows
of A will destroy symmetry unless we simultaneously permute the corresponding columns: i.e.

A → PAPT ,

where P ∈ Rn×n is a permutation matrix. One would like to prove that, for any symmetric A ∈ Rn×n,
a symmetric factorisation of the form

PAPT = LDLT ,

where L ∈ Rn×n is unit lower triangular and D ∈ Rn×n is diagonal, exists. This however is not true,
even if A is restricted to be nonsingular. Fortunately, the next best result is true: for any symmetric
A ∈ R

n×n, a symmetric factorisation of the form

PAPT = LTLT ,

where L ∈ Rn×n is unit lower triangular and T ∈ Rn×n is both symmetric and tridiagonal, exists.
The permutation matrix P can be chosen so that the factorisation is safe to use with inexact
arithmetic.

Mathematical Tripos: IB Numerical Analysis 69 © G.Moore@maths.cam.ac.uk, Lent 2017

5.3.3 Positive definite matrices

This is another commonly occurring type of matrix.

Definition 5.12 (Positive definite matrices). A ∈ Rn×n is positive definite if

xTAx > 0 ∀x 6= 0 ∈ R
n .

It is easy to show that all positive definite matrices are non-singular.

Theorem 5.13. If A ∈ Rn×n is positive definite then it is non-singular.

Proof. If A is singular then ∃z 6= 0 ∈ Rn such that Az = 0: but then zTAz = 0, which is impossible if A
is positive definite.

The same kind of argument shows that every positive definite matrix has a unique LU factorisation.

Theorem 5.14. If A ∈ Rn×n is positive definite then

det (Ak) 6= 0 k = 1, . . . , n− 1 .

Proof. By Theorem 5.13, it is sufficient to show that Ak ∈ Rk×k is positive definite for k = 1, . . . , n− 1.

For any y 6= 0 ∈ Rk, construct x 6= 0 ∈ Rn by adding n− k zero components to y. This means that

yTAky = xTAx > 0

and so Ak ∈ R
k×k is positive definite for k = 1, . . . , n− 1.

Corollary 5.15. If A ∈ Rn×n is positive definite then Theorem 5.5 shows that it has a unique A = LU

factorization.

Remark. In practice, it is not true that pivoting is unnecessary for positive definite coefficient matrices A.
In general, with inexact arithmetic, the accuracy of solutions for Ax = b (using A = LU factorisation
because A is positive definite) can be completely unsatisfactory.

5.3.4 Symmetric positive definite matrices

If A ∈ Rn×n is both symmetric and positive definite, pivoting is no longer required either theoretically or
practically.

Theorem 5.16. A symmetric A ∈ Rn×n is positive definite if and only if it has a factorization of the
form

A = LDLT, (5.33)

where L ∈ Rn×n is unit lower triangular and D ∈ Rn×n is diagonal with Dk,k > 0 k = 1, . . . , n.

Proof. If such a factorisation exists then, for any x ∈ Rn, we have

xTAx = xTLDLTx = yTDy =

n∑

k=1

Dk,ky
2
k ,

where y = LTx. If x 6= 0 then we must also have y 6= 0 (since L is non-singular), so
∑n

k=1 Dk,ky
2
k > 0

and hence also xTAx > 0. Thus A must be positive definite.

Conversely, if A is positive definite then we know from Theorem 5.11 (making use of Theorem 5.13 and
Theorem 5.14) that it has a unique factorisation of the form

A = LDLT ,

Mathematical Tripos: IB Numerical Analysis 70 © G.Moore@maths.cam.ac.uk, Lent 2017

where L ∈ Rn×n is unit lower triangular and D ∈ Rn×n is both diagonal and non-singular. In addition,
after defining {yk}nk=1 ⊂ Rn by

LTyk = ek k = 1, . . . , n ,

we see that yk 6= 0 for k = 1, . . . , n and that

Dk,k = eTkDek = yT
k LDL

Tyk = yT
kAyk > 0 k = 1, . . . , n .

Remark. Hence it is possible to find out if a symmetric A ∈ Rn×n is positive definite by simply trying to
construct an A = LDLT factorization and then checking that Dk,k > 0 for k = 1, . . . , n.

Example. The following 3× 3 matrix is shown to be positive definite.



2 6 −2
6 21 0
−2 0 16


→




2 6 −2
3 3 6
−1 6 14


→




2 6 −2
3 3 6
−1 2 2


 ⇒ L =




1
3 1
−1 2 1


 , D =




2
3
2


 .

Cholesky factorization. This is a famous alternative (but equivalent!) factorisation for matrices A ∈ Rn×n

which are both symmetric and positive definite. If D ∈ Rn×n is a diagonal matrix with positive
diagonal elements then we can define D1/2 ∈ R

n×n as the diagonal matrix whose diagonal elements
are (Dk,k)

1/2 for k = 1, . . . , n. (The positive square root is used here!) Consequently D1/2 has
positive diagonal elements. Then, using Theorem 5.16, we can write

A = LDLT = LD1/2D1/2LT = LD1/2
(
LD1/2

)T
= GGT , (5.34)

where G ≡ LD1/2 ∈ R
n×n is a lower triangular matrix with positive diagonal elements. This is the

unique Cholesky factorization for a symmetric, positive definite A.

Remark. We emphasise that both (5.33) and (5.34) are completely safe even with inexact arithmetic.
Pivoting is not necessary when A is both symmetric and positive definite.

5.3.5 Sparse matrices

In this section, we look at a few of the properties of the A = LU factorisation for a different type of matrix
A. (For simplicity, we shall always assume that A is non-singular and that the factorisation exists and is
unique.)

Definition 5.17. A matrix A ∈ R
n×n is called a sparse matrix if nearly all the elements of A are zero.

The simplest examples of sparse matrices are band matrices.

Definition 5.18. A matrix A ∈ Rn×n is called a band matrix if there exists an integer r ≪ n such that

Ai,j = 0 for all |i− j| > r.

In other words, all the nonzero elements of A reside in a narrow band of width 2r+1 about the principal
diagonal. (r subdiagonals below the principal diagonal and r superdiagonals above the principal diagonal.)

r = 1













∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗













, r = 2













∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗













, r = 3













∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗













.

(r = 1 is commonly called a tridiagonal matrix; similarly, r = 2 is a pentadiagonal matrix.)

It is often required to solve very large systems Ax = b (n = 109 is a relatively modest example) where
A is sparse. The efficient solution of such systems should exploit the sparsity. In particular, we wish the
matrices L and U to inherit as much as possible of the sparsity of A, so that the cost of performing the
forward and backward substitutions with L and U is comparable with the cost of forming the product
Ax: i.e. the cost of computation should be determined by the number of nonzero entries, rather than by
n. To this end the following theorem is useful.

Mathematical Tripos: IB Numerical Analysis 71 © G.Moore@maths.cam.ac.uk, Lent 2017

Theorem 5.19. Let A = LU be the LU factorization (without pivoting!) of a sparse matrix. Then

(i) all leading zeros in the rows of A to the left of the principal diagonal are inherited by L,

(ii) all leading zeros in the columns of A above the principal diagonal are inherited by U.




∗ • • • •
◦ ∗ • • •
◦ ◦ ∗ • • •
◦ ∗ • •

◦ ◦ ◦ ◦ ∗ • •
◦ ∗ •

◦ ◦ ◦ ◦ ◦ ◦ ∗


 =




∗
◦ ∗
◦ ◦ ∗
◦ ∗

◦ ◦ ◦ ◦ ∗
◦ ∗

◦ ◦ ◦ ◦ ◦ ◦ ∗


×




∗ • • • •
∗ • • •
∗ • • •
∗ • •
∗ • •
∗ •
∗




Here ◦ refers to non-zeros to the left of the principal diagonal in A and L, while • refers to non-zeros
above the principal diagonal in A and U.

Proof. From our conditions on A at the beginning of this section, we know that Uk,k 6= 0 for k = 1, . . . , n.

If Ai,1 = Ai,2 = · · · = 0 are the leading zeros in the i-th row, then we obtain

0 = Ai,1 = Li,1U1,1 ⇒ Li,1 = 0,

0 = Ai,2 = Li,1U1,2 + Li,2U2,2 ⇒ Li,2 = 0,

0 = Ai,3 = Li,1U1,3 + Li,2U2,3 + Li,3U3,3 ⇒ Li,3 = 0, and so on.

Similarly for the leading zeros in the j-th column. Since Lk,k = 1 for k = 1, . . . , n, it follows that

0 = A1,j = L1,1U1,j ⇒ U1,j = 0,

0 = A2,j = L2,1U1,j + L2,2U2,j ⇒ U2,j = 0,

0 = A3,j = L3,1U1,j + L3,2U2,j + L3,3U3,j ⇒ U3,j = 0, and so on.

Corollary 5.20. If A is a band matrix and A = LU, then Li,j = Ui,j = 0 for all |i − j| > r. Hence the
sparsity structure is inherited by the factorization and both L and U are band matrices with the same band
width as A.

Cost. In general, the expense of calculating an LU factorization of an n × n dense matrix A is O
(
n3
)

operations and the expense of solving Ax = b, provided that the factorization is known, is O
(
n2
)
.

However, in the case of a banded A, we need just

(i) O
(
r2n
)
operations to factorize, and

(ii) O(rn) operations to solve a linear system (after factorization).

Method 5.21. Theorem 5.19 suggests that, for the factorization of a sparse (but not band!) matrix A,
one might try to reorder its rows and columns beforehand so that many of the zero elements become
leading zeros in rows and columns. (Thus we are now using interchanges to reduce the fill-in for L and U,
rather than to prevent breakdown of the factorisation.)

Example 1. The LU factorization of

A =




5 1 1 1 1

1 1

1 1

1 1

1 1



=




1
1
5 1
1
5 − 1

4 1
1
5 − 1

4 − 1
3 1

1
5 − 1

4 − 1
3 − 1

2 1







5 1 1 1 1
4
5 − 1

5 − 1
5 − 1

5
3
4 − 1

4 − 1
4

2
3 − 1

3
1
2




has significant fill-in. However, exchanging the first and the last rows and columns yields

PAPT =




1 1
1 1

1 1
1 1

1 1 1 1 5



=




1
1

1
1

1 1 1 1 1







1 1
1 1

1 1
1 1

1



.

