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1 System of masses

1.1 System of masses

1.1.1 Motion relative to the centre of mass

Let ri = R + ri
c, where ri

c is the position of particle relative to the centre of
mass.
Then ∑

i

miri
c =

∑
i

miri
c −

∑
i

miR

= MR−MR

= 0

=⇒
∑
i

miṙi
c = 0.

The total linear momentum, angular momentum and kinetic energy are :

P =
∑
i

mi

(
Ṙ + ṙi

c
)

= MṘ

L =
∑
i

mi (R + ri
c)×

(
Ṙ + ṙi

c
)

=
∑
i

miR× Ṙ + R×
∑
i

miṙi
c

= MR× Ṙ +
∑
i

miri
c × ṙi

c.

T =
1

2

∑
i

mi|ṙi|2

=
1

2

∑
i

mi

(
Ṙ + ṙi

c
)
·
(
Ṙ + ṙi

c
)

=
1

2

∑
i

miṘ · Ṙ + Ṙ ·
∑
i

miṙi
c +

1

2

∑
i

miṙi
c · ṙic

=
1

2
M |Ṙ|2 +

1

2

∑
i

mi|ṙic|2

= KE of centre of mass + KE of motion relative to centre of mass.

If the forces are conservative in the sense that

Fi
ext = −∇iVi (ri)
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and Fij = −∇iVij (ri − rj),
where ∇i is the gradient with respect to ri, then energy is conserved in the form

E = T +
∑
i

Vi (ri) +
1

2

∑
i

∑
j

Vij (ri − rj) = constant.

1.1.2 The two-body problem

Consider two particles with no external forces.
The centre of mass is at

R =
1

M
(m1r1 +m2r2)

with M = m1 +m2.
Define the separation vector(relative position vector):

r = r1 − r2.

Then
r1 = R +

m2

M
r,

r2 = R +
m1

M
r.

Since F = 0 (no external forces), R̈ = 0.
The centre of mass moves uniformly.
Meanwhile,

r̈ = r̈1 − r̈2

=
1

m1
F12 −

1

m2
f21

=

(
1

m1
+

1

m2

)
F12 (using N3L)

Thus
µr̈ = F12 (r)
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where
µ =

m1m2

m1 +m2

is the reduced mass.
This is the same as the equation of motion for one particle of mass µ with
position vector r relative to a fixed origin as studied previously.

Example. with gravity:

µr̈ = −Gm1m2r

|r|3
=⇒ r̈ = −GM r̂

|r|2

Example. planet orbiting the Sun:
Both planet and Sun move in an ellipse about their centre of mass. Because the
Sun is much more massive, its ellipse is much smaller. Orbital period depends
on the total mass (Sun + planet).

Or binary black hole:

It can be shown that
L = MR× Ṙ + µr× ṙ

T =
1

2
M |Ṙ|2 +

1

2
µ|ṙ|2
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1.1.3 Variable-mass problems

Newton’s Second Law is

ṗ = F with p = mṙ

but we cannot simply apply this equation if m depends on t because that implies
that the system is not closed.
Consider a rocket moving in one dimension, with mass m (t) and velocity v (t).
The rocket propels itself by burning fuel and ejecting the exhaust at velocity −u
relative to the rocket.
At time t:

At time t+ δt:

The change in total momentum of the system (rocket+exhaust) is

δp = m (t+ δt) v (t+ δt) + (m (t)−m (t+ δt)) (v (t)− u+O (δt))−m (t) v (t)

=
(
m+ ṁδt+O

(
δt2
)) (

v + v̇δt+O
(
δt2
))
− (ṁδt) (v − u) +O

(
δt2
)
−mv

= (ṁv +mv̇ − ṁv + ṁu) δt+O
(
δt2
)

= (mv̇ + ṁu) δt+O
(
δt2
)
.
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Newton’s Second Law then gives

lim
δt→0

∂p

∂t
= F (external force acting on rocket)

=⇒ m
dv

dt
+ u

dm

dt
= F

known as the rocket equation.

Example. where F = 0, we have

m
dv

dt
= −udm

dt

=⇒ v = v0 + u log

(
m0

m (t)

)
(constant such that v = v0 when m = m0).

1.2 Rigid bodies

A rigid body is an extended object, consisting of N particles that are constrained
such that the distance |ri − rj| between any two particles is fixed.
The possible motions of a rigid body are the continuous isometries of Euclidean
space: translations and rotations.

1.2.1 Angular velocity

Consider a single particle moving in a circle of radius s about the z axis.

Its position and velocity are

r = (s cos θ, s sin θ, z)

ṙ
(
−sθ̇ sin θ, sθ̇cosθ, 0

)
Then ṙ = ω × r,
where ω = θ̇ẑ is the angular velocity vector. In general, ω = θ̇n̂ = ωn̂ where n̂
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is a unit vector parallel to rotation axis.
The kinetic energy of the particle is
T = 1

2m (ṙ)
2

= 1
2ms

2θ̇2 = 1
2Iω

2

where I = ms2 = m|n̂× r|2
is the moment of inertia.

