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1 Differential operators

1.1 grad, div, curl

View ∇f =
(
∂f
∂x ,

∂f
∂y ,

∂f
∂z

)
as obtained from f by applying the vector operator:

∇ =
(
∂
∂x ,

∂
∂y ,

∂
∂z

)
= ei

∂
∂xi

, where ei is an orthonormal, right-handed system,

ei · ej = δij , ei × ej = εijkek.
Call it grad, write ∇f = grad f .
Now define

∇ · F =

(
ei

∂

∂xi

)
(Fjej)

=
∂Fi
∂xi

=
∂F1

∂x
+
∂F2

∂y
+
∂F3

∂z
.

Also written as div F, called divergence of F.
And

∇× F =

(
ei

∂

∂xi

)
× (Fjej)

= εijk
∂Fj
∂xi

ek.

Also written as curl F.
write (∂1, ∂2, ∂3) =

(
∂
∂x ,

∂
∂y ,

∂
∂z

)
, then

curl F =

∣∣∣∣∣∣
e1 e2 e3

∂1 ∂2 ∂3
F1 F2 F3

∣∣∣∣∣∣
= (∂2F3 − ∂3F2, ∂3F1 − ∂1F3, ∂1F2, ∂2F1) .

Note: with ∇, order is important. e.g.:
F · ∇ = Fi

∂
∂xi

is a scalar operator;

∇ · F = ∂Fi

∂xi
is a scalar function.

grad,div, curl are all linear operators.
Leibniz properties hold for all of them:

∇ (fg) = (∇f) g + f (∇g) ;

∇ · (fF) = (∇f) · F + f div F;

curl (fF) = (∇f)× F + f curl F.

Also many more (can be proven by index notation):

∇ · (F×G) = (∇× F) ·G− F · (∇×G) ;

∇× (F×G) = F (∇ ·G)−G (∇ · F) + G (∇ · F)− F (∇ ·G) ;

∇ (F ·G) = F× (∇×G) + G× (∇× F) + (F · ∇) G + (G · ∇) F.
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Example. Recall (a× b)k = εijkaibj .
So:

∇ · (F×G) =
∂

∂xi
(F×G)i

=
∂

∂xi
(εijkFjGk)

= εijk
∂Fj
∂xi

Gk + εijkFj
∂Gk
∂xi

= (∇× F)k ·G− Fjεikj
∂Gk
∂xi

= (∇× F) ·G− F · (∇×G) .

Example. Let r = (x, y, z). r =
√
x2 + y2 + z2.

Calculate div (rαr) = (∇ (rα)) · r + rα (∇ · r).
But

∇rα = αrα−1∇r

= αrα−1
(

1

r

)
(x, y, z)

= αrα−2r,

∇ · r =
∂x

∂x
+
∂y

∂y
+
∂z

∂z
= 3.

So
div (rαr) =

(
αrα−2r

)
· r + 3rα

= αrα + 3rα;

curl (rαr) = ∇ (rα)× r + rα (∇× r)

= 0 + 0

= 0.

1.2 Second order derivatives

We have
∇× (∇f) = 0 for any f – ”curl grad = 0”;
∇ · (∇×A) = 0 for any A – ”div curl = 0”.
Converse results also hold for suitable regions D ⊂ Rn.
1) If F is defined on all R3 ( or any simply connected region D), then ∇× F =
0 =⇒ F = ∇ϕ for some ϕ.
(freedom: ϕ→ ϕ+ constants also works)
2) If F is defined on all R3 ( or any D ⊂ R3 such that any sphere on D can be
contracted continuously to a point in D), then div F = 0 =⇒ F = ∇×A.
(freedom: A→ A +∇ϕ, called the gauge freedom of A)

Definition. A vector field is called:
1)irrotational if ∇× F = 0;
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2)conservative if F = ∇ϕ for some ϕ;
3)solenoidal if ∇ · F = 0.

Laplacian operator, ∇2 = ∇ · ∇ = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 .

For scalar fields f ,

∇2f = ∇ · (∇f) = div (grad f) .

For vector fields F = (F1, F2, F3),

∇2F = ∇ (∇ · F)−∇× (∇× F)

= grad (div F)− curl (curl F) .

Example. (irrotational and conservative fields).

Consider F =
(
− y
x2+y2 ,

x
x2+y2 , 0

)
: Check that ∇× F = 0.

Consider f (x, y, z) = arctan y
x : ∂f

∂x = − y
x2+y2 ,

∂f
∂x = − x

x2+y2 .

It looks like F = ∇f , but arctan y
x is not continuous on whole of R3−(z axis)= D.

Note that arctan y
x =polar angle ϕ in x-y plane.

At A: ϕ = 0.
Insist that ϕ varies continuously along the curve. Then must have ϕ = 2π at B.
But B = A.
Now F is defined on D, so F 6= ∇f on all D with f smooth.
So F is not conservative on all D(D is not simply connected).
Remove offending part, e.g. z-x plane for x ≥ 0.
D′ = R− {(z axis) ∪ (z-x plane, x ≥ 0)}.
Then on D′, F = ∇f everywhere and f is smooth, i.e. F is conservative on D′.
Also D′ is simply connected.
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2 Integral Theorems

2.1 Green’s Theorem

Theorem. (Green’s)
For smooth functions P (x, y) and Q (x, y),∫

A

(
∂Q

∂x
− ∂P

∂y

)
dA =

∫
C

(Pdx+Qdy) .

Where A is a simple bounded region in x-y plane, i.e. with boundary ∂A =
C a piecewise smooth, non-self intersecting closed curve, and it is traversed
anticlockwise.
Equivalently, A is on the left hand side of direction of traverse.

Example. Let P = x2y,Q = xy2.
Green’s theorem says:∫

A

(
y2 − x2

)
dA =

∫
C

(
x2ydx+ xy2dy

)
for any simple A, and C is the boundary of A traversed anticlockwise.

Remark. Green’s theorem holds also for non-simple regions A ⊆ R2, with holes
– having C = ∂A being a number of disconnected components.
Orientations of ∂A must always be chosen to have A on the left-hand-side for
direction of traverse.

2.2 Stoke’s Theorem

Theorem. (Stoke’s)
For a smooth vector field F (r),∫

S

(∇× F) · dS =

∫
C

F · dr.

where S is a smooth bounded surface with boundary ∂S = C,piecewise smooth,
non-self intersecting closed curve(or a union of such, and S and C have compatible
orientations, i.e. if mathbfn is normal to S and t is unit tangent to C(so that
dS = ndS, dr = tdS, S = arclength), then ”if stand on boundary with head up in
direction of n and face direction t, then S is on the left hand side.” t× n(which
is tangent to S too) points out from S along C.