Mathematical Tripos: IB Numerical Analysis 72 © G.Moore@maths.cam.ac.uk, Lent 2017

Thus we conclude that if the non-zeros of A occur only on the diagonal, in one row and in one
column; then the full row and column should be placed at the bottom and on the right of A,
respectively.

Example 2. The LU factorisation of




−3 1 1 2 0

1 −3 0 0 1

1 0 2 0 0

2 0 0 3 0

0 1 0 0 3



=




1 0 0 0 0

− 1
3 1 0 0 0

− 1
3 − 1

8 1 0 0

− 2
3 − 1

4
6
19 1 0

0 − 3
8

1
19

4
81 1







−3 1 1 2 0

0 − 8
3

1
3

2
3 1

0 0 19
8

3
4

1
8

0 0 0 81
19

4
19

0 0 0 0 272
81



,

has significant fill-in. However, reordering (symmetrically) rows and columns 1 ↔ 3, 2 ↔ 4 and
4↔ 5 yields




2 0 1 0 0

0 3 2 0 0

1 2 −3 0 1

0 0 0 3 1

0 0 1 1 −3



=




1 0 0 0 0

0 1 0 0 0
1
2

2
3 1 0 0

0 0 0 1 0

0 0 − 6
29

1
3 1







2 0 1 0 0

0 3 2 0 0

0 0 − 29
6 0 1

0 0 0 3 1

0 0 0 0 − 272
87



.

General sparse matrices. These feature in a wide range of applications, e.g. the solution of partial differ-
ential equations, and there exists a wealth of methods for their solution. One approach is efficient
factorization, that minimizes fill in. Yet another is to use iterative methods (see the Part II Numer-
ical Analysis course). There also exists a substantial body of other, highly effective methods, e.g.
Fast Fourier Transforms, preconditioned conjugate gradients and multi-grid techniques (again see
the Part II Numerical Analysis course), fast multi-pole techniques and much more.

Sparsity and graph theory. An exceedingly powerful (and beautiful) methodology of ordering pivots to
minimize fill-in of sparse matrices uses graph theory and, like many other cool applications of
mathematics in numerical analysis, is alas not in the schedules :-(

Mathematical Tripos: IB Numerical Analysis 73 © G.Moore@maths.cam.ac.uk, Lent 2017

6 Linear Least Squares and the QR factorisation

In this section we wish to “solve” the over-determined rectangular system

Ax = b , (6.1)

where our given data is A ∈ Rm×n and b ∈ Rm with m > n. (Our approach can also deal with the case
m = n, even when A is singular! When A is non-singular, however, the algorithms in §5 are more efficient.)
Consequently we are looking for a solution x ∈ Rn; but because we have more equations then unknowns
(m > n!), we need to make clear exactly what is meant by a solution of (6.1).

Throughout this section, we regard (6.1) as a least squares problem and define x∗ ∈ Rn as a solution of
(6.1) if

‖Ax∗ − b‖2 = min
x∈Rn

‖Ax− b‖2 ,

where

‖z‖2 ≡ 〈z, z〉 ≡
m∑

i=1

z2i

is the Euclidean vector norm and associated scalar product on R
m.

Remark. Problems of this form occur frequently when we collect m observations (xi, yi), which are typi-
cally prone to measurement error, and wish to fit them to an n-variable linear model, typically with
m≫ n. In statistics, this is called linear regression.

For instance, suppose that we have m measurements of y ≈ F (x), and that we wish to model F
with a linear combination of {φj(x)}nj=1, i.e.

F (x) ≡ c1φ1(x) + c2φ2(x) + · · ·+ cnφn(x) and F (xi) ≈ yi for i = 1...m .

(Such a problem might occur if we were trying to match some planet observations to an ellipse.)
Hence we want to determine c ∈ Rn such that the F (xi) ‘best’ fit the yi, i.e.

Ac ≡




φ1(x1) · · · φn(x1)
...

...
φ1(xn) · · · φn(xn)

...
...

φ1(xm) · · · φn(xm)







c1
...
cn


 ≡




F (x1)
...

F (xn)
...

F (xm)



≈




y1
...
yn
...
ym



≡ y .

There are many ways of doing this; we will determine the c ∈ Rn that minimizes the sum of squares
of the deviation, i.e. we minimize

m∑

i=1

(F (xi)− yi)
2 ≡ ‖Ac− y‖2.

This leads to a linear system of equations for the determination of the unknown c ∈ R
n.

6.1 The normal equations

We can immediately characterise the solutions of (6.1) in terms of a square system of equations.

Theorem 6.1. x∗ ∈ R
n is a solution of (6.1) if and only if

AT (Ax∗ − b) = 0 . (6.2)

Mathematical Tripos: IB Numerical Analysis 74 © G.Moore@maths.cam.ac.uk, Lent 2017

Proof. If x∗ ∈ Rn is a solution of (6.1) then it must minimize

f(x) ≡ ‖Ax− b‖2 = 〈Ax− b,Ax− b〉 = xTATAx− 2xTATb+ bTb .

But the gradient of f is
∇f(x) ≡ 2AT (Ax− b)

and we know that ∇f(x∗) = 0 is a necessary condition for x∗ ∈ Rn to be a minimum of f .

Conversely, if x∗ ∈ R
n satisfies (6.2) then we can write

‖Ax− b‖2 = ‖A(x∗ + y)− b‖2 ∀x ∈ R
n , (6.3)

where y ≡ x− x∗. Consequently

‖Ax− b‖2 = ‖Ay + (Ax∗ − b)‖2

= 〈Ay,Ay〉+ 2yTAT (Ax∗ − b) + 〈Ax∗ − b,Ax∗ − b〉
= ‖Ay‖2 + ‖Ax∗ − b‖2

> ‖Ax∗ − b‖2

shows that x∗ is a solution of (6.1).

Remembering that A ∈ Rm×n is said to have full rank if its columns form a linearly independent set of
vectors in Rm, we have the following useful uniqueness result.

Corollary 6.2. If A ∈ R
m×n has full rank then (6.1) has a unique solution.

Proof. If A has full rank then
y 6= 0 ∈ R

n ⇒ Ay 6= 0 ∈ R
m .

Hence the symmetric matrix ATA ∈ Rn×n is positive definite since

xTATAx = ‖Ax‖2 ∀x ∈ R
n .

Thus Theorem 5.13 tells us that the square system ATAx = ATb has a unique solution x∗ ∈ Rn and so,
by Theorem 6.1, (6.1) has a unique solution.

Together Theorem 6.1 and Corollary 6.2 show us that one way of solving the least squares problem (6.1)
is to solve the square linear system

ATAx = ATb ATA ∈ R
n×n, ATb ∈ R

n . (6.4)

These are called the normal equations and ATA is called the Gram matrix.

0

2

4

6

8

2 4 6 8 10 12
x

xi yi
1 0.00
2 0.60
3 1.77
4 1.92
5 3.31
6 3.52
7 4.59
8 5.31
9 5.79
10 7.06
11 7.17

Figure 6.11: Least squares straight line data fitting.

Mathematical Tripos: IB Numerical Analysis 75 © G.Moore@maths.cam.ac.uk, Lent 2017

Example 1. The least squares approximation, by a straight line, to the data plotted in Figure 6.11

F (x) = c1 + c2x (φ1(x) = 1, φ2(x) = x),

results in the following normal equations and solution:

A =
(
φj(xi)

)
=











1 1
1 2
1 3
: :
1 11











,

[
11 66
66 506

]

︸ ︷︷ ︸
ATA

[
c1
c2

]
=

[
41.04

328.05

]

︸ ︷︷ ︸
ATy

⇒
[

c1
c2

]
=

[
−0.7314
0.7437

]
.

Example 2. Using the normal equations, find the least squares approximation to the data

xi yi
−1 2
0 1
1 0

by a function F = c1φ1 + c2φ2, where φ1(x) = x and φ2(x) = 1 + x− x2.

We solve the system of normal equations:

A =
(
φj(xi)

)
=



−1 −1
0 1
1 1


 ,

[
2 2
2 3

]

︸ ︷︷ ︸
ATA

[
c1
c2

]
=

[
−2
−1

]

︸ ︷︷ ︸
ATy

⇒ c =

[
−2
1

]
.

The residual is

Ac− y =




1
1
−1


−




2
1
0


 =



−1
0
−1


 ⇒ ‖Ac− y‖ =

√
2 .

We may also derive the normal equations directly by a geometrical argument. If we denote the columns
of A by {aj}nj=1 ⊂ Rm then the least squares problem can be written

min
x∈Rn

∥∥∥b−
n∑

j=1

xjaj

∥∥∥ .

The value of this minimum is the Euclidean distance between the given vector b ∈ Rm and the subspace
C ⊂ Rm that is the column-space of A. (This subspace has dimension n if and only if A has full rank.)
Consequently the minimum is attained by x∗ ∈ R

n when

b−
n∑

j=1

x∗
jaj ≡ b− Ax∗

is orthogonal to all the vectors in C, i.e.

AT (b− Ax∗) = 0 .

Continuing this geometrical argument, it is easy to show directly that the normal equations (6.4) are
always consistent. We use the orthogonal decomposition

R
m = C ⊕ C⊥ ,

where C⊥ denotes the subspace of Rm which is orthogonal to C with respect to the Euclidean scalar
product, to uniquely write

b = b1 + b2 b1 ∈ C, b2 ∈ C⊥ .

Since x ∈ Rn ⇒ Ax ∈ C, all solutions of our least squares problem (6.1) satisfy Ax = b1 and

min
x∈Rn

‖Ax− b‖ = ‖b2‖ .

Mathematical Tripos: IB Numerical Analysis 76 © G.Moore@maths.cam.ac.uk, Lent 2017

(If A has full rank, there is a unique solution: otherwise there are an infinite number of solutions for
Ax = b1.) Consequently

Ax = b1 ⇒ b− Ax = b2 ⇒ AT (b− Ax) = 0

shows that the normal equations are consistent.

In the full rank case, using the normal equations (6.4) to solve least squares problems is popular in many
applications: i.e. one only has to construct the Cholesky decomposition (5.34) for the symmetric positive
definite Gram matrix ATA. Unfortunately, there are often practical disadvantages in forming ATA.