1.2.2 Moment of inertia

Consider a rigid body in which all N particles rotate about the same axis with
the same angular velocity:
ṙi = ω × ri
. This ensures that:

d

dt
|ri − rj|2 = 2 (ṙi − ṙj) · (ri − rj)

= 2 (ω × (ri − rj)) · (ri − rj)

= 0

as required for a rigid body.
The rotational kinetic energy is

T =
1

2

N∑
i=1

mi|ṙi|2

=
1

2
Iω2

where I =
∑N
i=1mis

2
i =

∑N
i=1mi|n̂× ri|2

is the moment of inertia of the body about the rotation axis.
The angular momentum is

L =
∑
i

miri × ṙi

=
∑
i

miri × (ω × ri)

with ω = ωn̂, we have

L · n̂ = ω
∑
i

min̂ · (ri × (n̂× ri))

= ω
∑
i

mi (n̂× ri) · (n̂× ri)

= Iω

In general, though, L may not be parallel to ω. We can write

L =
∑
i

mi ((ri · ri)ω − (ri · ω) ri)

= Iω
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where I is the inertia tensor represented by the symmetric matrix with compo-
nents

Ijk =
∑
i

mi

(
|ri|2δjk − (ri)j (ri)k

)
If the body rotates about a principal axis (one of the three orthogonal eigenvectors
of I) e.g. on axis of symmetry if the body has one, then L is parallel to ω.

The relations T = 1
2Iω

2 and L = Iω for angular motion are analogous to the
relations T = 1

2mv
2 and p = mv for linear motion.

1.2.3 Calculating the moment of inertia

For a solid body, we replace the sum over particle by a volume integral, weighted
by the mass density ρ (r).
The mass

M =

∫
ρdV,

the centre of mass is at

R =
1

M

∫
ρrdV

and the moment of inertia is

I =

∫
ρs2dV =

∫
ρ|n̂× r|2dV

We mainly consider homogeneous bodies within which ρ is a constant.
• Thin circular ring:
Mass M , radius a, rotation axis through centre, perpendicular to the plane of
ring.

I = Ma2.

• Thin rod:
Mass M , length l, rotation axis through one end, perpendicular to the rod.
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I =

∫ l

0

M

l
x2dx

=
1

3
Ml2.

• Thin disc:
Mass M , radius a, rotation axis through center of disc perpendicular to the
plane of disc:

I =

∫ 2π

0

∫ a

0

M

πa2
r2rdrdθ

=
M

πa2

∫ a

0

r3dr

∫ 2π

0

dθ

=
M

πa2
1

4
a4 · 2π

=
1

2
Ma2.

Rotation axis through centre, in plane of disc:

I =

∫ 2π

0

∫ a

0

M

πa2
(r sin θ)

2
rdrdθ

=
M

πa2

∫ a

0

r2dr

∫ 2π

0

sin2 θdθ

=
M

πa2
1

4
a4 · π

=
1

4
Ma2.

• Solid sphere:
Mass M , radius a, rotation axis through centre:
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Using spherical polar coordinates based on rotation axis:

I =

∫ 2π

0

∫ π

0

∫ a

0

M
4
3πa

3
(r sin θ)

2
r2 sin θdrdθdϕ

=
M

4
3πa

3

∫ a

0

r4dr

∫ π

0

(
1− cos2 θ

)
sin θdθ

∫ 2π

0

dϕ

=
M

4
3πa

3

1

5
a5 · 4

3
· 2π

=
2

5
Ma2.

Theorem. (Perpendicular Axis Theorem) For a two-dimensional object (a
lamina) in the xy plane, and for three perpendicular axes through the same
point,

Iz = Ix + Iy.

Proof.

Ix =

∫
ρy2dA

Iy =

∫
ρx2dA

Iz =

∫
ρr2dA =

∫
ρ
(
x2 + y2

)
dA = Ix + Iy.

e.g. for a disc, Ix = Iy by symmetry, so Iz = 2Ix.
Important: this does not apply to 3D objects (e.g. sphere, for which Ix = Iy =
Iz).

Theorem. (Parallel Axis Theorem) If a rigid body of mass M has moment of
inertia Ic about an axis passing through the centre of mass, then its moment of
inertia about a parallel axis a distance d away is I = Ic +Md.

Proof. With a convenient choice of Cartesian coordinates such that the centre of
mass is at the origin and the two rotation axes are x = y = 0 and x = d, y = 0,

Ic =

∫
ρ
(
x2 + y2

)
dV
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and ∫
ρrdV = 0

Then

I =

∫
ρ
(

(x− d)
2

+ y2
)
dV

=

∫
ρ
(
x2 + y2

)
dV − 2d

∫
ρxdV + d2

∫
ρdV

= Ic +Md2.