Example. Consider S =Section of sphere of radius a for 0 ≤ θ ≤ α.
Spherical polar coordinates (r = a, θ, ϕ).
Orient S with outward pointing normal n = er.
Then compatible orientation for C is anticlockwise looking down from north
pole, i.e. in direction of increasing ϕ when C is parameterised by ϕ.
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S is θ : 0→ α, ϕ : 0→ 2π in (θ, ϕ) parameters.
r (θ, ϕ) = (a sin θ cosϕ, a sin θ sinϕ, a cos θ).
So find the partial derivatives of r with respect to θ and ϕ, and get | ∂r∂θ ×

∂r
∂ϕ | =

a2 sin θ.
so dS = a2 sin θerdθdϕ.
For C: r = a and θ = α:
r (ϕ) = (a sinα cosϕ, a sinα sinϕ, a cosα).
dr = dr

dϕdϕ = a sinα (− sinϕ, cosϕ, 0) dϕ.
Stokes says: ∫

S

(∇× F) · dS =

∫
C

F · dr.

So e.g. take F = (0, xz, 0),
have ∇× F = (−x, 0, z).
So

(∇× F) · dS = (−x, 0, z) · errdθdϕ

= (−a sin θ cosϕ, 0, a cos θ) ·
(
sin θ cosϕ, sin θ sinϕ, cos θa2 sin θdθdϕ

)
=
(
−a3 sin3 θ cos2 ϕ+ a3 sin θ cos2 θ

)
dθdϕ

F · dr = (0, xz, 0) · (−sinϕ, cosϕ, 0) a sinαdϕ

= a3 sin2 α cosα cos2 ϕdϕ

So ∫
S

(∇× F) · dS =

∫ 2π

ϕ=0

∫ α

θ=0

(
−a3 sin3 θ cos2 ϕ+ a3 sin θ cos2 θ

)
dθdϕ∫

C

F · dr =

∫ 2π

0

a3 sin2 α cosα cos2 ϕdϕ

Check both = πa3 sin2 α cosα.

2.3 Gauss’ Theorem

Theorem. (Gauss’, aka divergence theorem) For a smooth vector field F (r),∫
V

∇ · FdV =

∫
S

F · dS

where V is a bounded volume, with boundary ∂V = S being a piecewise smooth
closed surface(or union of such).
*with n pointing outwards from V .

(2D Gauss’ theorem)
For smooth vector field G = (G1, G2) on R2,∫

A

∇ ·GdA =

∫
C

G · nds
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Where A is bounded region in R2, C = ∂A is boundary, ds is (scalar) arclength
element on C. *n is outward pointing normal along C.

Note: if C is (x (s) , y (s)) parameterised by arclength with s increasing anti-
clockwise,
unit tangent:

t =
(
dx
ds ,

dy
ds

)
,

unit normal:
n =

(
dy
ds ,−

dx
ds

)
has correct sign to be outward pointing.

Check:
on top: dx

ds < 0, so n has positive y component(correct).

on bottom:dxds > 0, so n has negative y component(correct).
So

n ·G = G1
dy

ds
−G2

dx

ds

so 2D Gauss says: ∫
A

(
∂G1

∂x
+
∂G2

∂y

)
dA =

∫
C

G1dy −G2dx

2.4 Proof of theorems

Relating and proving all the theorems:
strategy: we’ll show (in order) that:
(a) Stokes =⇒ Green’s;
(b) Green ⇐⇒ 2D Gauss;
(c) Prove 2D Gauss;
(d) Green =⇒ Stokes.

Proof. (a) consider just simple regions:
In Stokes’ theorem, let S be a region A in x− y plane of 3D with n = k(positive
z direction).
Then consistent orientation of ∂A is anticlockwise.
Consider F = (P,Q, 0),

so ∇× F =
(

0, 0, ∂Q∂x −
∂Q
∂y

)
.

so F · dr = Pdx+Qdy, and
(∇× F) · n = ∂Q

∂x −
∂Q
∂y .

Stokes gives: ∫
A

(
∂Q

∂x
− ∂Q

∂y

)
dA =

∫
C

Pdx+Qdy
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i.e. Green’s theorem.

(b) Green’s theorem is∫
A

(
∂Q

∂x
− ∂Q

∂y

)
dA =

∫
C

Pdx+Qdy

2D Gauss (with G = (G1, G2)) is∫
A

(
∂G1

∂x
− ∂G2

∂y

)
dA =

∫
C

G1dy −G2dx

make correspondence/replacements:
Q→ G1, P → −G2

then each gives the other.

(c) Proving 2D Gauss (divergence) theorem.∫
A

∇ ·GdA =

∫
C=∂A

G · nds (1)

n outward pointing normal on C.
Suppose we can prove (1) for G = b (x, y) j, then same argument (with role x
and y interchanged) will give (1) for H = a (x, y) i (divG = ∂b

∂y ,divH = ∂a
∂x ).

Then since both sides of (1) is linear in G, it must hold for any G = a (x, y) i +
b (x, y) j.
So let G = G (x, y) j:
use vertical strips Yx for area integral.

Recall 2D-Gauss theorem:∫
A

∇ ·GdA =

∫
C=∂A

G · nds

Remark:
∫
C

G · nds is different from
∫
C

G · dr =
∫
C

G · tds (e.g. as in Stokes’
theorem).
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∫
A

∇ ·GdA =

∫ xR

xL

(∫
Yx

∂G

∂y
dy

)
dx

=

∫ xR

xL

G+ (x)−G− (x) dx

=

∫ xR

xL

G+ (x) dx−
∫ xR

xL

G− (x) dx

change variable to s on C+,i.e. opposite orientation to x(S : R→ L) for the first
integral, and change variable to s on C−, i.e. same orientation on x(s : L→ R)
for the second integral:∫ xR

xL

G+dx =

∫ S1

S2

G+
dx

ds
ds = −

∫
C+

(
G+

dx

ds

)
ds∫ xR

xL

G−dx =

∫ S1

S0

G−
dx

ds
ds = −

∫
C−

(
G−

dx

ds

)
ds

Now relate dx
ds ’s to outward unit n:

t =
(
dx
ds ,

dy
ds

)
unit tangent;

n =
(
dy
ds ,−

dx
ds

)
is the correct choice of signs to point outward.

vertical component of n:
j · n = −dxds is positive on C+, negative on C−.
So ∫ xR

xL

(G+ −G−) dx

= −
∫
C+

G (s)
dx

ds
ds−

∫
C−

G (s)
dx

ds
ds

=

∫
C+

Gj · nds+

∫
C−

Gj · nds

=

∫
C

G · nds as G = Gj.