(i) A may have useful sparsity properties, which are lost when forming ATA.

(ii) With inexact arithmetic, A can have full rank but ATA may be singular. For instance, suppose that
our computer works to the IEEE arithmetic standard (≈ 15 significant digits) and let

A =

[
108 −108
1 1

]
=⇒ ATA =

[
1016 + 1 −1016 + 1
−1016 + 1 1016 + 1

]
≈ 1016

[
1 −1
−1 1

]
.

Suppose b = [0, 2]T, then the solution of Ax = b is [1, 1]T, as can be shown by Gaussian elimination;
however, our computer ‘believes’ that ATA is singular!

(iii) Even if things are not quite this bad, ATA may be much closer to singularity than A is to being
rank deficient. The “squaring” process is inherently dangerous and ATA can be a much more ill-
conditioned matrix than A.

We shall see that there are often much better algorithms for solving least squares problems than the
normal equations approach. These superior algorithms are based on the systematic use of orthogonal
matrices and are described in the rest of this section.

6.2 Orthogonal matrices

Orthogonal matrices are the “nicest” type of non-singular matrix.

Definition 6.3 (Orthogonal matrix). Q ∈ Rn×n is orthogonal if

QTQ = I .

Thus an orthogonal Q must be non-singular and its inverse is its transpose. (Hence QT must also be an
orthogonal matrix.) Equivalent definitions are:-

a) the columns of Q form an orthonormal set in Rn;

b) the rows of Q form an orthonormal set in Rn.

(Of course here we mean orthonormality with respect to the Euclidean scalar product.)

The key property of orthogonal matrices in connection with least squares problems is that they leave the
Euclidean vector norm invariant.

Proposition 6.4. If Q ∈ Rn×n is orthogonal then

‖Qx‖ = ‖x‖ ∀x ∈ R
n .

Proof.
‖Qx‖2 = xTQTQx = ‖x‖2 .

A similar argument shows that the product of orthogonal matrices is orthogonal.

Mathematical Tripos: IB Numerical Analysis 77 © G.Moore@maths.cam.ac.uk, Lent 2017

Proposition 6.5. If P,Q ∈ Rn×n are orthogonal then so is PQ.

Proof.
(PQ)T(PQ) = QTPTPQ = I .

It is also easy to see that the determinant of an orthogonal matrix must be ±1, i.e.

1 = det(I) = det(QQT) = det(Q) det(QT) = (det(Q))
2
.

Both of these are possible, e.g. Q = ±I ∈ R
3×3.

Finally, we use an orthogonality argument to show how an orthonormal set of vectors can be extended.
(This result will be useful later to construct orthogonal matrices.)

Lemma 6.6. If {qj}nj=1 ⊂ Rm is orthonormal, with n < m, then ∃qn+1 ∈ Rm such that {qj}n+1
j=1 is

orthonormal.

Proof. We describe a method for constructing such a qn+1. Let Q ∈ Rm×n have columns {qj}nj=1: so that
from

m∑

k=1




n∑

j=1

Q2
k,j


 ≡

n∑

j=1

‖qj‖2 = n < m ,

it follows that ∃i ∈ {1, 2, . . . ,m} such that
∑n

j=1 Q
2
i,j < 1. If we define

w ≡ ei −
n∑

j=1

〈qj , ei〉qj

then (by construction) w is orthogonal to {qj}nj=1, i.e.

〈qℓ,w〉 = 〈qℓ, ei〉 −
n∑

j=1

〈qj , ei〉〈qℓ, qj〉 = 0 ℓ = 1, . . . , n .

Furthermore, since Qi,j = 〈qj , ei〉, we have

‖w‖2 = 〈ei, ei〉 − 2
n∑

j=1

〈qj , ei〉〈ei, qj〉+
n∑

j=1

〈qj , ei〉
n∑

k=1

〈qk, ei〉〈qj , qk〉 = 1−
n∑

j=1

Q2
i,j > 0 .

Hence we can define qn+1 ≡ w/‖w‖.

6.3 The QR factorization

We immediately see the practical importance of orthogonal matrices with respect to the least squares
problem (6.1), because Proposition 6.4 tells us that

min
x∈Rn

‖Ax− b‖ = min
x∈Rn

‖QAx− Qb‖ (6.5)

for all orthogonal Q ∈ R
m×m. Hence we would like to find an orthogonal Q ∈ R

m×m so that the least
squares problem on the right in (6.5) is as “simple” as possible and we know (by analogy with §5) that
this means forcing QA to be some kind of triangular matrix.

Mathematical Tripos: IB Numerical Analysis 78 © G.Moore@maths.cam.ac.uk, Lent 2017

Definition 6.7. A = QR is a QR factorization of A ∈ Rm×n if Q ∈ Rm×m is orthogonal and R ∈ Rm×n

is “upper triangular”, i.e.




A1,1 · · · A1,n
: :

: :
An,1 · · · An,n

: :
: :

Am,1 · · · Am,n




︸ ︷︷ ︸
n

=




Q1,1 · · · Q1,n · · · Q1,m
: : :

: : :
Qn,1 Qn,n Qn,m

: : :
: : :

Qm,1 · · · Qm,n · · · Qm,m




︸ ︷︷ ︸
m>n




R1,1 R1,2 · · · R1,n
R2,2 :

. . . :
Rn,n

0 · · · · · · 0
: :
0 · · · · · · 0




︸ ︷︷ ︸
n





m>n . (6.6)

(Thus Ri,j = 0 for i > j.)

Remarks.

a) Every A ∈ Rm×n has a (non-unique) QR factorization and we shall prove this by construction. Note
that non-uniqueness is immediately obvious by changing sign in both a column of Q and the corre-
sponding row of R.

b) If we denote the columns of A and Q by {aj}nj=1 and {qj}mj=1 respectively, then (6.6) becomes

[a1 a2 · · · an] = [q1 q2 · · · qm]




R1,1 R1,2 · · · R1,n

0 R2,2

...
...

. . .
. . .

0 Rn,n

...
...

0 · · · · · · 0




,

and

aj =

j∑

i=1

Ri,jqi, j = 1, 2, . . . , n . (6.7)

In other words, the jth column of A is expressed as a linear combination of the first j columns of Q.
(Remember that the columns of Q form an orthonormal set in Rm.)

c) We see from (6.6) that the last m− n rows of R and last m− n columns of Q are redundant, so that

we have A = Q̃R̃ where Q̃ ∈ Rm×n and R̃ ∈ Rn×n. This is called a skinny QR factorisation and written

m>n








A1,1 · · · A1,n
: :

: :
An,1 · · · An,n

: :
: :

Am,1 · · · Am,n




︸ ︷︷ ︸
n

=




Q1,1 · · · Q1,n
: :

: :
Qn,1 · · · Qn,n

: :
: :

Qm,1 · · · Qm,n




︸ ︷︷ ︸
n<m



R1,1R1,2 · · · R1,n

R2,2 :
. . . :

Rn,n




︸ ︷︷ ︸
n





n . (6.8)

d) Having constructed a QR factorisation of A, the least squares problem (6.1) becomes

min
x∈Rn

‖Ax− b‖ = min
x∈Rn

‖Rx− QTb‖ . (6.9)

In §6.5 we shall see how to solve least squares problems with an upper triangular coefficient matrix.
In this section we shall also see that a skinny QR factorisation is good enough to solve a least squares
problem.

Mathematical Tripos: IB Numerical Analysis 79 © G.Moore@maths.cam.ac.uk, Lent 2017

6.4 Constructing a QR factorization

We shall describe three standard algorithms for constructing an A = QR factorization.

(i) The Gram–Schmidt process (as in Vectors & Matrices) is used to orthogonalise the columns of
A ∈ Rm×n.

(ii) Simple rotation matrices Ω ∈ Rm×m (called Givens, Jacobi or plane rotations) are used to gradually
transform A ∈ Rm×n element-by-element into “upper triangular” form, i.e.

Ωk . . .Ω2Ω1A = R where k 6 mn− n(n+ 1)/2 .

Each rotation matrix is orthogonal and therefore Proposition 6.5 tells us that

Q ≡ ΩT
1 Ω

T
2 · · ·ΩT

k ⇒ A = QR .

(iii) Simple reflection matrices H ∈ Rm×m (called Householder reflections) are used to gradually trans-
form A ∈ Rm×n column-by-column into “upper triangular” form, i.e.

Hk . . .H2H1A = R where k 6 n .

Each reflection matrix is symmetric and orthogonal and therefore Proposition 6.5 again tells us that

Q ≡ H1H2 · · ·Hk ⇒ A = QR .

6.4.1 The Gram–Schmidt orthogonalisation process

First recall, from Vectors & Matrices, that given a finite, linearly independent set of vectors {w1, . . . ,wr}
the Gram–Schmidt process is a method of generating an orthogonal set {v1, . . . ,vr} which spans the
same subspace. This is done, at stage k, by projecting wk orthogonally onto the subspace generated by
{v1, . . . ,vk−1}, and then the vector vk is defined to be the difference between wk and this projection.

We will use the Gram–Schmidt process to construct a skinny QR factorisation (6.8) of A ∈ R
m×n. (For

simplicity, we will omit the tildes from Q̃ and R̃!) Thus, given the n columns of A

A ≡ [a1 a2 · · · an]

in Rm, we wish to construct Q ∈ Rm×n (whose columns form an orthonormal set in Rm) and R ∈ Rn×n

so that

aj =

j∑

i=1

Ri,jqi j = 1, 2, . . . , n . (6.10)

Each column of Q and R will be obtained from the corresponding column of A.

For simplicity, we will first describe the Gram–Schmidt algorithm when A has full rank. This is the most
important case, when Corollary 6.2 shows that the least squares problem (6.1) has a unique solution.

Algorithm 6.8. Since A has full rank, its 1st column a1 6= 0. Set q1 ≡ a1/‖a1‖ and R1,1 ≡ ‖a1‖.
For columns 2 6 j 6 n, we set

Ri,j ≡ 〈qi,aj〉 i = 1, . . . , j − 1

and compute

dj = aj −
j−1∑

i=1

Ri,jqi .

Since A has full rank, we must have dj 6= 0: otherwise the set {ak}jk=1 would be linearly dependent. Set
qj ≡ dj/‖dj‖ and Rj,j ≡ ‖dj‖.