Example. Disc of mass M and radius a:
rotation axis through point on circumference perpendicular to plane of the disc.

I = Ic +Ma2

=
1

2
Ma2 +Ma2

=
3

2
Ma2

1.2.4 Motion of a rigid body

The general motion of a rigid body can be described as a translation of its centre
of mass, following a trajectory R (t), together with a rotation about an axis
through the centre of mass.
We write

ri = R + ri
c

=⇒ ṙi = Ṙ + ṙ2
c

If the body rotates with angular velocity w about the centre of mass, then

ṙi
c = ω × ri

c

=⇒ ṙi = Ṙ + ω × ri
c

= Ṙ + ω × (ri −R)

The kinetic energy is

T =
1

2
M |Ṙ|2 +

1

2

∑
i

mi|ṙic|2

=
1

2
M |Ṙ|2 +

1

2
Icω2

= translational kinetic energy + rotational kinetic energy

where Ic is the moment of inertia about an axis parallel to ω through the centre
of mass.

Consider any point Q, with position vector Q (t), that is not the centre of mass
but moves with the rigid body, i.e.

Q̇ = Ṙ + ω × (Q−R)
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Then we can write

ṙi = Ṙ + ω × (ri −R)

= Q̇− ω × (Q−R) + ω × (ri −R)

= Q̇ + ω × (ri −Q) .

Therefore the motion can be considered as a translation of the point (with a
different velocity Q̇ 6= Ṙ) together with a rotation about Q (with the same
angular velocity ω).

As shown previously, the linear and angular momentum evolve according to

Ṗ = F (total external force)

L̇ = G (total external torque)

These two equations determine the translational and rotational motion of a rigid
body. In some cases energy conservation is easier to apply.

L and G depend on the choice of origin, which could be any point that is fixed
in an inertial frame, or the centre of mass, even if this is accelerated.

mr̈i = Fi =⇒ mir̈i
c = Fi −miR̈

The last term is a fictitious force in the centre-of-mass frame. But the total
torque of the fictitious forces about the centre of mass is∑

i

ri
c ×

(
−miR̈

)
= −

∑
i

miri
c × R̈ = 0.

In a uniform gravitational field g, the total gravitational force and torque are
the same as these would act on a single particle of mass M located at the centre
of mass (which is also the centre of gravity):

F =
∑
i

Fi
ext =

∑
i

mig = Mg

G =
∑
i

Gi
ext =

∑
i

vi × (mig) = MR× g.

Similarly for the gravitational potential energy, the gravitational potential in a
uniform g is −r · g(+ constant):

V ext =
∑
i

V exti =
∑
i

mi (−r · g) = M (−R · g)

In particular, the gravitational torque about the centre of mass vanishes:

Gc = 0.

Example. thrown stick: The centre of the stick moves in a parabola.
Meanwhile, it rotates with constant angular velocity about its centre, because
the gravitational torque about the centre is zero.
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Example. swinging rod:

This is an example of a compound pendulum.
Considering the rod to be rotating about the pivot (and not translating), its
angular momentum is

L = Iθ̇, I =
1

3
Ml2

The gravitational torque about the pivot is

G = −Mg
l

2
sin θ

The equation of motion is

L̇ = G

=⇒ Iθ̈ = −Mg
l

2
sin θ

=⇒ θ̈ = −3g

2l
sin θ

is exactly equivalent to a simple pendulum of length 2l
3 . The angular frequency

of small oscillations is √
3g

2l
.

Can also be obtained from an energy argument:

E = T + V =
1

2
Iθ̇2 −Mg

l

2
cos θ

Differentiate:
dE

dt
= θ̇

(
Iθ̈ +Mg

l

2
sin θ

)
= 0

=⇒ Iθ̈ = −Mg
l

2
sin θ

1.2.5 Sliding versus rolling

Consider a cylinder or sphere of radius a moving along a stationary horizontal
surface.



1 SYSTEM OF MASSES 16

In general, the motion consists of a translation of the centre of mass (with
velocity v) together with a rotation about the centre of mass (with angular
velocity ω).
The horizontal velocty at the point of contact is

vslip = v − aω

For a pure sliding motion, v 6= 0 and ω = 0, in which case v − aω 6= 0: the point
of contact slips on the surface and kinetic friction may occur.
Fora pure rolling motion, v 6= 0 and w 6= 0, such that v − aω = 0. The point of
contact is stationary (instantaneously). This is the no-slip condition.
The rolling body can alternatively be considered to be rotating instantaneously
about the point of contact (with angular velocity ω) and not translating.