For more general shapes, e.g.
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We either divide the region into simple pieces, and sum of all the dotted parts
cancel;
or proceed as above with Yx now possibly a sum of intervals.

Remark. Same method can be used to prove 3D Gauss theorem: look at G of
the form G = G (x, y, z) k and vertical columns of volume for

∫
Y

div GdY .

(d) Green’s theorem =⇒ Stokes’ theorem.∫
S

(∇× F) · dS =

∫
C=∂S

F · dr

S and C have consistent orientations.
Suppose S(the surface) is parameterised as r (u, v) for (u, v) ∈ A ⊆ R2.(Note
that there are two different meanings of S here: the surface, and the arclength
of the boundary - kindly reminded by lecturer)
Then dS =

(
∂r
∂u ×

∂r
∂v

)
dudv.

and parameterised (u, v) have fixed the orientation of S (n in direction of
left( ∂r∂u ×

∂r
∂v ).

So also fixed (consistent) orientation on C∂S.
So ∫

S

(∇× F) · ds =

∫
A

(∇× F) ·
(
∂r

∂u
× ∂r

∂v

)
dudv.

Fact:

curl F (r (u, v)) ·
(
∂r

∂u
× ∂r

∂v

)
=
∂F

∂u
· ∂r

∂v
− ∂F

∂v
· ∂r

∂u
.

Proof outline: just use suffix notation:

LHS =

(
εijk

∂Fj
∂xi

)(
εpqk

∂xp
∂u

∂xq
∂v

)
(2)

Then use εijkεpqk = δipδjq − δiqδjp
and note: (

∂F

∂u

)
i

=
∂Fi
∂u

=
∂Fi
∂xp

∂xp
∂u

=
∂Fi
∂xj

∂xp
∂u

δjp; Note the suffix notation used(
∂r

∂v

)
i

=
∂xi
∂v

substitute into (2) to get the result.
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So we have

∂S (∇× F) · dS =

∫
A

(
∂F

∂u
· ∂r

∂v
− ∂F

∂v
· ∂r

∂u

)
dudv

=

∫
A

[
∂

∂u

(
F (r (u, v)) · ∂r

∂v

)
− ∂

∂v

(
F · ∂r

∂u

)]
dudv

Think Green!
for xy: ∫

A

∂Q

∂x
− ∂P

∂y
dxdy =

∫
C

Pdx+Qdy anticlockwise.

So Green’s theorem in u-v plane gives:

∂S (∇× F) · dS =

∫
C

(
F · ∂r

∂u

)
du+

(
F · ∂r

∂v

)
dv

Also along C = ∂Sdr = ∂dr
∂u du+ ∂r

∂vdv,
So we get ∫

S

(∇× F) · dS =

∫
C

F · dr.

Finally we should check that anti-clockwise orientation for ∂A (needed in Green’s
theorem) agrees with the orientation of ∂S imposed by the choice of parameters,i.e.
n direction ∂r

∂u ×
∂r
∂v .

It always does! to see why:

Consider P on ∂A where the tangent is parallel to the u axis, mapping to P ′ on
∂S.
Then small inward normal δr maps to δr ∂r∂v δv must also point inward.
∂u maps to ∂r, tangent at P1, can point to L or R on ∂S
maps to ∂r

∂u at P ′.
=direction of traverse induced by anticlockwise on ∂A.
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If points L on ∂S then n ∼ ∂r
∂u ×

∂r
∂v points downwards (in picture) and consistent

orientation on ∂S is then to L.
If points R then n points upwards, and consistent again.
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3 Geometrical characterisation of div and curl

Apply divergence theorem to small volume V (size V ), containing r:∫
∂V

F · dS =

∫
V

∇ · FdV ≈ ∇ · F|rV

This becomes exact as V → 0:

div F = lim
V→0

1

V

∫
∂V

F · dS (3)

Similarly, Stoke’s theorem for small planar surface S (area S) containing r, unit
normal n: ∫

∂S

F · dr =

∫
S

(∇× F) · ndS

= n · ∇ × FS

so

n · ∇ × F = lim
S→0

1

S

∫
∂S

F · dr (4)

(3) and (4) manifestly coordinates independent – purely geometrical.
This could be used as definitions. Then Stoke’s and Gauss’ theorems become
easy to prove.

Example. (Stoke’s theorem)
Divide S up into many small loops:

By (4),
∫

(∇× F) · ndS = sum of all circulations of F, all anticlockwise(or
all clockwise); where adjacent loop contact, circulations cancel since directions
opposite.
Hence sum of circulations all cancel except at the boundary where there is no
matching adjacent loop. The result is simply the circulation on the boundary,
i.e.

∫
C

F · dr.

Example. (Gauss’ theorem)
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Similarly the outward flows from all small regions cancel on all internal surface
contacts, leaving only outward flow on boundary, i.e.

∫
V

div FdV =
∫
∂V

F ·ndS.

Example. (Fluid dynamics)
Let u be velocity field of a fluid flow in 3D.
For div: had before

∫
S

u · dS is rate of fluid crossing surface.
For closed surface (and outward n) it is the total outflow from S per unit time.
So div u is the outflow rate per unit volume for small local volumes (as volume
→ 0).
If the density of fluid is constant, i.e. flow is incompressible, then must have
div u = 0 (assuming no cavities develop).
Above is for a fixed volume V . We can also consider moving volumes: consider
fluid ’particles’ in V at time, moving for time δt (small), under the flow they
occupy new positions and get new volumes.
Small surface element dS moves through uδt appending extra volume δS · uδt
to V .

So summing over whole surface:

V (t+ δt)− v (t) = δV =
∑

δS · uδt + o terms.

In limit as δt→ 0, δS’s → 0:

dV

dt
=

∫
S

u · dS =

∫
V

div udV

So for small volumes around a point r get div u = 1
V V̇ (rate of change of volume

per unit volume).
If you ”go with the flow”:
Again incompressibility = volume is preserved, i.e. div u = 0.

For curl:
Let A be planar disc, centre r, radius a, normal n:
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then ∫
∂A

u · dr =

∫
∂A

u · tdS

= 2πa · (average tengential component of u,write as utang)

= 2πa2ω

where ω = 1
a ūtang is the angular velocity. corresponding ūtang speed at radius a.