Mathematical Tripos: IB Numerical Analysis 80 © G.Moore@maths.cam.ac.uk, Lent 2017

When using this algorithm to solve (6.10) for Q and R, we see that the only lack of uniqueness in the
solution is the choice of sign for each column of Q and corresponding row of R. Thus we have the following
uniqueness result.

Theorem 6.9. If A ∈ Rm×n has full rank, then its skinny QR factorisation (6.8) is unique provided we
impose the restrictions

Ri,i > 0 i = 1, . . . , n .

When A ∈ Rm×n has full rank, we can also link its unique skinny QR factorisation with the unique
Cholesky factorisation of the Gram matrix ATA ∈ R

n×n. (Remember that Corollary 6.2 shows us that
ATA is symmetric positive definite and (5.34) has ATA = GGT, where G ∈ Rn×n is a lower triangular
matrix with positive diagonal elements.) Thus AG−T ∈ Rm×n satisfies

(
AG−T

)T
AG−T = G−1ATAG−T = I ∈ R

n×n

and so the columns of AG−T form an orthonormal set in Rm. Hence A =
(
AG−T

)
GT is our unique skinny

QR factorisation, with AG−T playing the role of Q and GT playing the role of R.

Example. Let us find the QR factorization by Gram–Schmidt of

A ≡
[

2 4 5
1 −1 1
2 1 −1

]
. (6.11)

(Square non-singular matrices have full rank and therefore the unique skinny QR factorisation is
also the unique QR factorisation.) From above

R1,1 = ‖a1‖ = 3, q1 = a1/R1,1 =
1
3

[
2
1
2

]
;

R1,2 = 〈q1,a2〉= 3, d2 = a2 −R1,2q1 =

[
4
−1
1

]
− 3 · 13

[
2
1
2

]
=

[
2
−2
−1

]
,

R2,2 = ‖d2‖ = 3, q2 = d2/R2,2 =
1
3

[
2
−2
−1

]
;

R1,3 = 〈q1,a3〉= 3, R2,3 = 〈q2,a3〉 = 3, d3 = a3 −R1,3q1 −R2,3q2

=

[
5
1
−1

]
− 3 · 13

[
2
1
2

]
− 3 · 13

[
2
−2
−1

]
=

[
1
2
−2

]
,

R3,3 = ‖d3‖ = 3, q3 = d3/R3,3 =
1
3

[
1
2
−2

]
.

So,

A =

[
2 4 5
1 −1 1
2 1 −1

]
=

1

3

[
2 2 1
1 −2 2
2 −1 −2

]

︸ ︷︷ ︸
Q

·
[

3 3 3
3 3
3

]

︸ ︷︷ ︸
R

This example reminds us that, if A is square non-singular, we can solve Ax = b by calculating the QR

factorization of A and then proceeding in two steps: i.e.

Ax = Q Rx︸︷︷︸
y

= b . (6.12)

Remembering Q−1 = QT, we first solve Qy = b in O(n2) operations to obtain y = QTb, and then solve
the triangular system Rx = y in O(n2) operations by back-substitution. The work of calculating the QR

factorization makes this method more expensive than the LU procedure for solving Ax = b; so the LU

algorithm is more efficient for square non-singular systems.

Mathematical Tripos: IB Numerical Analysis 81 © G.Moore@maths.cam.ac.uk, Lent 2017

We want to extend Algorithm 6.8 to the rank-deficient case, but then A ∈ Rm×n can have rank p with
1 6 p 6 n. (p = 0 corresponds to A being zero and p = n corresponds to A having full rank.) Although
we will not usually know p beforehand, it is clear that our skinny QR can then be further simplified with
Q ∈ Rm×p and R ∈ Rp×n, i.e.

m>n








A1,1 · · · A1,n
: :

: :
An,1 · · · An,n

: :
: :

Am,1 · · · Am,n




︸ ︷︷ ︸
n

=




Q1,1 · · · Q1,p
: :

: :
Qn,1 · · · Qn,p

: :
: :

Qm,1 · · · Qm,p




︸ ︷︷ ︸
p6n



R1,1 R1,2 · · · R1,p · · · R1,n

R2,2 : :
. . . : :

Rp,p · · · Rp,n




︸ ︷︷ ︸
n





p (6.13)

where the columns of Q again form an orthonormal set in Rm and R has rank p and so is full rank. We
can now extend our algorithm to the rank-deficient case, but we need to calculate p.

Algorithm 6.10. Set j = 0, k = 0; where we use j to keep track of the number of columns of A and
R that have been already considered, and k to keep track of the number of columns of Q that have been
formed (k 6 j). On termination of the algorithm, we will have k = p, the rank of A.

Step 1. Increase j by 1.

• If k = 0, set dj = aj.

• If k > 1, set
Ri,j ≡ 〈qi,aj〉 for i = 1, 2, . . . , k

and compute

dj = aj −
k∑

i=1

Ri,jqi .

Step 2.

• If dj 6= 0, set qk+1 ≡ dj/‖dj‖, Rk+1,j ≡ ‖dj‖ and (if j > k + 2) put Ri,j = 0 for j > i > k + 2.
Finally, increase k by 1.

• If dj = 0, put Ri,j = 0 for j > i > k + 1.

Step 3. Terminate if j = n, otherwise go to Step 1.

There is no necessity for the diagonal elements {Ri,i}pi=1 in (6.13) to be non-zero: in fact, if a1 = 0
then R1,1 = 0; or, if a1 6= 0 and a2 is a multiple of a1, then R2,2 = 0. However the matrix R ∈ Rp×n

constructed by Algorithm 6.10 is in “standard form”.

Definition 6.11. We say that a matrix, say R, is in a standard form if it has the property that the
number of leading zeros in each row increases strictly monotonically: i.e. if Ri,ji is the first nonzero entry
in the ith row, then {j1, . . . , jp} is a strictly monotonically increasing sequence. Completely zero rows of
R are also allowed, but they must all be at the bottom of R.

As constructed in the above algorithm, the first non-zero element of each row of R also has the property
that it is greater than zero. This gives us conditions that make the skinny QR factorisation unique.

Theorem 6.12. If A ∈ R
m×n has rank p, with 1 6 p 6 n, then the skinny QR factorisation (6.13) is

unique if

• R is in standard form;

• the first non-zero element in each row of R is greater than zero.

Mathematical Tripos: IB Numerical Analysis 82 © G.Moore@maths.cam.ac.uk, Lent 2017

Finally note that a skinny QR factorisation can always be converted into a QR factorisation satisfying
Definition 6.7. We only have to

• append extra zero rows to R until R ∈ Rn×n;

• append extra columns to Q, using Lemma 6.6, until Q ∈ Rm×m is orthogonal.

Example. Let us find the skinny QR factorization by Gram–Schmidt of

A ≡




2 4 0
1 2 0
1 2 0
0 0 1


 . (6.14)

k = 0 j = 1 d1 = [2, 1, 1, 0]T q1 ≡ [2, 1, 1, 0]T/
√
6 R1,1 ≡

√
6

k = 1 j = 2 R1,2 ≡ 2
√
6 d2 = 0 R2,2 ≡ 0

k = 1 j = 3 R1,3 ≡ 0 d3 = [0, 0, 0, 1]T q2 ≡ [0, 0, 0, 1]T R2,3 ≡ 1

Hence A has rank p = 2 and

A ≡




2 4 0
1 2 0
1 2 0
0 0 1


 =

1√
6




2 0
1 0
1 0

0
√
6




︸ ︷︷ ︸
Q

·
√
6

[
1 2 0

0 0 1/
√
6

]

︸ ︷︷ ︸
R

Modified Gram–Schmidt. We should mention that the precise form of the Gram–Schmidt algorithm (as
described in this section) is not used in practice because the numerical results can be very poor with
inexact arithmetic. In particular, the columns of the computed Q matrix can fail to be anywhere
near orthogonal! We can give a simple example of this behaviour by exhibiting the MATLAB code
for Algorithm 6.8, i.e.

r=zeros(n);

for j = 1:n

d=a(:,j);

for i=1:j-1

r(i,j)=a(:,j)’*q(:,i);

d=d-r(i,j)*q(:,i);

end

r(j,j)=norm(d);

q(:,j)=d/r(j,j);

end

If this code is applied to the matrix

A ≡




1 1 1
ǫ

ǫ
ǫ


 ǫ≪ 1 (6.15)

and our finite precision arithmetic is that all higher powers of ǫ are neglected during the calculations,
then the final computed QR factorisation is

A ≈




1 0 0

ǫ −1/
√
2 −1/

√
2

0 1/
√
2 0

0 0 1/
√
2






1 1 1√

2ǫ 0√
2ǫ




Mathematical Tripos: IB Numerical Analysis 83 © G.Moore@maths.cam.ac.uk, Lent 2017

Thus qT
2 q3 = 1

2 !

Fortunately the algorithm can be “saved” in finite precision arithmetic by simply swapping the
order of the for loops. This is the modified Gram–Schmidt (MGS) algorithm and its MATLAB
code becomes

q=a; r=zeros(n);

for i=1:n

r(i,i)=norm(q(:,i));

q(:,i)=q(:,i)/r(i,i);

for j=i+1:n

r(i,j)=q(:,j)’*q(:,i);

q(:,j)=q(:,j)-r(i,j)*q(:,i);

end

end

The numerical results, when this code is applied to A in (6.15) using our finite precision arithmetic,
are now

A ≈




1 0 0

ǫ −1/
√
2 −1/

√
6

0 1/
√
2 −1/

√
6

0 0 2/
√
6






1 1 1√

2ǫ ǫ/
√
2√

3ǫ/
√
2


 ,

which is much better.

6.4.2 Givens rotation matrices

In R2, a clockwise rotation of θ ∈ [−π, π] is performed by the orthogonal matrix

Ωθ ≡
[

cos θ sin θ
− sin θ cos θ

]
⇒ Ωθ

[
α
β

]
=

[
α cos θ + β sin θ
−α sin θ + β cos θ

]
.