Example. (rolling downhill)
Cylinder or sphere of mass M and radius a rolling down a rough plane inclined
at angle α.
No-slip (rolling) condition: v − aω = 0.
Kinetic energy:

T =
1

2
Mv2 +

1

2
Iω2

=
1

2

(
M +

I

a2

)
v2

Total energy:

E =
1

2

(
M +

I

a2

)
ẋ2 −Mgx sinα

(x is distance down slope).

Energy is conserved (see later):

dE

dt
= ẋ

((
M +

I

a2

)
ẍ−Mg sinα

)
= 0

=⇒
(
M +

I

a2

)
ẍ = Mg sinα.

Example. uniform solid cylinder:

I =
1

2
Ma2

=⇒ ẍ =
2

3
g sinα
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For a hollow cylinder (thin cylindrical shell),

I = Ma2 =⇒ ẍ =
1

2
g sinα

)

In terms of forces and torques:

Mv̇ = Mg sinα− F
Iω̇ = aF

While rolling, v̇ − aω̇ = 0. Thus

Mv̇ = Mg sinα− I

a2
v̇

leading to the same result. Here F is a static frictional force. It does no work
(so energy is conserved) because vslip = 0.

Example. (snooker ball)

Struck centrally so as to initiate translation but no rotation. Sliding occurs
initially.
Constant frictional force

F = µkMg

applies while v − aω > 0. (µk: coefficient of kinetic friction)
Moment of inertia is

I =
2

5
Ma2
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about centre of mass.
Equations of motion:

Mv̇ = −F
Iω̇ = aF

Initially v = v0 and ω = 0.
Solution:

v = v0 − µkgt

ω =
5

2

µkg

a
t

Slipping velocity
vslip = v − aω

= v0 −
7

2
µkgt

= v0

(
1− t

troll

)
where

troll =
2

7

v0
µkg

.

The solution applies until t = troll, at which time rolling begins and friction
ceases.
At this point,

v = aω =
5

7
v0

The kinetic energy is

1

2
Mv2 +

1

2
Iω2 =

1

2

(
1 +

2

5

)
Mv2

=
5

14
Mv20 <

1

2
Mv20

So energy has been lost to friction.
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2 Special relativity

When particles move extremely fast, Newtonian Dynamics becomes inaccurate
and is replaced by Einstein’s Special Theory of Relativity (1905).
Its effects are noticeable only when particles approach the speed of light,

c = 299792458ms−1 ≈ 3× 108ms−1

The Special Theory of Relativity rests on two postulates:
• Postulate 1: The laws of physics are the same in all inertial frames (the
principle of relativity, as considered by Galileo).
• Postulate 2: The speed of light in vacuum is the same in all inertial frames.
The second postulate is not compatible with Galilean relativity and requires a
complete revision of our ideas about space and time.

Consider two inertial frames, S and S′, related by the Galilean transformation

x′ = x− vt
y′ = y

z′ = z

t′ = t

In S, a light ray (or photon) travels in the x direction with speed c. Its trajectory
is x

t
= c.

The Galilean transformation gives

x′

t′
=
x− vt
t

= c− v

So the speed of light in S′ would be c− v. How can this common sense result be
wrong?

2.1 The Lorentz transformation

2.1.1 The Lorentz transformation

Consider again inertial frames S and S′ in standard configuration. Assume that
the origins coincide at t = t′ = 0.
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For now, neglect y and z, and consider the relationship between (z, t) and (x′, t′).
The most general form is

x′ = f (x, t)

t′ = g (x, t)

for some functions f and g. In any inertial frame, a free particle moves with
constant velocity. Straight lines in (x, t) must map into straight lines in (x′, t′).
Therefore the relationship must be linear.
Given that the origins of S and S′ coincide (at t = t′ = 0) and S′ moves with
velocity v relative to S, the line x = vt must map into x′ = 0.
Therefore

x′ = γ (x− vt) (1)

for some factor γ that may depend on |v|. Now reverse the roles of the two
frames.
From the perspective of S′, S moves with velocity −v. A similar argument leads
to

x = γ (x′ + vt) (2)

with the same γ since it only depends on |v|.
Now consider a light ray (or photon) passing through the origin x = x′ = 0 at
t = t′ = 0. Its trajectory in S is

x = ct

We demand that its trajectory in S′ be

x′ = ct′

so that the speed of light is the same in each frame.
Substituting these equations into (1) and (2), we have

ct′ = γ (c− v) t

and
ct = γ (c+ v) t′

So
c2 = γ2

(
c2 − v2

)
=⇒ γ =

1√
1− v2

c2
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This is the Lorentz factor γ (v).

Note that: • γ ≥ 1 is an increasing function of |v|;
• when |v| � c, γ ≈ 1 and we recover the Galilean transformation;
• when |v| → c, r →∞;
• when |v| > c, γ is imaginary, which is impossible.