Then by (4)

n · ∇ × u = lim
a→0

1

πa2
2πa2ω = 2ω

i.e. (curl u) · n =twice local rate of rotation of fluid near r.
ūtang is independent of overall motion u→ u+constant as ¯consttang = 0.
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4 Conservation laws

For space and time dependent scalar and vector fields ρ (r, t) , j (r, t):

∂p

∂t
+∇ · j = 0 (5)

is called the conservation equation(or continuity equation).
Why? – let V be fixed volume in space, boundary S = ∂V . Then

Q (t) =

∫
V

ρ (r, t) dV

satisfies
dQ

dt
=

∫
V

∂ρ

∂t
dV

= −
∫
V

div jdV

= −
∫
S

j · dS

(6)

If we think of ρ as density of some quantity q(mass, charge,...) and j is the
current density for it, i.e. for any small surface element dS in space,
j · dS =amount of q crossing dS per unit time (flux of q across dS).
Then Q (t) = total amount of q in V , and (6) expresses conservation of q, in
the sense that any change of amount of q in V must be associated to the same
amount of Q passing across the boundary of ∂V .
Equivalently (5) expresses conservation of q (for any V ).
• more than just overall conservation – it imposes local conservation.
eg.

Cannot have q decreasing in VA while increasing in distant VB by same amount
(so q is conserved overall) but nothing happening in between.
Decrease in VA can only happen if some q flows out across its boundary.

Example. 1) conservation of electric charge:
ρ (r, t) ∼ charge density;
j (r, t) ∼ electric current density.
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2) conservation of mass for fluid motion:
ρ (r, t) ∼ mass density;
j = ρu is mass current if u is the velocity field.
Volume δV ∼ n · uδtδS. So mass ∼ ρn · uδtδS.
So ∂ρ

∂t + div (ρu) = 0 for fluid motion.
If ρ is also constant, get div (u) = 0.

We know F is conservative (F = ∇f) =⇒ F is irrotational (∇× F = 0).
Now proved converse: suppose F is irrotational on a simply connected region
D ⊆ R3.

For any fixed r0 ∈ D and variable r, consider

f (r) =

∫
C

F · dr

For a choice of curve C from r0 to r.
This is independent of choice of C by Stoke’s theorem:
If C ′ is any other curve, it can be smoothly deformed into C, defining a spanning
surface S.
If while ∂S oriented in direction of C (so opposite on C ′), then Stoke’s theorem
implies ∫

S

∇× F · ds =

∫
C

F · dr−
∫
C′

F · dr

But ∇× F = 0, so the two integrals are equal.
Hence f (r) is well defined on all D.

Claim: F = ∇f .
Consider extending C by a small δr at r giving C + δC:
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f (r + δr) =

∫
C+δC

F · dr

=

∫
C

F · dr +

∫
δC

F · dr

= f (r) + F (r) · δr + o (|δr|)

So
δf = F (r) · δr + o terms

But by definition of ∇f ,

δf = ∇f · δr + o terms

So F = ∇f.
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5 Orthogonal curvilinear coordinates

Consider coordinates (u, v, w) on R3, and small invertible functions r (u, v, w).

5.1 Line element, surface element, volume element

Line element is

dr =
∂r

∂u
du+

∂r

∂v
dv +

∂r

∂w
dw

Here ∂r
∂u ,

∂r
∂v ,

∂r
∂w are tangent to coordinate lines of u, v, w respectively (since the

other two are hold constant).
Require these to be linearly independent,i.e.:

∂r

∂u
·
(
∂r

∂v
× ∂r

∂w

)
6= 0.

(also equal to the Jacobian, ∂(x,y,z)
∂(u,v,w) ).

(u, v, w) are orthogonal curvilinear coordinates.
If ∂r

∂u ,
∂r
∂v ,

∂r
∂w are orthogonal vectors, then set

∂r

∂u
= hueu

∂r

∂v
= huev

∂r

∂w
= huew

(7)

with hu, hv, hw all greater than 0, and eu, ev, ew are orthonormal and form a
right-handed system, i.e. eu × ev = ew etc. This can always be achieved by
re-ordering coordinates appropriately.
Then the line element is

dr = hueudu+ hvevdv + hwewdw (8)

So the square of distance induced by small changes in u, v, w is (up to o-terms):

|δr|2 = h2uδu
2 + h2vδv

2 + h2wδw
2

So hu, hv, hw are positive scale factors for distance along the curve.

For surface elements:
Consider co-ordinate surfaces w =constant, parameterised by u, v.
Area element,

dS =

(
∂r

∂u
× ∂r

∂v

)
dudv (general formula)

= hueu × hvevdudv
= huhvewdudv (for orthogonal coordinates)
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Geometrically, dS is a small rectangle of side lengths huδu and hvδv with normal
ew.
Similarly, for surface elements of u =constant and v = constant surfaces.

For volume elements:
The Jacobian formula gives

dV =
∂r

∂u
·
(
∂r

∂v
× ∂r

∂w

)
dudvdw

= huhvhwdudvdw

(∼ small cuboid with sides huδu, hvδv, hwδw).

5.2 Grad, div and curl in curvilinear coordinates

Coordinate-independent definition of grad is

df = ∇f · dr

for any scalar function f . But also

df =
∂f

∂u
du+

∂f

∂v
dv +

∂f

∂w
dw.

Substitute (8) for dr above, compare coefficients of du, dv, dw and get

∇f =
1

hu
eu
∂f

∂u
+

1

hv
ev
∂f

∂v
+

1

hw
ew

∂f

∂w

expressing grad in curvilinear coordinates.
(For both the variables and unit vectors for components)

For vector field
F = Fueu + Fvev + Fwew

in (u, v, w) system, div F and curl F are more complicated as eu, ev, ew are gen-
erally not constant now.

Several ways to derive formulas:
e.g. use coordinate-independent formulas for ∇ · F,∇× F or algebraic methods,
get (derivations not part of the course):

∇× F =
1

huhvhw

∣∣∣∣∣∣
hueu hvev hwew
∂
∂u

∂
∂v

∂
∂w

huFu hvFv hwFw

∣∣∣∣∣∣
=

1

hvhw
[
∂

∂v
(hwFw)− ∂

∂w
(hvFv)]eu + (two similar terms),

∇ · F =
1

huhvhw
[
∂

∂u
(hvhwFu) + (two similar terms)].



5 ORTHOGONAL CURVILINEAR COORDINATES 23

Example.