Note that, as proved in Proposition 6.4, the Euclidean vector norm is invariant. If [α, β] is non-zero then,
by choosing

cos θ ≡ α√
α2 + β2

and sin θ ≡ β√
α2 + β2

,

the righthand side becomes [
√
α2 + β2, 0]T; similarly, by choosing

cos θ ≡ β√
α2 + β2

and sin θ ≡ −α√
α2 + β2

,

the righthand side becomes [0,
√
α2 + β2]T. (We do not need to calculate θ itself, the values of cos θ and

sin θ are sufficient.)

In Rm, withm > 2, Givens rotation matrices are defined by 3 parameters (1 6 p < q 6 m and θ ∈ [−π, π]),
i.e.

Ω
[p,q]
θ ≡




1
. . .

1
cos θ sin θ

1
. . .

1
− sin θ cos θ

1
. . .

1




p

q

p q

Mathematical Tripos: IB Numerical Analysis 84 © G.Moore@maths.cam.ac.uk, Lent 2017

(p, q) determines the plane of rotation and θ is the rotation in that plane, e.g.

m = 4 =⇒ Ω
[1,2]
θ ≡




cos θ sin θ 0 0
− sin θ cos θ 0 0

0 0 1 0
0 0 0 1


 , Ω

[2,4]
θ ≡




1 0 0 0
0 cos θ 0 sin θ
0 0 1 0
0 − sin θ 0 cos θ


 .

Remarks

(i) For y ∈ R
m, ‖Ω[p,q]

θ y‖ = ‖y‖. Ω[p,q]
θ y only alters components p and q of y: the new components

being linear combinations of the old components.

(ii) If B ∈ Rm×n has columns {bj}nj=1, then ‖Ω
[p,q]
θ bj‖ = ‖bj‖ for j = 1, . . . , n. Ω

[p,q]
θ B only alters rows

p and q of B: the new rows being linear combinations of the old rows.

(iii) Given z ∈ Rm, with z2p + z2q > 0, we can either choose θ so that
[
Ω

[p,q]
θ z

]
p
= 0, i.e.

cos θ ≡ zq√
z2p + z2q

and sin θ ≡ −zp√
z2p + z2q

,

or choose θ so that
[
Ω

[p,q]
θ z

]
q
= 0, i.e.

cos θ ≡ zp√
z2p + z2q

and sin θ ≡ zq√
z2p + z2q

.

We now explain how a full rank A ∈ Rm×n can be transformed into “upper triangular” form by applying
s ≡ mn− n(n+ 1)/2 Givens rotations: i.e.

Qs . . .Q1A = R ,

where each element of {Qk}sk=1 is a Givens rotation. R ∈ Rm×n is an “upper triangular” matrix with the
last m − n rows zero, as in (6.6): thus s components of A have been forced to be zero. The basic idea
becomes clear with a small example.

An illustration. If A ∈ R4×3, so that s = 6, we can force zeros underneath the main diagonal as follows.

(i) If A2,1 6= 0, choose θ1 so that (Ω
[1,2]
θ1

A)2,1 = 0, i.e.

A(1) ≡ Ω
[1,2]
θ1

A =




× × ×
0 × ×
× × ×
× × ×


 .

(ii) If A
(1)
3,1 6= 0, choose θ2 so that (Ω

[1,3]
θ2

A(1))3,1 = 0. Multiplication by Ω
[1,3]
θ2

doesn’t alter the

second row, hence (Ω
[1,3]
θ2

A(1))2,1 remains zero and

A(2) ≡ Ω
[1,3]
θ2

A(1) =




× × ×
0 × ×
0 × ×
× × ×


 .

(iii) If A
(2)
4,1 6= 0, choose θ3 so that (Ω

[1,4]
θ3

A(2))4,1 = 0. Multiplication by Ω
[1,4]
θ3

doesn’t alter the

second and third rows, hence (Ω
[1,4]
θ3

A(2))2,1 and (Ω
[1,4]
θ3

A(2))3,1 remain zero and

A(3) ≡ Ω
[1,4]
θ3

A(2) =




× × ×
0 × ×
0 × ×
0 × ×


 .

Mathematical Tripos: IB Numerical Analysis 85 © G.Moore@maths.cam.ac.uk, Lent 2017

(iv) If A
(3)
3,2 6= 0, choose θ4 so that (Ω

[2,3]
θ4

A(3))3,2 = 0. Multiplication by Ω
[2,3]
θ4

doesn’t alter the

fourth row, hence (Ω
[2,3]
θ4

A(3))4,1 remains zero. Since both the second and third rows of A(3)

have a leading zero, their linear combination preserves these zeros; hence

(Ω
[2,3]
θ4

A(3))2,1 = (Ω
[2,3]
θ4

A(3))3,1 = 0

and

A(4) ≡ Ω
[2,3]
θ4

A(3) =




× × ×
0 × ×
0 0 ×
0 × ×


 .

(v) If A
(4)
4,2 6= 0, choose θ5 so that (Ω

[2,4]
θ5

A(4))4,2 = 0. Multiplication by Ω
[2,4]
θ5

doesn’t alter the third
row, hence

(Ω
[2,4]
θ5

A(4))3,1 = (Ω
[2,4]
θ5

A(4))3,2 = 0 .

Since both the second and fourth rows of A(4) have a leading zero, their linear combination
preserves these zeros; hence

(Ω
[2,4]
θ5

A(4))2,1 = (Ω
[2,4]
θ5

A(4))4,1 = 0

and

A(5) ≡ Ω
[2,4]
θ5

A(4) =




× × ×
0 × ×
0 0 ×
0 0 ×


 .

(vi) Finally, if A
(5)
4,3 6= 0, choose θ6 so that (Ω

[3,4]
θ6

A(5))4,3 = 0. Multiplication by Ω
[3,4]
θ6

doesn’t alter
the second row, hence

(Ω
[3,4]
θ6

A(5))2,1 = 0 .

Since both the third and fourth rows of A(5) have two leading zeros, their linear combination
preserves these zeros; hence

(Ω
[3,4]
θ6

A(5))3,1 = (Ω
[3,4]
θ6

A(5))4,1 = 0 and (Ω
[3,4]
θ6

A(5))3,2 = (Ω
[3,4]
θ6

A(5))4,2 = 0 .

Thus we end up with

A(6) ≡ Ω
[3,4]
θ6

A(5) =




× × ×
0 × ×
0 0 ×
0 0 0


 .

So we have A = QR with R = A(6) and

Q ≡
(
Ω

[3,4]
θ6

Ω
[2,4]
θ5

Ω
[2,3]
θ4

Ω
[1,4]
θ3

Ω
[1,3]
θ2

Ω
[1,2]
θ1

)T
.

Another informative picture is to emphasize which components have been changed at each step: i.e.




∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗




Ω
[1,2]

→




• • •
0 • •
∗ ∗ ∗
∗ ∗ ∗




Ω
[1,3]

→




• • •
0 ∗ ∗
0 • •
∗ ∗ ∗




Ω
[1,4]

→




• • •
0 ∗ ∗
0 ∗ ∗
0 • •




Ω
[2,3]

→




∗ ∗ ∗
0 • •
0 0 •
0 ∗ ∗




Ω
[2,4]

→




∗ ∗ ∗
0 • •
0 0 ∗
0 0 •




Ω
[3,4]

→




∗ ∗ ∗
0 ∗ ∗
0 0 •
0 0 0


 ,

where the •-elements have been changed by the current rotation while the ∗-elements have not.

There are alternative strategies for systematically introducing the s zeros into A: e.g. one can start at the
bottom of each column and use rotations of the form Ω[m−1,m],Ω[m−2,m−1], . . . to gradually create zeros
into that column. The key point is that previously created zeros must not be destroyed. (Of course, it
could turn out that less than s Givens rotations are required: e.g. A may already contain some zeros.)

Mathematical Tripos: IB Numerical Analysis 86 © G.Moore@maths.cam.ac.uk, Lent 2017

Example. We repeat the simple example (6.11) in §6.4.1 by using Givens rotations to find the QR factor-
ization of

A ≡




2 4 5
1 −1 1
2 1 −1


 .

Ω[1,2]A =




2√
5

1√
5

0

− 1√
5

2√
5

0

0 0 1




︸ ︷︷ ︸
Ω[1,2]




2 4 5
1 −1 1
2 1 −1


 =




√
5 7√

5
11√
5

0 − 6√
5
− 3√

5

2 1 −1


 ,

Ω[1,3](Ω[1,2]A) =




√
5
3 0 2

3
0 1 0

− 2
3 0

√
5
3




︸ ︷︷ ︸
Ω[1,3]




√
5 7√

5
11√
5

0 − 6√
5
− 3√

5

2 1 −1


 =




3 3 3
0 − 6√

5
− 3√

5

0 − 3√
5
− 9√

5


 ,

Ω[2,3](Ω[1,3]Ω[1,2]A) =




1 0 0
0 − 2√

5
− 1√

5

0 1√
5
− 2√

5




︸ ︷︷ ︸
Ω[2,3]




3 3 3
0 − 6√

5
− 3√

5

0 − 3√
5
− 9√

5


 =




3 3 3
0 3 3
0 0 3


 .

Finally,

QT = Ω[2,3]Ω[1,3]Ω[1,2] =
1

3




2 1 2
2 −2 −1
1 2 −2


 ,

A =




2 4 5
1 −1 1
2 1 −1


 =

1

3




2 2 1
1 −2 2
2 −1 −2




︸ ︷︷ ︸
Q

·




3 3 3
3 3

3




︸ ︷︷ ︸
R

.

Note that our Givens rotations are designed to produce positive diagonal elements in R, so that our
computed QR factorisation is exactly the same as before. (If we had ended up with R3,3 < 0, a final
multiplication by the orthogonal matrix He3 would have been necessary. See Definition 6.15.)

We will now state clearly our Givens rotation algorithm for transforming a full rank A ∈ Rm×n into
“upper triangular” form.

Algorithm 6.13. For column 1, since A has full rank,
∑m

i=1 A
2
i,1 6= 0. Use Givens rotations {Ω[1,i]}mi=2

to create zeros in elements {(i, 1)}mi=2 of A respectively and leave A1,1 > 0.

For columns 2 6 j 6 n, since the transformed A still has full rank,
∑m

i=j A
2
i,j 6= 0. Use Givens rotations

{Ω[j,i]}mi=j+1 to create zeros in elements {(i, j)}mi=j+1 of A respectively and leave Aj,j > 0. (This will not
destroy any zeros created in the previous columns of A.)