(γ = 2 when v
c ≈ 0.866,

γ = 5 when v
c ≈ 0.980,

γ = 10 when v
c ≈ 0.995,

γ = 20 when v
c ≈ 0.999.)

Eliminate x′ between (1) and (2):

x = γ (γ (x− vt) + vt′)

=⇒ t′ = γt−
(

1− 1

γ2

)
γx

v

= γt− γv

c2
x

The equations

x′ = γ (x− vt) , t′ = γ
(
t− v

c2
x
)

represent the Lorentz transformation in standard configuration (in one spatial
dimension). In the limit v

c → 0 (γ → 1), they reduce to the Galilean transforma-
tion.
We can invert this linear mapping to find (after some algebra)

x = γ (x′ + vt′) , t = γ
(
t′ +

v

c2
x′
)

i.e. the same but with v → −v.
Directions perpendicular to the relative motion of the frames are unaffected:

y′ = y, z′ = z

2.1.2 Checking the speed of light

For a light ray travelling in the x direction in S:
In S:

x = ct, y = 0, z = 0

In S′:
x′

t′
=

γ (x− vt)
γ
(
t− v

c2x
) − (c− v) t(

1− v
c

)
t

= c
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and y′ = 0, z′ = 0 as required.

For a light ray travelling in the y direction in S:
In S:

x = 0, y = ct, z = 0

In S′:
x′

t′
=

γ (x− vt)
γ
(
t− v

c2x
) = −v

y′

t′
=

y

γ
(
t− v

c2x
) =

c

γ

z′ = 0

=⇒
√
x′2 + y′2

t
=

√
v2 +

c2

γ2
= c

as required.

More generally, the Lorentz transformation implies

c2t′2 − r′2 = c2t′2 − x′2 − y′2 − z′2

= c2γ2
(
t− v

c2
x
)2
− γ2 (x− vt)2 − y2 − z2

= γ2
(

1− v2

c2

)(
c2t2 − x2

)
− y2 − z2

= c2t2 − x2 − y2 − z2

= c2t2 − r2

So, if r
t = c, then r′

t′ = c as well.

2.1.3 Space-time diagrams

When considering one spatial dimension (x) and time(t) in an inertial frame S,
we plot x on the horizontal axis and ct on the vertical axis.
(diagram to be inserted – rel19)
The union of space and time in special relativity is called Minkowski spacetime.
Each point p represents an event, labelled by coordinates (ct, x).
A particle traces out a world line in spacetime, which is straight if the particle
moves uniformly.
Light rays moving in the x direction have world lines inclined at 45◦.
We will see later that particles cannot travel with speed v > c.
(diagram to be inserted – rel20)
We can also draw the axes of S′, moving with velocity v in the x direction
relative to S.
The t′ axis corresponds to x′ = 0, i.e.

x =
v

c
ct
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The x′ axis corresponds to t′ = 0, i.e.

ct =
v

c
x

(these are simply obtained by the previous Lorentz transformation equations)
(diagram to be inserted – rel 21)
The axes are symmetric about the diagonal. This reflects the fact that the speed
of light in S′ is also c.

2.2 Relativity physics

2.2.1 Simultaneity

Two events P1 and P2 are simultaneous in the frame S if t1 = t2.
(diagram to be inserted – rel22)
However, events that are simultaneously in S′ have equal values of t′, and so
they lie in lines

ct− v

c
x = constant

(diagram to be inserted – rel23)
Therefore simultaneity is relative.

2.2.2 Causality

Although differently moving observers may disagree on the temporal ordering of
events, the consistent ordering of cause and effect can be ensured.
Lines of simultaneity cannot be inclined at more than 45◦, because Lorentz
boosts are possible only for |v| < c.
(diagram to be inserted – rel24)
The lines at 45◦ emerging from P from the past light cone and future light cone
of P .
All observers agree that Q occurs after P . Different observers may disagree on
the temporal ordering of P and R.
If nothing can travel faster than light, than P and R cannot influence each other.
P can only influence events within its future light cone, and P can only be
influenced by events within its past light cones.

2.2.3 Time dilation

A clock that is stationary in S′ ticks at constant intervals 4t′.
What is the interval between ticks in S?
The inverse Lorentz transformation gives

t = γ
(
t′ +

v

c2
x′
)
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Since x′ is constant for the clock, we have

4t = γ4t′ > 4t′

Therefore moving clocks run slowly.

Definition. (Proper time)
Proper time is the time measured in an object’s rest frame.

2.2.4 The twin paradox

Consider two twins: Luke and Leia. Luke stays at home while Leia travels at
constant speed v to a distant planet P , then turns around and returns at the
same speed.
(diagram to be inserted – rel25)
Leia’s arrival(A) at P has

(ct, x) = (cT, vT ) .