A =
1

r
tan

θ

2
eϕ

in spherical polar coordinates.

hr = 1, hθ = 1, hϕ = r sin θ

So

∇×A =
1

r2 sin θ

∣∣∣∣∣∣
er reθ r sin θeϕ
∂
∂r

∂
∂θ

∂
∂ϕ

0 0 r sin θ · 1r tan θ
2

∣∣∣∣∣∣
=

1

r2 sin θ
er

∂

∂θ

(
2 sin2 θ

2

)
=

1

r2
er

Example. (Algebraic method for curl and div formula (outline)
• for curl:
Note first

∇×
(

eu
hu

)
= 0

since
∇u =

eu
hu

and curl grad = 0

Similarly

∇×
(

ev
hv

)
= ∇×

(
ew
hw

)
= 0

Now for ∇× F, write

F = Fueu + Fvev + Fwew

= Fuhu

(
eu
hu

+ Fvhv

)
+

(
ev
hv

)
+ Fwhw

(
ew
hw

)
Then recall

∇× (qV) = ∇ϕ×V + ϕ (∇×V)

So
∇× F = ∇ (Fuhu)× eu

hu
+∇ (Fvhv)×

ev
hv

+∇ (Fwhw)× ew
hw

• for div:
Starting trick is to note

div

(
ew
huhv

)
= div

(
ev

huhw

)
= div

(
eu
hvhw

)
= 0 (9)

because
eu
hu

= ∇u, ev
hv

= ∇v, ew
hw

= ∇w

So
ew
huhv

= ∇u×∇v
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and
∇ · (A×B) = B · (∇×A)−A · (∇×B)

again get (9) by curl grad = 0.
Then write

F = Fuhvhw

(
eu
hvhw

)
+ two similar terms

and use
div (ϕF) = ϕ (∇ ·V) + V · (∇ϕ) .
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6 Laplace equation and Poisson equation

6.1 Gauss’ Law and Poisson equation

Consider gravitational force F (r) on point mass m at r, from some distribution
of mass in space.
Write

F (r) = mg (r)

g (r) is the gravitational field/force per unit mass/acceleration due to gravity.

Theorem. (Gauss’ law in integral form)
relates g to mass distribution∫

S

g · dS = −4πGM

for any closed surface S, bounding a volume V .
M is the total mass contained in V . G is the Newtonian gravitational constant.
This can be used as the law of gravitation:
• Newton inverse square law follows from Gauss (plus an extra symmetry
assumption);
• Gauss follow from Newton too (in Part 1B Methods – Green’s functions for
PDE, δ-functions).

To get Newton from Gauss:
Consider total mass M , distributed with spherical symmetry about 0, all con-
tained in sphere radius a.
Assume that spherical symmetry =⇒ g (r) is radial,

g (r) = g (r) er

Now apply Gauss law for S = a sphere of radius R > a.∫
S

g · dS =

∫
S

g (R) er · erdS

=

∫
S

g (R) dS

= 4πR2g (R)

as g is constant on S.
So Gauss implies

4πR2g (R) = −4πGM

i.e. g (R) = −GM
R2

,

g (r) = −GM
r2

er

for any r with |r| > a.
So

F (r) = −GMm

r2
er
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Take the limit a→ 0(fixed M) we get Newton’s law for points masses.

If mass distribution is not sufficiently symmetric, it’s hard to get g (r) from
Gauss’ integral law. But we can recast it as:

Theorem. (Gauss’ law in differential form)
Suppose the mass distribution has mass density ρ (r). Then∫

S

g · dS = −4πGM,

M =

∫
V

ρdV

So ∫
S

g · dS = −4πG

∫
V

ρdV

while ∫
S

g · dS =

∫
V

∇ · gdV

by the divergence theorem. So the two volume integrals on the two RHSs are
equal.
This holds for any region V so

∇ · g = −4πGρ

Now g (r) is also a conservative field. So

g = −∇ϕ

for some ϕ (called the gravitational potential energy per unit mass).
So

∇2ϕ = 4πGρ

the Poisson equation with source term 4πGρ.
For the previous spherical symmetric example,

ϕ (r) = −GM
r

for r > a, with ϕ→ 0 as r →∞, fixing the overall constant freedom in ϕ.
The above applies to any situation with inverse-square force law.

Example. Assume distribution of electric charges at rest, charge density ρ (r),
with the force on charge q at r

F = qE (r)

where E is the electric field/force per unit charge.
Gauss’ law for electrostatics: ∫

S

E · dS =
Q

ε0
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S is a closed surface, bounding volume V , and Q =
∫
V
ρdV = total charge in V .

ε is a constant, the permittivity of free space.
Electrostatic field E is conservative:

E = −∇ϕ

Here ϕ is the electrostatic potential. So

∇2ϕ = − ρ

ε0

the Poisson equation for ϕ with source − ρ
ε0

.
Spherically symmetric configuration (as for gravity) gives

E (r) =
Q

4πε0

er
r2
,

ϕ (r) =
Q

4πε0

1

r

with (r > a).
Here Q is the total charge in sphere with radius a.
As a→ 0, this gives Coulomb’s inverse square law.

Note: in empty regions of space ρ = 0, so both potentials satisfy Laplace
equation:

∇2ϕ = 0

Explicit solutions of Poisson and Laplace equation in 3 dimensions for either
cylindrical polar or spherical polar symmetry, i.e. ϕ depends only on the radial
coordinates:
Write r for the radial coordinate in either coordinate system.

Laplace equation ∇2ϕ = 0 with ϕ = ϕ (r):
• 1) Spherical symmetry: ∇2 formula with ∂

∂θ , ∂
∂ϕ terms set to 0 gives (′ = d

dr ):

∇2ϕ = ϕ′′ +
2

r
ϕ′ = 0

So ϕ = A
r + b is the general solution.

• 2) Cylindrical symmetry ∇2 formula gives

ϕ′′ +
1

r
ϕ′ =

1

r
(rϕ′)

′
= 0

So ϕ = A log r +B is the general solution.

Poisson equation
∇2ϕ = f (r)
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Find any single particular integral PI, then the Poisson general solution = PI +
Laplace general solution.

Example. Consider spherically symmetric solution of ∇2ϕ = ρ0(constant) ∇2

in spherical polars give

∇2 (rα) = α (α+ 1) rα−2

So α = 2 gives a particular integral of 1
6ρ0r

2. So the general solution is

ϕ (r) =
A

r
+B +

1

6
ρ0r

2

Example. We seek spherical symmetric ϕ (r) with

∇2ϕ =

{
4πGρ0 r ≤ a
0 r > a

ρ0 constant, ϕ non-singular at r = 0, ϕ → 0 as r → ∞, ϕ, ϕ′ continuous at
r = a.
Physically: gravitational potential inside/outside a planet, with constant density
ρ0, radius a, total mass M = 4

3πa
3ρ0.