After completion of this algorithm, A has been overwritten by

R =
(
Ω[n,m] · · ·Ω[n,n+1]

)
· · ·
(
Ω[2,m] · · ·Ω[2,3]

)(
Ω[1,m] · · ·Ω[1,3]Ω[1,2]

)
A ∈ R

m×n

and so we have a QR factorisation of the form (6.6) with

Q ≡
(
Ω[1,m] · · ·Ω[1,2]

)T (
Ω[2,m] · · ·Ω[2,3]

)T
· · ·
(
Ω[n,m] · · ·Ω[n,n+1]

)T
∈ R

m×m . (6.16)

Since the diagonal elements of {Ri,i}ni=1 are all positive, if we neglect the last m− n columns of Q and
the last m− n zero rows of R then we end up with exactly the unique skinny QR factorisation produced
by Algorithm 6.8.

Remarks

Mathematical Tripos: IB Numerical Analysis 87 © G.Moore@maths.cam.ac.uk, Lent 2017

(a) Since at least one more zero is introduced into the matrix with each Givens rotation, there are less
than mn rotations. Since each rotation replaces two rows (of length n) by their linear combinations,
the total cost of computing R is O

(
mn2

)
operations.

(b) The matrix Q may be required explicitly: say, for solving many least squares problems with the same
A but different b. It can be calculated from (6.16) in O(m2n) operations.

(c) If only one vector QTb is required (e.g. in the case of the solution of a single least squares problem),
it is more efficient to multiply b by successive rotations: the cost being O(mn) operations.

(d) For m = n, each rotation requires four times more multiplications compared with the corresponding
Gaussian elimination: hence the total cost is 4

3n
3+O(n2) operations, four times as expensive. However,

the QR factorization is generally more reliable than the LU one.

We will now generalise the above algorithm so that it can deal with the rank-deficient case and pro-
duce a final R ∈ Rm×n in standard form. (Just like the extension of the Gram–Schmidt process from
Algorithm 6.8 to Algorithm 6.10, we need to calculate the rank of A.)

Algorithm 6.14. Set j = 0, k = 0; where we use j to keep track of the number of columns of A and R

that have been considered, and k to count the number of linearly independent columns of A (k 6 j).

Step 1. Increase j by 1.

• If {Ai,j}mi=k+1 are all zero, go to Step 2.

• Otherwise, use Givens rotations {Ω[k+1,i]}mi=k+2 to create zeros in elements {(i, j)}mi=k+2 of A re-
spectively. (This will not destroy any zeros created in earlier columns of A.) Increase k by 1.

Step 2. Terminate if j = n, otherwise go to Step 1.

If the final value of k produced by this algorithm is p, then A ∈ Rm×n has been transformed into an
“upper triangular”

R =
(
Ω[p,m] · · ·Ω[p,n+1]

)
· · ·
(
Ω[2,m] · · ·Ω[2,3]

)(
Ω[1,m] · · ·Ω[1,3]Ω[1,2]

)
A ∈ R

m×n

whose last m− p rows are zero. Thus we have a QR factorisation of the form (6.6) with

Q ≡
(
Ω[1,m] · · ·Ω[1,2]

)T (
Ω[2,m] · · ·Ω[2,3]

)T
· · ·
(
Ω[p,m] · · ·Ω[p,p+1]

)T
∈ R

m×m .

Since the leading non-zero element in each row of R is positive, if we neglect the last m− p columns of
Q and the last m − p zero rows of R then we end up with exactly the unique skinny QR factorisation
produced by Algorithm 6.10.

Example. Let us find the QR factorization of

A ≡




2 4 0
1 2 0
1 2 0
0 0 1


 ,

as in (6.14) of §6.4.1, using Jacobi rotations.

Mathematical Tripos: IB Numerical Analysis 88 © G.Moore@maths.cam.ac.uk, Lent 2017

k = 0 j = 1 p = 1 q = 2 cos θ1 =
2√
5

sin θ1 =
1√
5

A→ Ω
[1,2]
θ1

A =




√
5 2
√
5 0

0 0 0
1 2 0
0 0 1




p = 1 q = 3 cos θ2 =

√
5√
6

sin θ2 =
1√
6

A→ Ω
[1,3]
θ2

A =




√
6 2
√
6 0

0 0 0
0 0 0
0 0 1




k = 1 j = 2 No change to A

k = 1 j = 3 p = 2 q = 4 cos θ3 = 0 sin θ3 = 1

A→ Ω
[2,4]
θ3

A =




√
6 2
√
6 0

0 0 1
0 0 0
0 0 0




Hence A has rank p = 2 and, since

Q ≡
[
Ω

[1,2]
θ1

]T [
Ω

[1,3]
θ2

]T [
Ω

[2,4]
θ3

]T

=
1√
5




2 −1 0 0
1 2 0 0

0 0
√
5 0

0 0 0
√
5




1√
6




√
5 0 −1 0

0
√
6 0 0

1 0
√
5 0

0 0 0
√
6







1 0 0 0
0 0 0 −1
0 0 1 0
0 1 0 0




=




2/
√
6 0 −2/

√
30 1/

√
5

1/
√
6 0 −1/

√
30 −2/

√
5

1/
√
6 0 5/

√
30 0

0 1 0 0


 ,

we have

A ≡




2 4 0
1 2 0
1 2 0
0 0 1


 =




2/
√
6 0 −2/

√
30 1/

√
5

1/
√
6 0 −1/

√
30 −2/

√
5

1/
√
6 0 5/

√
30 0

0 1 0 0




︸ ︷︷ ︸
Q

·




√
6 2
√
6 0

0 0 1
0 0 0
0 0 0




︸ ︷︷ ︸
R

6.4.3 Householder reflection matrices

This is another example of a class of simple orthogonal matrices. They are an alternative to Givens
rotations for constructing the QR factorization in (6.6).

Definition 6.15. For u 6= 0 ∈ Rm,

Hu ≡ I− 2
uuT

‖u‖2 ∈ R
m×m (6.17)

is called a Householder reflection.

Remarks

Mathematical Tripos: IB Numerical Analysis 89 © G.Moore@maths.cam.ac.uk, Lent 2017

(i) Each Householder reflection is clearly a symmetric matrix and

(
I− 2

uuT

‖u‖2
)2

= I− 4
uuT

‖u‖2 + 4
u(uTu)uT

‖u‖4 = I

immediately shows that they are orthogonal.

(ii) The reason they are called reflections becomes clear if we uniquely decompose an arbitrary x ∈ Rm

into
x = αu+w where α ≡ uTx/‖u‖2 and uTw = 0 :

i.e. this is an orthogonal decomposition with αu parallel to u and w perpendicular to u. Hence

Huu = −u and Huv = v if uTv = 0

means that
Hux = −αu+w :

i.e. our matrix reflects any x ∈ R
m in the (m− 1)-dimensional hyperplane orthogonal to u.

(iii) For any λ 6= 0 ∈ R, Hλu = Hu.

(iv) We avoid explicitly forming Hu if possible, because it is usually more efficient to operate with it.
Thus for z ∈ R

m,

Huz = z − 2
uTz

‖u‖2u

can be constructed in O(m) operations: in general, a matrix-vector multiplication requires O
(
m2
)

operations.

Our aim is to show how any A ∈ Rm×n can be transformed into “upper triangular” form by applying n
suitable Householder reflections: i.e.

R = Hn · · ·H2H1A (6.18)

will produce the QR factorisation (6.6) with

Q ≡ H1H2 · · ·Hn . (6.19)

Each Hk will be designed to introduce zeros into column k of A, while leaving unchanged the zeros already
created in earlier columns.

The following lemma explains how we can create zeros using reflections.

Lemma 6.16. If c,d ∈ Rm, with c 6= d but ‖c‖ = ‖d‖, then

u ≡ c− d ⇒ Huc = d . (6.20)

Proof.

Huc = c− 2(‖c‖2 − cTd)

‖c‖2 − 2cTd+ ‖d‖2 (c− d) = d

We can immediately use Lemma 6.16 to construct H1 in (6.18): i.e. if a ∈ Rm is the first column of A
then, unless a is a non-negative multiple of e1, we can choose

u1 ≡ a− γe1 ⇒ Hu1a = γe1 , (6.21)

where γ ≡ ‖a‖. Thus H1 ≡ Hu1
and H1A has the required zeros in column 1, i.e.

H1A =




∗ ∗ ∗ · · · ∗
0 ∗ ∗ · · · ∗
...

...
...

...
...

...
...

...
0 ∗ ∗ · · · ∗



.

Mathematical Tripos: IB Numerical Analysis 90 © G.Moore@maths.cam.ac.uk, Lent 2017

(With inexact arithmetic, and when a1 > 0, it is preferable to use the equivalent formula
(
−∑m

i=2 a
2
i

)
/(a1+

γ) for the 1st component of u1 in (6.21). This avoids possible loss of precision due to cancellation.)

To introduce zeros into later columns of A, we need to make sure that our chosen reflections will not
destroy previously created zeros.

Lemma 6.17. If the first k − 1 components of u 6= 0 ∈ Rm are zero then

• ∀x ∈ Rm, forming Hux does not alter the first k − 1 components of x;

• if the last m− k + 1 components of y ∈ Rm are zero, so that uTy = 0, then Huy = y.

We can now use Lemma 6.17 to generalise Lemma 6.16.

Lemma 6.18. Let 1 6 k 6 m. If c,d ∈ Rm, with


ck
...
cm


 6=



dk
...
dm


 but

m∑

i=k

c2i =
m∑

i=k

d2i ,

then
u ≡ [0, . . . , 0, ck − dk, . . . , cm − dm]

T ⇒ Huc = [c1, . . . , ck−1, dk, . . . , dm]
T
. (6.22)

We can immediately use Lemma 6.18 to construct H2 in (6.18): i.e. if a ∈ Rm is the second column of
H1A then, unless [0, a2, . . . , am]T is a non-negative multiple of e2, we can choose

u2 ≡ [0, a2 − γ, a3, . . . , am]T ⇒ Hu2a = [a1, γ, 0, . . . , 0]
T , (6.23)

where γ ≡
(∑m

i=2 a
2
i

)1/2
. Thus H2 ≡ Hu2

and H2H1A has the required zeros in columns 1 and 2, i.e.