The time experienced by Leia on her outward journey is

T ′ = γ
(
T − v

c2
vT
)

=
T

γ

By Leia’s return (R), Luke has aged by 2T , but Leia has aged by 2T
γ < 2T so

she is younger than Luke because of time dilation.
Paradox: from Leia’s perspective, Luke travelled away from her at speed v and
then returned, so he should be younger than her!
Why is the problem not symmetric?
(diagram to be inserted – rel26)
In the frame of reference of Leia’s outward journey, her arrival A is simultaneous
with Luke’s event X, which has x = 0 and t′ = T ′ = T

γ . So

t′ = γ
(
t− v

c2
x
)

=⇒ t =
T ′

γ
=

T

γ2

This is how much Luke has aged from Leia’s perspective when she arrives at P .
At this stage the problem is symmetric: each thinks the other has aged less by a
factor of 1

γ .
Things change when Leia turns around and changes frame of reference. Suppose
Leia meets a friend Han who is just leaving P at speed v.
(diagram to be inserted – rel27)
On his journey, Han thinks that Luke ages by T

γ2 . But in his frame of reference,
his departure is simultaneous with Luke’s event Z.
The asymmetry between Luke and Leia occurs when Leia turns around.
At this point she sees Luke age rapidly from X to Z.

2.2.5 Length contraction

Suppose we have a rod of length L′ stationary in frame S′. What is its length in
frame S?
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In S′:
(diagram to be inserted – rel28)
The length of the rod is the distance between the two ends at the same time!
In frame S:
(diagram to be inserted – rel29)
The lines x′ = 0 and x′ = L′ map into (using the Lorentz transformation
x′ = γ (x− vt)):

x = vt, x = vt+
L′

γ

So the length in S is

L =
L′

γ
< L′

Therefore moving objects are contracted in the direction of motion.

Definition. (Proper length)
The proper length is the length measured in an object’s rest frame.

Does a train of length 2L fit alongside a platform of length L if it travels through
the station at a speed v such that γ = 2?
For the system of observers on the platform, the train contracts to a length
2L
γ = L. So it fits!

But for the system of observers on the train, the platform contracts to a length
L
γ = L

2 , which is much too short!

(diagram to be inserted – rel30)
No paradox here – lengths are different because simultaneity is relative.

2.2.6 Composition of velocities

A particle moves with constant velocity u′ in frame S′, which moves with velocity
v relative to S.
What is its velocity u in S?
The world line of the particle in S′ is

x′ = u′t′

In S,

u =
x

t
=

γ (x′ + vt′)

γ
(
t′ + v

c2x
′
)

=
u′t′ + vt′

t′ + v
c2u
′t′

=
u′ + v

1 + u′v
c2

This is the formula for the relativistic composition of parallel velocities.
The inverse transformation is found by swapping u and u′ and changing the sign
of v.
Note that:
• When u′v � c2, it reduces to the standard Galilean addition of velocities.
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• For given v (|v| < c always) u is a monotonically increasing function of u′.
• When u′ = ±c, u = u′ for any v.
• Therefore, when |u′| < c, |u| < c also.
(You cannot reach or exceed light speed by any combination of boosts.)
(diagram to be inserted – rel31)

2.3 Geometry of spacetime

2.3.1 The invariant interval

Consider events P and Q with coordinates (ct1, x1) and (ct2, x2) separated by

4t = t2 − t1,4x = x2 − x1

The invariant interval between P and Q is defined as

4s2 = c24t2 −4x2

All inertial observers agree on the value of 4s2:

c24t′2 −4x′2 = c2γ2
(
4t− v

c2
4x
)2
− γ2 (4x− v4t)2

= γ2
(

1− v2

c2

)(
c24t2 −4x2

)
= c24t2 −4x2

In three spatial dimensions, the invariant interval is

4s2 = c24t2 −4x2 −4y2 −4z2

For two infinitesimally separated events, we have the line elements

ds2 = c2dt2 − dx2 − dy2 − dz2

Spacetime is topologically equivalent to R4. When endowed with the distant
measure4s2 (which is not positive definite), it is called the Minkowski spacetime.
We say it has dimension d = 1 + 3.
Events with 4s2 > 0 are timelike separated.
(There is a frame in which they occur at the same position).
(diagram to be inserted – rel32)
Events with 4s2 < 0 are spacelike separated.
(There is a frame in which they occur at the same time).
(diagram to be inserted – rel33)
Event with 4s2 = 0 are lightlike separated (or null separated). (They could be
connected by a light ray).
(diagram to be inserted – rel34)
(Note that 4s2 = 0 does not imply that P and Q are the same event.)
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2.3.2 The Lorentz group

The coordinates of an event P in frame S can be written as a 4-vector (4-
component vector) X.