Our general solutions (and previous example) give

ϕ =


A
r (= 0) +B + 1

64πGρ0r
2 r ≤ a

C
r +D(= 0) = C

r r > a

Matching ϕ, ϕ′ at r = a gives

ϕ : B +
1

6
4πGρ0a

2 =
c

a

ϕ′ :
1

3
4πGρ0a = − c

a2

and use M = 4
3πa

2ρ0, get

ϕ (r) =


GM
2a

((
r
a

)2 − 3
)

r ≤ a

−GMr r > a

Gravitational field

g = −∇ϕ ≡ g (r) er

g (r) = −ϕ′ (r) =

 −
GMr
a3 r ≤ a

−GMr2 r > a
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Alternative solution: use Gauss’ law for g = g (r) er for S = sphere radius R:
• R ≥ a done before (Newton from Gauss);
• R < a: ∫

S

g · dS = rπR2g (R)

= −4πGM

(
R

a

)3

So

g (R) = −GMR

a3

for any R ≤ a.

To get unique solution of Poisson/Laplace equation, need to impose boundary
conditions.
Two common kinds of boundary conditions on ϕ at boundary S = ∂V for ∂ in
volume V :
• 1) Dirichlet condition (D): specify ϕ on boundary;
• 2) Neumann condition (N): specify outward normal derivative n ·∇ϕ on bound-
ary. Write n · ∇ϕ = ∂ϕ

∂n .

(can also impose these on different parts of ∂V or αϕ+ β ∂ϕ∂n etc.)
In applications, boundary conditions generally model physical conditions.

Example. • Electrostatic potential:
(D) ϕ = constant on S for perfectly conducting surface.
• Also other equations (of 1B Methods heat/diffusion equation)
T (r, t) the temperature in space and time.
(D) T specified on S;
(N) ∂T

∂n = 0 on S: perfectly insulating boundary.

Theorem. (Uniqueness theorem)
Suppose ϕ (r) satisfies Poisson equation ∇2ϕ = ρ for some ρ (r) in a bouded
volume V , with boundary S = ∂V , a closed surface, outward normal n.
Then:
• 1) if

ϕ (r) = f (r)
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on S (i.e. D boundary condition), then ϕ (r) is unique.
• 2) if

∂ϕ

∂n
= n · ∇ϕ = g (r)

on S (i.e. N boundary condition), then ϕ (r) is unique up to a constant, i.e.
unique up to replacement ϕ→ ϕ+ constant.
(Note: Laplace equation included as special case ρ ≡ 0).

Proof. Let ϕ1 (r) and ϕ2 (r) be any two solutions of Poisson equation, with each
obeying the boundary conditions (D) or (N) above.
Then

ψ (r) = ϕ1 (r)− ϕ2 (r)

satisfies
∇2ψ = 0

in V , and
for (D): ψ = 0 on S
or for (N): ∂ψ∂n = n · ∇ϕ = 0 on S.
So by divergence theorem(!):∫

V

∇ · (ψ∇ψ) dV =

∫
S

ψ∇ψ · dS

=

∫
S

ψ
∂ϕ

∂n
dS

But
∇ · (ψ∇ψ) = ∇ψ · ∇ψ + ψ∇2ψ(=0 in V)

= |∇ψ|2

So ∫
V

|∇ψ|2dV =

∫
S

ψ
∂ψ

∂n
dS

But RHS=0 for (D) or (N).
(or even if (D) or (N) used on different parts of S).
Since |∇ψ|2 ≥ 0,

∫
V

can only vanish if |∇ψ| = 0 i.e. ∇ψ = 0, i.e. ψ = c constant
in V .
So (D): ψ = 0 on S, so c = 0, and ϕ1 = ϕ2 in V ;
or (N): ∂ψ∂n = 0 on S so any constant c is possible, i.e. ϕ1 = ϕ2+ any constant.

Remark. • 1) The theorem says that if a solution exists then its unique, but
says nothing about its existence.
e.g. for (N), if

∇2ϕ = ρ

in V , and
∂ϕ

∂n
= g

on ∂V , then by divergence theorem,∫
V

∇2ϕdV =

∫
∂V

∂ϕ

∂n
dS
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so ∫
V

ρdV =

∫
∂V

gdS

So ρ and g cannot be freely specified independently.

• 2) The theorem applies similarly for regions of Rn for any n = 2, 3, 4, .... We
need just the definitions of grad, div, and divergence theorem.

• 3) The results can be extended to some unbounded regions V with suitable
asymptotic conditions on ϕ (and then ψ in proof 2 as well, since ψ = ϕ1 − ϕ2).
Consider a sphere of radius R (will take R→∞):
Suppose

|ψ (r) | = O

(
1

R

)
|∂ψ
∂n
| = O

(
1

R2

)
for |r| = R. Then

|
∫
S

ψ
∂ψ

∂n
dS| ≤ max

|r|≤R
|ψ∂ψ
∂n
| · 4πR2

≤ constant · 1

R
· 1

R2
· 4πR2

= O

(
1

R

)
→ 0

as R→∞.
So uniqueness proof goes through for unbounded region R→∞.
These conditions on ψ and ∂ψ

∂n are ensured by imposing

|ϕ (r) | = O

(
1

R

)
and |∇ϕ| = O

(
1

R2

)
so with these asymptotic condition on ϕ, the uniqueness theorem extends to all
of R3.

• 4) The starting point of proof is a special case of the identity

∇ · (u∇v) = ∇u · ∇v + u∇2v

so by divergence theorem∫
S

u∇vdS =

∫
S

∇u · ∇vdV +

∫
V

u∇2vdV

This is called Green’s first identity.
Swap u and v and subtract the two equations,∫

S

(u∇v − v∇u) · dS =

∫
V

(
u∇2v − v∇2u

)
dV

called Green’s second identity.
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6.2 Laplace equation and harmonic functions

Solutions of Laplace equation
∇2ϕ = 0

are called harmonic functions.

Theorem. (Mean value property)
Suppose ϕ (r) is harmonic in V containing a solid sphere

VR : |r− a| ≤ R

with centre a, with boundary

SR : |r− a| = R

Then
ϕ (a) = ϕ̄ (R)

where

ϕ̄ (R) =
1

4πR2

∫
SR

ϕ (r) dS = average of ϕ over SR.

Proof. Note
ϕ̄ (R)→ ϕ (a)

as R→ 0. Take spherical polar coordinates (u, θ, χ) centred at a.
Then on SR (i.e. u = R),

dS = R2 sin θdθdχ

So

ϕ̄ (R) =
1

4πR2

∫ 2π

χ=0

∫ π

θ=0

ϕ (R, θ, χ) sin θR2dθdχ

So
d

dR
ϕ̄ (R) =

1

4π

∫
χ

∫
θ

∂ϕ

∂R
sin θdθdχ

=
1

4πR2

∫
SR

(∇ϕ · eu) dS

=
1

4πR2

∫
VR

∇2ϕdV

= 0

(∇ϕ · eu takes the first component (at u = R), and the second last step is by
divergence theorem).
Note that ∇2ϕ = 0. So ϕ̄ (R) is constant in R, so is equal to ϕ (a).