H2H1A =




∗ ∗ ∗ · · · ∗
0 ∗ ∗ · · · ∗
... 0 ∗ · · · ∗
...

...
...

...
0 0 ∗ · · · ∗



,

and multiplying by H2 did not alter the first row and column of H1A. (With inexact arithmetic, and when
a2 > 0, it is preferable to use the equivalent formula

(
−∑m

i=3 a
2
i

)
/(a2 + γ) for the 2nd component of u2

in (6.23). This avoids possible loss of precision due to cancellation.)

Finally we describe the general case, i.e. Hk−1 . . .H1A has already been constructed with appropriate
zeros in columns 1 to k− 1 and a ∈ R

m be the kth column. We want to use Lemma 6.18 to construct Hk

in (6.18): thus, unless [0, . . . , 0, ak, . . . , am]T is a non-negative multiple of ek, we can choose

uk ≡ [0, . . . , 0, ak − γ, ak+1, . . . , am]T ⇒ Huk
a = [a1, . . . , ak−1, γ, 0, . . . , 0]

T , (6.24)

where γ ≡
(∑m

i=k a
2
i

)1/2
. Hence Hk ≡ Huk

and Hk . . .H1A now has the required zeros in columns 1
to k. Multiplying by Hk did not alter the first k − 1 rows and columns of Hk−1 . . .H1A. (With inexact
arithmetic, and when ak > 0, it is preferable to use the equivalent formula

(
−
∑m

i=k+1 a
2
i

)
/(ak + γ) for

the kth component of uk in (6.24). This again avoids possible loss of precision due to cancellation.)

The following picture (for A ∈ R4×3) emphasises which components are altered.



∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗




H1→




• • •
0 • •
0 • •
0 • •




H2→




∗ ∗ ∗
0 • •
0 0 •
0 0 •




H3→




∗ ∗ ∗
0 ∗ ∗
0 0 •
0 0 0




The •-elements have changed through the current reflection, while the ∗-elements have remained the
same.

We will now state clearly our Householder reflection algorithm for transforming a full rank A ∈ Rm×n

into “upper triangular” form.

Mathematical Tripos: IB Numerical Analysis 91 © G.Moore@maths.cam.ac.uk, Lent 2017

Algorithm 6.19. For column 1, since A has full rank,
∑m

i=1 A
2
i,1 6= 0. Unless A1,1 > 0 and

∑m
i=2 A

2
i,1 = 0,

we can construct the Householder reflection H1 so that A(1) ≡ H1A satisfies A
(1)
1,1 > 0 and {A(1)

i,1 }mi=2 all
zero. Otherwise we simply take H1 ≡ I.

For columns 2 6 j 6 n, if A(j−1) ≡ Hj−1 . . .H1A, A
(j−1) must still have full rank and so

∑m
i=j

(
A

(j−1)
i,j

)2
6=

0. Unless A
(j−1)
j,j > 0 and

∑m
i=j+1

(
A

(j−1)
i,j

)2
= 0, we can construct the Householder reflection Hj so that

A(j) ≡ HjA
(j−1) satisfies A

(j)
j,j > 0 and {A(j)

i,j }mi=j+1 all zero. (This will not destroy any zeros created in
earlier columns.) Otherwise we simply take Hj ≡ I.

After completion of this algorithm, A has been overwritten by

R = Hn · · ·H2H1A

and so we have a QR factorisation of the form (6.6) with

Q ≡ H1 · · ·Hn ∈ R
m×m . (6.25)

Since the diagonal elements of {Ri,i}ni=1 are all positive, if we neglect the last m− n columns of Q and
the last m− n zero rows of R then we end up with exactly the unique skinny QR factorisation produced
by Algorithms 6.8 and 6.13.

Cost. Note that for large m we do not execute explicit matrix multiplication (an O(m2n) operation).
Instead, to calculate (

I− 2
uuT

‖u‖2
)
A = A− 2

u(uTA)

‖u‖2 ,

first evaluate wT = uTA, and then form A− 2
‖u‖2uw

T (both O(mn) operations).

Calculation of Q. If the matrix Q is required in an explicit form, set Q ≡ I initially and, for each successive
transformation, replace Q by

Q

(
I− 2

uuT

‖u‖2
)

= Q− 2

‖u‖2 (Qu)u
T,

remembering not to perform explicit matrix multiplication. As in the case of Givens rotations, by
the end of the computation, Ω = QT. However, if we are, say, solving a single linear system Ax = b

and require just the vector c = QTb rather than the matrix Q, then we set initially c ≡ b and in
each stage replace c by (

I− 2
uuT

‖u‖2
)
c = c− 2

uTc

‖u‖2u.

Example. Calculate the QR factorization by Householder reflections of (6.11) in §6.4.1, i.e.

A ≡
[

2 4 5
1 −1 1
2 1 −1

]

as also used in §6.4.2.

First, we do this [the long way] by calculating the Hk:

A =




2 4 5
1 −1 1
2 1 −1


 ,

u1 =



−1
1
2


 , H1 = 1

3




2 1 2
1 2 −2
2 −2 −1


 , A(1) = H1A =




3 3 3
0 0 3
0 3 3


 ,

u2 =




0
−3
3


 or




0
−1
1


 , H2 =




1 0 0
0 0 1
0 1 0


 , R = H2A

(1) =




3 3 3
0 3 3
0 0 3


 .

Mathematical Tripos: IB Numerical Analysis 92 © G.Moore@maths.cam.ac.uk, Lent 2017

Finally,

Q = (H2H1)
T =






1 0 0
0 0 1
0 1 0


 1

3




2 1 2
1 2 −2
2 −2 −1






T

= 1
3




2 1 2
2 −2 −1
1 2 −2



T

= 1
3




2 2 1
1 −2 2
2 −1 −2


 ,

so that

A =

[
2 4 5
1 −1 1
2 1 −1

]
= 1

3

[
2 2 1
1 −2 2
2 −1 −2

]

︸ ︷︷ ︸
Q

·
[

3 3 3
3 3

3

]

︸ ︷︷ ︸
R

.

Second, we avoid the explicit calculation of the Hk:

u1 =



−1
1
2


 , 2

uT
1 A

‖u1‖2 =
[
1 −1 −2

]
, A(1) = A− 2

u1(uT
1 A)

‖u1‖2 =




3 3 3
0 3 3
0 3 3


 ,

u2 =




0
−3
3


 , 2

uT
2 A

(1)

‖u2‖2 =
[
0 1 0

]
, R = A(1) − 2

u2(uT
2 A

(1))
‖u2‖2 =




3 3 3
0 3 3
0 0 3


 .

If we require Q, start with Ω = I, then

u1 =



−1
1
2


 , 2

uT
1 Ω

‖u1‖2 = 1
3

[
−1 1 2

]
, Ω(1) = Ω− 2

u1(uT
1 Ω)

‖u1‖2 = 1
3




2 1 2
1 2 −2
2 −2 −1


 ,

u2 =




0
−3
3


 , 2

uT
2 Ω

(1)

‖u2‖2 = 1
9

[
1 −4 1

]
, QT = Ω(1) − 2

u2(uT
2 Ω

(1))
‖u2‖2 = 1

3




2 1 2
2 −2 −1
1 2 −2


 .

As before

A =

[
2 4 5
1 −1 1
2 1 −1

]
= 1

3

[
2 2 1
1 −2 2
2 −1 −2

]

︸ ︷︷ ︸
Q

·
[

3 3 3
3 3

3

]

︸ ︷︷ ︸
R

.

We will now generalise Algorithm 6.19 so that it can deal with the rank-deficient case and produce a final
R ∈ Rm×n in standard form. (Just like the extension of the Gram–Schmidt process from Algorithm 6.8
to Algorithm 6.10 and the extension of Algorithm 6.13 to Algorithm 6.14, we need to calculate the rank
of A.) Unlike the description in Algorithm 6.19, we will now overwrite A explicitly.

Algorithm 6.20. Set j = 0, k = 0; where we use j to keep track of the number of columns of A and R

that have been considered, and k to count the number of linearly independent columns of A (k 6 j).

Step 1. Increase j by 1.

• If {Ai,j}mi=k+1 are all zero, go to Step 2.

• If Ak+1,j > 0 and {Ai,j}mi=k+2 are all zero, we don’t need to apply a reflection: simply regard
Hk+1 ≡ I, increase k by 1 and go to Step 2.

• Otherwise, construct and apply the Householder reflection Hk+1 so that we obtain Ak+1,j > 0 and
{Ai,j}mi=k+2 all zero. (This will not destroy any zeros created in earlier columns of A.) Increase k
by 1 and go to Step 2.

Step 2. Terminate if j = n, otherwise go to Step 1.

Mathematical Tripos: IB Numerical Analysis 93 © G.Moore@maths.cam.ac.uk, Lent 2017

If the final value of k produced by this algorithm is p, then A ∈ Rm×n has been transformed into an
“upper triangular”

R = Hp · · ·H2H1A ∈ R
m×n

whose last m− p rows are zero. Thus we have a QR factorisation of the form (6.6) with

Q ≡ H1 · · ·Hp ∈ R
m×m .

Since the leading non-zero element in each row of R is positive, if we neglect the last m− p columns of
Q and the last m − p zero rows of R then we end up with exactly the unique skinny QR factorisation
produced by Algorithms 6.10 and 6.14.

Example. Let us use Householder reflections to find the QR factorization of (6.14) in §6.4.1, i.e.

A ≡




2 4 0
1 2 0
1 2 0
0 0 1




as also used in §6.4.2.

k = 0 j = 1 u = [2−
√
6, 1, 1, 0]T H1 ≡ Hu

A→ H1A =




√
6 2

√
6 0

0 0 0
0 0 0
0 0 1




k = 1 j = 2 H2 ≡ I

k = 1 j = 3 u = [0,−1, 0, 1]T H3 ≡ Hu

A→ H3A =




√
6 2

√
6 0

0 0 1
0 0 0
0 0 0




Hence A has rank p = 2 and, since

H1H2H3 =
1√
6




2 0 1 1

1 0 −
√
6/2− 1

√
6/2− 1

1 0
√
6/2− 1 −

√
6/2− 1

0
√
6 0 0


 ,

we have

A ≡




2 4 0
1 2 0
1 2 0
0 0 1


 =

1√
6




2 0 1 1

1 0 −
√
6/2− 1

√
6/2− 1

1 0
√
6/2− 1 −

√
6/2− 1

0
√
6 0 0




︸ ︷︷ ︸
Q

·




√
6 2
√
6 0

0 0 1
0 0 0
0 0 0




︸ ︷︷ ︸
R

Givens or Householder? If A is dense, it is in general more convenient to use Householder transformations.
Givens rotations come into their own, however, when A has many leading zeros in its rows. In an
extreme case, if an n× n matrix A consists of zeros underneath the first sub-diagonal, they can be
‘rotated away’ in (n− 1) Givens rotations, at the cost of just O

(
n2
)
operations.