Xµ =


ct
x
y
z

 , µ = 0, 1, 2, 3

The invariant interval between the origin and P can be written as an inner
product

X ·X = XT ηX = XµηµµX
µ

(summation convention) where

η =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


is the Minkowski metric.
We see that

X ·X = c2t2 − x2 − y2 − z2

as required.

4-vectors with X ·X > 0 are called timelike;
4-vectors with X ·X < 0 are called spacelike;
4-vectors with X ·X = 0 are called lightlike.

A Lorentz transformation is a linear transformation of the coordinates from one
frame (S) to another (S′), represented by a 4× 4 matrix:

X ′ = ΛX

Lorentz transformations can be defined as those that leave the inner product
invariant:

X ′ ·X ′ = X ·X

for all X, which implies the matrix equation

ΛT ηΛ = η

Two classes of solution of this equation are:
1)

Λ =


1 0 0 0
0
0 R
0


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With R a 3× 3 matrix satisfying

RTR = I

These are spatial rotations (improper, since they include reflections).
2)

Λ =


γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1


where we define

β =
v

c
, γ =

1√
1− β2

These are Lorentz boosts in the x direction.

The set of all matrices satisfying

ΛT ηΛ = η

form the Lorentz group O (1, 3). It is generated by rotations and boosts, and
includes spatial reflections and time reversals.
The subgroup with det Λ = +1 is the proper Lorentz group SO (1, 3);
The subgroup that preserves spatial orientation and the direction of time is the
restricted Lorentz group SO+ (1, 3).

2.3.3 Rapidity

Focus on the upper 2× 2 matrix of Lorentz boosts in the x direction.
Write

Λ [β] =

(
γ −γβ
−γβ γ

)
with

γ =
1√

1− β2

Combining two boosts in the x direction, we have

Λ [β1] Λ [β2] =

(
γ1 −γ1β1
−γ1β1 γ1

)(
γ2 −γ2β2
−γ2β2 γ2

)
= Λ

[
β1 + β2
1 + β1β2

]
after some messy algebra. This is just the velocity composition formula in
dimensionless form.
Recall that, for spatial rotations,

R (θ) =

(
cos θ sin θ
− sin θ cos θ

)
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and
R (θ1)R (θ2) = R (θ1 + θ2)

For Lorentz boosts, define the rapidity φ such that

β = tanhφ, γ = coshφ, γβ = sinhφ

Then

Λ [β] =

(
coshφ sinhφ
− sinhφ coshφ

)
= Λ (φ)

and the rapidities add like rotation angles:

Λ (φ1) Λ (φ2) = Λ (φ1 + φ2)

This shows the close relationship between rotations and boosts. A boost is a
hyperbolic notation in spacetime.

2.4 Relativistic kinematics

A particle moves along a trajectory x (t) in S. Its velocity is

u (t) =
dx

dt

However, there is a better way to describe its trajectory.

2.4.1 Proper time

First consider a particle at rest in an inertial frame S′ with x′ = 0. The invariant
interval between points on its world line is

4s2 = c24t′2

Define proper time τ such that

4τ =
4s
c

This is the time experienced by the particle. But the equation

4τ =
4s
c

holds in all fames, because 4s is Lorentz-invariant (and real for particles that
travel slower than light).
The world line of a particle can be parameterised using the proper time τ : x (τ)
and t (τ):
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(diagram to be inserted – rel35)
Infinitesimal changes are related by

dτ =
ds

c

=

√
c2dt2 − |dx|2

c

=

√
1− |u|

2

c2
dt

Thus
dt

dτ
= γu

with

γu =
1√

1− |u|c2

The total time experienced by the particle along a segment of its world line is

T =

∫
dτ =

∫
dt

γu

2.4.2 4-velocity

The position 4-vector of a particle is

X (τ) =

(
ct (τ)
x (τ)

)
Its 4-velocity is defined as

U =
dX

dτ
=

c dtdτ
dx
dτ


=
dt

dτ

(
c
u

)
= γu

(
c
u

)
where

u =
dx

dt

Another common notation is

X = (ct,x) , U = γu (c,u)

If frame S and S′ are related by

X ′ = ΛX
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then the 4-velocity also transforms as

U ′ = ΛU

Any 4-component vector that transforms in this way under a Lorentz transfor-
mation is called a 4-vector. U is a 4-vector because X is a 4-vector and τ is
Lorentz-invariant. Note that dX

dt is not a 4-vector.

The inner product
U · U = U ′ · U ′

is a Lorentz invariant, which is the same in all inertial frames.
In the rest frame of the particle,

U =

(
c
0

)
=⇒ U · U = c2

In any other frame,

U = γu

(
c
u

)
=⇒ U · U = γ2u

(
c2 − u2

)
= c2

again as expected.