Definition. ϕ (r) on V has a local maximum at a ∈ V , if for some ε > 0,

ϕ (a) > ϕ (r)

for all r ∈ V with 0 < |r− a| < ε.
(similar for local minimum: if ϕ (a) < ϕ (r) ...)
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Corollary. (Maximum of minimum principle)
Suppose ϕ is harmonic on V . Then ϕ cannot have any local maximum or
minimum at any interior point of V .

Proof. if ϕ has a local maximum at an interior point a, there is ε as above so
that

ϕ (r) < ϕ (a)

for all |r− a| < ε and r ∈ V .
By taking ε small enough, we can ensure that the whole sphere r ∈ R3 with
|r− a| < ε lies within V (this is always possible for an interior point.)
So for any 0 < R < ε, ϕ (r) < ϕ (a) for |r − a| = R. So ϕ̄ (R) < ϕ (a),
contradicting the mean value property.
So internal local maximum (similarly minimum) cannot exist.

6.3 Integral solution of Poisson equation

(Statement and informal derivation)
Recall electrostatics: for a point charge Q at r0, the potential is

ϕ (r) =
Q

4πε0

1

|r− r0|

Let’s set ε0 = 1.
For distribution of charges, density ρ (r) all contained in a bounded volume V ′,
the potential satisfies the Poisson equation,

∇2ϕ = − ρ

ε0
= −ρ

If we have many point charges Qn at rα, then by linearity, the potential is just
the sum:

ϕ (r) =
∑
α

1

4π

Qα
|r− rα|

Analogously, we can view potential ϕ of density ρ as a sum of contributions

1

4π

ρ (r)
′
dV ′

|r− r′|

from charge elements ρ (r′) dV ′ ranging over V ′, with
∑
α being replaced by∫

V ′
dV ′.

This suggests that

ϕ (r) =
1

4π

∫
V

ρ (r′)

|r− r′|
dV ′

is a solution to Poisson equation

∇2ϕ = −ρ
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Here integral is taken with respect to r′ and r ∈ R3 is a parameter in the integral.
This is indeed the unique solution with boundary condition

|ϕ (r) | = O

(
1

|r|

)
,

|∇ϕ (r) | = O

(
1

|r|2

)
Example. Using the integral formula, we can calculate again the solution to

∇2ϕ =

{
−ρ0 constant |r| ≤ a
0 |r| ≥ a

We have

ϕ (r) =
1

4π

∫
V ′

ρ0
|r− r′|

dV ′

Here V ′ is the sphere |r′| ≤ a, centred at origin.
Introduce spherical polar coordinates (r′, θ, χ),
(diagram to be inserted – vc12)
with NS pole axis along r, so θ is the latitude down from r, χ is the angle around
r, and

dV ′ = r′2 sin θdr′dθdχ

By cosine rule for triangle,

|r− r′| =
(
r2 + r′2 − 2rr′ cos θ

) 1
2

So

ϕ (r) =
1

4π

∫ a

0

dr′
∫ π

0

dθ

∫ 2π

0

dχ
ρ0r
′2 sin θ√

r2 + r′2 − 2rr′ cos θ

=
ρ0
2

∫ a

0

dr′r′2
1

rr′

[√
r2 + r′2 − 2rr′ cos θ

]θ=π
θ=0

While [√
r′2 + r2 − 2rr′ cos θ

]π
0

= [|r− r′|]θ=πθ=0

when θ = π: r, r′ are antiparallel. So |r− r′| = r + r′;
when θ = 0 : r, r′ are parallel. So |r− r′| = |r − r′|.
Then

(r + r′)− |r − r′| =
{

2r′ r > r′

2r r < r′

So

ϕ (r) =

{
ρ0
∫ a
0
dr′ r

′2

r r > a

ρ0
∫ r
0
dr′ r

′2

r + ρ0
∫ a
r
dr′r′ r ≤ a

In the first case r > r′ as r′ < a, in the second case r′ varies from 0 → a so
separable: r′ : 0→ r(r′ < r) and r → a(r′ > r). So

ϕ (r) =

{
ρ0

1
3a

3 1
r r > a

ρ0
(
− 1
b r

2 + 1
2a

2
)

r ≤ a

as before.



6 LAPLACE EQUATION AND POISSON EQUATION 35

6.4 Point sources and delta functions (non-examinable)

For

ϕ (r) =
1

4π

∫
V ′

ρ (r′)

|r− r′|
dV ′

We have

∇2ϕ =
1

4π

∫
V ′
ρ (r′)∇2

(
1

|r− r′|

)
dV ′ (10)

Write r′ = a consider

ψ =
1

4π

1

|r− a

then calculate

∇ψ = − 1

4π

r− a

|r− a|3
,

∇2ψ = 0(!)

for all r 6= a.
Note these are all singular at a = a and ok for all r 6= a.

∫
S

∇ψ · dS = −1

(e.g. by using |r− a| = radial coordinates u, (r− a) = ueu etc) for S surface of
any sphere V , centre a.
So divergence theorem would require (!):∫

V

∇2ψdV = −1

∇2ψ is zero for all r 6= a.
This holds if we take

∇2

(
1

4π

1

|r− a|

)
= −δ (r− a)

RHS is a 3-D delta function – a generalised function satisfying∫
V

f (r) δ (r− a) dV = f (a)

for any V containing a.
Then (10) gives

∇2ϕ = −ρ (r)

as wanted.
For point source Q at a, the potential

ϕ (r) =
Q

4π

1

|r− a|
∇2ϕ = −Qδ (r− a) = − charge density of point source Q at r = a

This is zero except r = a, infinite at r = a, but any
∫
V

about a gives Q.
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7 Maxwell’s equations

Laws of electromagnetism(full dynamic case).
Let
E (r, t) be the electric field,
B (r, t) be the magnetic field,
ρ (r, t) 4 be charge density,
j (r, t) be current density.
Then

∇ ·E = Vε0 (1)

∇×E +
∂B

∂t
= 0 (2)

∇ ·B = 0 (3)

∇×B− µ0ε0
∂E

∂t
= µ0j (4)

(ε0, µ0 are respectively the permittivity and permeability of free space – con-
stants).