Mathematical Tripos: IB Numerical Analysis 94 © G.Moore@maths.cam.ac.uk, Lent 2017

6.5 Solving least squares problems with the QR factorisation

Suppose that A ∈ Rm×n has full rank and that we have a QR factorisation of A as in (6.6). As stated in
(6.9), this means that our least squares problem (6.1) can be simplified to

min
x∈Rn

‖Ax− b‖ = min
x∈Rn

‖Rx− QTb‖ .

Since the last m − n rows of R are zero, it is easy to solve this simplified minimisation problem: i.e. if
R̃ ∈ Rn×n contains the first n rows of R and Q̃ ∈ Rm×n contains the first n columns of Q, then the
unique solution of our least squares problem is that x∗ ∈ Rn which satisfies the n×n non-singular upper
triangular system

R̃x∗ = Q̃Tb . (6.26)

(This can of course be obtained by back substitution!) The size of the residual for our least squares
problem is just the Euclidean norm of the neglected last m− n components: i.e.

‖Rx∗ − QTb‖ =
(

m∑

i=n+1

[
QTb

]2
i

)1/2

.

Note that A = Q̃R̃ is exactly the skinny QR factorisation of A described in (6.8), so this skinny factorisation
is sufficient to solve our least squares problem. (Although the norm of the residual would have to be
calculated in a different way!)

Now suppose that A ∈ Rm×n has rank p < n, so that our QR factorisation of A as in (6.6) becomes

m>n








A1,1 · · · A1,n
: :

: :
An,1 · · · An,n

: :
: :

Am,1 · · · Am,n




︸ ︷︷ ︸
n

=




Q1,1 · · · Q1,m
: :

: :
Qn,1 · · · Qn,m

: :
: :

Qm,1 · · · Qm,m




︸ ︷︷ ︸
m




R1,1 R1,2 · · · R1,p · · · R1,n
R2,2 : :

. . . : :
Rp,p · · · Rp,n

0 · · · · · · 0 · · · 0
: : :
0 · · · · · · 0 · · · 0




︸ ︷︷ ︸
n





m (6.27)

where R is in standard form as described in Definition 6.11. As stated in (6.9), this means that our least
squares problem again simplifies to

min
x∈Rn

‖Ax− b‖ = min
x∈Rn

‖Rx− QTb‖ .

Since the last m− p rows of R are zero, this simplified minimisation problem again reduces to

R̃x = Q̃Tb , (6.28)

where R̃ ∈ Rp×n contains the first p rows of R and Q̃ ∈ Rm×p contains the first p columns of Q. Now,
however, (6.28) is an under-determined system with an infinite number of solutions depending on n − p
free parameters. Nevertheless, since R is in standard form, we can easily describe these solutions.

Let {j1, . . . , jp} be the column numbers for the leading non-zero elements of rows 1→ p of R: So {ji}pi=1

is a subsequence of {1, . . . , n}. For any x ∈ R
n, we can write

R̃x = R̃1x1 + R̃2x2 x1 ∈ R
p,x2 ∈ R

n−p, R̃1 ∈ R
p×p, R̃2 ∈ R

p×(n−p) ,

where x1 contains components {j1, . . . , jp} of x and x2 contains the other n−p components. Hence (6.28)
becomes

R̃1x1 = Q̃Tb− R̃2x2 :

where

• the components of x2 are n− p free parameters;

Mathematical Tripos: IB Numerical Analysis 95 © G.Moore@maths.cam.ac.uk, Lent 2017

• the components of x1 can be uniquely solved for, because R̃1 ∈ Rp×p is a non-singular upper
triangular matrix.

If we denote any of these solutions by x∗ ∈ Rn, then the residual for our least squares problem is exactly
the same: i.e.

‖Rx∗ − QTb‖ =




m∑

i=p+1

[
QTb

]2
i




1/2

.

Note that A = Q̃R̃ is precisely the skinny QR factorisation of A described in (6.13), so this skinny
factorisation is sufficient to solve our rank deficient least squares problem.

6.5.1 Examples

(i) Find x ∈ R3 that minimizes ‖Ax− b‖, where

A = 1
2




1 3 6
1 1 2
1 3 4
1 1 0


 , b =




1
1
1
0


 .

The QR-factorization of A is

A = 1
2




1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1




︸ ︷︷ ︸
Q

×




1 2 3
0 1 2
0 0 1
0 0 0




︸ ︷︷ ︸
R

,

so A has full rank and the least squares problem has a unique solution.

a) A simple approach (suitable for exact arithmetic) is to use the QR factorisation to simplify the
normal equations: i.e.

AT(Ax− b) = 0 ⇒ RT(Rx− QTb) = 0 .

We can then decompose the simplified equation into

RTy = 0 for y ∈ R
4 and Rx = QTb+ y for x ∈ R

3 .

From the former, we obtain




1 0 0 0
2 1 0 0
3 2 1 0




︸ ︷︷ ︸
RT

×




y1
y2
y3
y4


 = 0 , with solution




y1
y2
y3
y4


 =




0
0
0
λ




where λ ∈ R. From the latter, we obtain



1 2 3
0 1 2
0 0 1
0 0 0




︸ ︷︷ ︸
R




x1

x2

x3


 = 1

2




3
1
1
−1




︸ ︷︷ ︸
QTb

+




0
0
0
λ


 ,

which has solution

λ = 1
2 , x∗ = 1

2




2
−1
1


 .

The size of the residual is the norm of the vector formed by the bottom (m− n) components of
the right-hand side QTb:

‖Ax∗ − b‖ = ‖Rx∗ − QTb‖ = ‖y‖ = 1
2 .

Mathematical Tripos: IB Numerical Analysis 96 © G.Moore@maths.cam.ac.uk, Lent 2017

b) From (6.26), we use

R̃x = Q̃Tb ⇒



1 2 3
0 1 2
0 0 1





x1

x2

x3


 = 1

2



3
1
1


 ⇒ x∗ = 1

2




2
−1
1


 .

(ii) Find x ∈ R3 that minimizes ‖Ax− b‖, where

A ≡




2 4 0
1 2 0
1 2 0
0 0 1


 and b ≡




1
1
1
1


 .

Slightly different QR factorizations of A have been computed in §6.4.1, §6.4.2 and §6.4.3; but these
all produce the same skinny factorisation

A =
1√
6




2 0
1 0
1 0

0
√
6




︸ ︷︷ ︸
Q

·
√
6

[
1 2 0

0 0 1/
√
6

]

︸ ︷︷ ︸
R

.

So A has rank p = 2 and there is a 1-parameter family of solutions obtained from

[√
6 2

√
6 0

0 0 1

]

︸ ︷︷ ︸
R



x1

x2

x3


 =

[
4/
√
6

1

]

︸ ︷︷ ︸
QTb

.

Hence we write [√
6 0
0 1

] [
x1

x3

]
=

[
4/
√
6

1

]
− x2

[
2
√
6

0

]
,

where x2 is regarded as a free parameter, and arrive at

x =




2
3 − 2α

α
1


 for arbitrary α ∈ R.

The residual for any of these solutions is

Ax− b =
1

3




1
−1
−1
0




and so ‖Ax− b‖ = 1/
√
3.

Mathematical Tripos: IB Numerical Analysis 97 © G.Moore@maths.cam.ac.uk, Lent 2017

	Numerical Analysis: Introduction
	The course
	What is Numerical Analysis?

	Polynomial Interpolation
	The interpolation problem
	The Lagrange interpolation formula
	The Newton interpolation formula
	Calculating the Newton divided differences

	Examples (Unlectured)
	A property of divided differences
	Error bounds for polynomial interpolation
	Optimal choice of interpolation points

	Orthogonal Polynomials and Least-squares Approximation
	Scalar products
	Orthogonal polynomials – definition, existence, uniqueness
	The three-term recurrence relation
	Examples
	Least-squares polynomial approximation

	Approximation of Linear Functionals
	Linear functionals
	Numerical integration
	Gaussian quadrature
	Examples

	Numerical differentiation
	Examples (Unlectured)

	Error for approximation of linear functionals
	Taylor series expansion
	Exchanging the order of and integration
	Formula for when K does not change sign
	Bounds for

	Initial Value Ordinary Differential Equations
	One-step methods
	The Euler method
	Theta methods

	Multistep methods
	The order of a multistep method
	The convergence of multistep methods
	Adams and BDF methods

	Runge–Kutta methods
	Quadrature formulae
	General Runge–Kutta methods
	Examples of Runge–Kutta methods
	Implicit Runge–Kutta methods (Unlectured)

	Stiff equations
	Stiffness: the problem
	Linear stability domains and A-stability
	A-stability and the maximum principle

	Implementation of ODE methods
	Error control for multistep methods
	Error control for Runge–Kutta methods
	The Zadunaisky device
	Not the last word
	Solving nonlinear algebraic systems
	A distraction

	Square Linear Systems and the LU factorisation
	Triangular matrices
	LU factorization and its generalization
	The construction of an LU factorization
	Relation to Gaussian elimination
	Pivoting to avoid breakdown
	Pivoting to maintain accuracy
	Further examples (Unlectured)

	LU factorization theory and application to structured A
	Existence and uniqueness of the LU factorization
	Symmetric matrices
	Positive definite matrices
	Symmetric positive definite matrices
	Sparse matrices

	Linear Least Squares and the QR factorisation
	The normal equations
	Orthogonal matrices
	The QR factorization
	Constructing a QR factorization
	The Gram–Schmidt orthogonalisation process
	Givens rotation matrices
	Householder reflection matrices

	Solving least squares problems with the QR factorisation
	Examples