2.4.3 Transformation of velocities revisited

We’ve seen that velocities cannot simply be added in relativity. However, the
4-velocity does transform linearly according to the Lorentz transformation

U ′ = ΛU

In frame S, consider a particle moving at speed u at angle θ to the x axis in the
xy plane.
(diagram rel-36)
Its 4-velocity is

U =


γuc

γuu cos θ
γuu sin θ

0


with

γu =
1√

1− u2

c2

.

With frames S and S′ in standard configuration,
γu′c

γu′u′ cos θ′

γu′u′ sin θ′

0

 =


γv −γv vc 0 0
−γv vc γv 0 0

0 0 1 0
0 0 0 1




γuc
γuu cos θ
γuu sin θ

0


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(diagram rel-37)
The ration of the second and first lines (xc) gives

u′ cos θ′ =
u cos θ − v
1− uv

c2 cos θ

just like the composition of parallel velocities.
The ratio of the thirs and second lines is

tan θ′ =
u sin θ

γv (u cos θ − v)

which describes aberration: a change in the apparent direction of motion of a
particle due to the motion of the observer.
Aberration of starlight (u = c) due to the Earth’s orbital motion causes small
annual changes in the apparent positions of stars.

2.4.4 4-momentum

The 4-momentum of a particle of mass m is

P = mU = mγu

(
c
u

)
with

γu =
1√

1− |u|
2

c2

The 4-momentum of a system of particles is the sum of the 4-momentum of the
particles, and is conserved in the absence of external forces.
The spatial components of P are the relativistic 3-momentum

p = mγuu

which differs from the Newtonian expression by a factor of γu.
Note that |p| → ∞ as |u| → c.
What is the interpretation of the time-component p◦? Expand for |u| � c:

p◦ = mγuc =
mc√

1− |u|
2

c2

=
1

c

(
mc2 +

1

2
m|u|2 + ...

)
Since p◦ is conserved, this strongly suggests that we should interpret P as

P =

(
E
c
p

)
where E is the relativistic energy.
Then

E = mγuc
2

= mc2 +
1

2
m|u|2 + ...
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for |u| � c.
Note that E →∞ as |u| → c.
For a stationary particle,

E = mc2

This implies that mass is a form of energy.
m is sometimes called the rest mass.
The energy of a moving particle,

E = mγuc
2

is the sum of the rest energy mc2 and the kinetic energy

m (γu − 1) c2

Since

P · P =
E2

c2
− |p|2

is a Lorentz invariant and equals m2c2 in the particle’s rest frame, we have the
general relation between energy and momentum:

E2 = |p|2c2 +m2c4

In Newtonian physics, mass and energy are separately conserved. In relativity,
mass is not conserved ; it is just another form of energy. Mass can be converted
into kinetic energy and vice versa.

2.4.5 Massless particles

Particles with zero mass (m = 0), e.g. photons, can have non-zero momentum
and energy because they travel at the speed of light (γ =∞).
In case P · P = 0.
Massless particles have lightlike (null) trajectories and no proper time.
Energy and momentum are related by

E2 = |p|2c2 =⇒ E = |p|c

Thus

P =
E

c

(
1n

)
where n is a unit vector in the direction of propagation.
According to quantum mechanics, particles can be regarded as waves and vice
versa.
The de Broglie relation between momentum and wavelength λ is

|p| = h

λ

were
h ≈ 6.63× 10−34m2kgs−1
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is the Planck’s constant. For massless particles, this is consistent with Planck’s
relation

E =
hc

λ
= hυ

where
υ =

c

λ

is the wave frequency.

2.4.6 Newton’s second law in special relativity

This has the form
dP

dt
= F

where F is the 4-force.
It is related to the 3-force F by

F = γu

(
F·u
c

F

)
Thus

dE

dτ
= γuF · u =⇒ dE

dt
= F · u

dp

dτ
= γuF =⇒ dp

dt
= F

Equivalently, for a particle of mass m,

F = mA

where

A =
dU

dτ

is the 4-acceleration.
We have

U = γu

(
c
u

)
A = γu

dU

dt
= γu

(
γ̇uc
γua + γ̇uu

)
where

a =
du

dt

and

γu =

(
1− |u|

2

c2

)− 1
2

=⇒ γ̇u = γ3u
a · u
c2

For any massive particle, there is an inertial frame in which the particle is at
rest at a given time t. This is the instantaneous rest frame. In this frame u = 0,
so γu = 1 and γ̇u = 0. So

U =

(
c
0

)
, A =

(
0
a

)
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Since U ·A is invariant,
U ·A = 0

in all frames.

2.5 Particle physics

Many problems can be solved using the conservation of 4-momentum

P =

(
E
c
p

)
for a system of particles. The centre-of-momentum (CM) frame is an inertial
frame in which the total 3-momentum p is 0 (this exists unless the system
consists of one or more massless particles travelling in a single direction).
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