Theorem. (Lorentz force law)
The force on a point charge q at r (t) due to E and B fields is

F = q (E + ṙ×B)

7.1 Conservation of electric charge from Maxwell equa-
tion

Take the div of the fourth equation and use the first one,

−µ0ε0
∂

∂t

(
ρ

ε0

)
= µ0∇ · j

So
∂ρ

∂t
+∇ · j = 0

i.e. the conservation and continuity of equation for ρ, j.

Integral forms:
For (1) and (3) use divergence theorem, and get respectively:∫

S

e · dS =
Q

ε0∫
S

B · dS = 0

Here S is any closed surface, enclosing charge. For (2) and (4), use Stokes’
Theorem. For (2): ∫

C

E · dr = − d

dt

∫
S

B · dS
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S is any surface with closed curve boundary C.
For (4): ∫

C

B · dr = µ0

∫
j · dS + µ0ε0

d

dt

∫
E · dS

Fully static case: ρ, j, E, B are all time independent. Then E and B decouple
in the equations (not related in a single equation).
• Electrostatics:

∇ ·E =
ρ

ε0
∇×E = 0

E = −∇ϕ

∇2ϕ = − ρ

ε0

ϕ is the electrostatic potential, satisfies scalar Poisson equation.

• Magnets statics:
∇ ·B = 0 =⇒ B = ∇×A

∇×B = µ0j

Here A is a vector potential (true in field case too). The freedom in choice of A
is

A→ A +∇χ

for any χ (called gauge freedom).

We can choose χ to make

∇ ·A = 0 ∇2χ ∼= −previous ÷A

Then
∇×B = ∇× (∇×A =0 ) = ∇ (∇ ·A)−∇2A

So
∇2A = −µ0j

the vector Poisson equation for A.

7.2 Electromagnetic waves

Consider Maxwell equation in empty space, i.e.

ρ = 0, j = 0
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Then as shown previously

∇2E = ∇ (∇ ·E =0 )−∇× (∇×E)

= ∇× ∂B

∂t

=
∂

∂t

(
µ0ε0

∂E

∂t

)
= µ0ε0

∂2E

∂t2

i.e., (
∇2 − 1

c2
∂2

∂t2

)
E = 0

and get same for B, where c2 = 1
ε0µ0

.
i.e. compounds of E and B satisfy wave equation in 3 dimensions with speed of
propagation

c =
1

√
ε0µ0

Recall 1D wave equation:(
∂2

∂x2
− 1

c2
∂2

∂t2

)
f (x, t) = 0

has solutions
f (x, t) = f (x± ct)

For f (x− ct) , f (x+ ct): right/left moving wave, shape f (x).
So Maxwell’s equations predict the existence of electromagnetic waves moving
at speed

c =
1

√
ε0µ0

= 2.998 ∗ 108m/sec

from measured value of ε0, µ0. i.e. we get expected value of speed of light!
Light identified as waves of electromagnetism.
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8 Tensors

8.1 Introduction

A generalisation of idea of vectors as geometrical objects.
Consider a vector v in space (e.g. velocity of a particle). It is described by 3
real numbers (components) only after we have chosen a basis ( or Cartesian
coordinates).
The components depend on the choice of basis.
But v (velocity) has physical significance (existence independent of choice of any
basis, i.e. it is a geometrical object).
To get a description independent of any particular choice of basis, we can give
its components for all possible choices of orthonormal bases.
Consider right-handed orthonormal bases

B = {ei} , B′ = {e′i}

in 3D space, any such bases related by rotation R

e′i = Ripep

For any vector
v = viei = v′ie

′
i

components are related by
v′i = Ripvp

Recall: rotation matrix R has

RRT = RTR = I

i.e.
RipRjp = RqiRqj = δij

So
RipRjqδpq = δij (11)

We have detR = 1, so

εpqrRipRjqrkr = εijk detR = εijk (12)

So a vector v is a triple of numbers (v1, v2, v3) for each orthonormal basis B =
{ei} such that if B′ is related to B by rotation R (as above), the corresponding
triples are related by

v′i = Ripvp

called the vector transformation rule.

Definition. A (Cartesian) tensor of rank n has components Tij...k (n indices)
with respect to each orthonormal basis B = {ei} satisfying the tensor transfor-
mation law :

T ′ij...k = RipRjq...RkrTpq...r

when bases B and B′ are related by rotation R.
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Example. Tensor of rank 0: no indices, T = T ′ - a scalar.
Tensor of rank 1: T ′i = RipTp - a vector.
Tensor of rank 2: T ′ij = RipRjqTpq - components form a matrix.
If u, v, ... w are n vectors, then

Tij...k = uivj ...wk

is a tensor of rank n called outer product or tensor product of vectors.

Note that (11) and (12) say exactly that δij and εijk are tensors of ranks 2 and
3 with special property that their components are the same with respect to any
basis or coordinate system - called isotropic or invariant tensors.

8.2 Rank 2 tensors, linear map, matrices

Linear map on vectors represented as a matrix on components, given a choice of
basis.
e.g. B or B′:

vi = Mijuj or v′i = M ′iju
′
j (13)

Matrix depends on the choice of basis.
If

e′i = Rijej

where R is the rotation matrix, then

M ′ = RMR−1

But R is a rotation matrix, so orthogonal. So

M ′ij = RipMpq

(
R−1

)
qj

= RipMpqRjq

i.e. M satisfies rank 2 tensor transformation law. (can also see this from (13) by
substituting vectors transformation laws:

v′i = Rijvj , vj = Rijv
′
i

Example. (Conductivity tensor)
In many substances, applied electric field E induces a current density j via a
linear relation (Ohm’s Law):

ji = σikEk

so by the above σ is a tensor – called conductivity tensor.
In general, substances may conduct differently in different directions and j not
parallel to E.
For isotropic substance, σik = σδik, so j = σE and they are parallel.
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8.3 Tensor algebra

8.3.1 Addition and scalar multiplication

If S, T are tensors of some rank n, then:
• (S + T ) defined by (in any basis):

(S + T ) ij...k = Sij...k + Tij...k

• αT for scalar and defined by

(αT )ij...k = αTij...k

are also tensors of rank n.
(easy e.g. for rank 2:

(S + T )
′
ij = S′ij + T ′ij

= RipRjqSpq +R)ipRjqTpq

= RipRjq (Spq + Tpq)

= RipRjq (S + T )pq

8.3.2 Tensor products

If S, T are tensors of ranks m,n respectively, then the tensor product S ⊗ T has
rank m+ n, and is defined by

(S ⊗ T )ij...kpq...r = Sij...kTpq...r

clearly satisfies correct transformation rule (for m+ n suffixes).
The definition of S ⊗ T ⊗ U ⊗ ... is similar.
⊗ is associative, but not commutative.
E.g. vectors u, v,

T = u⊗ v

has components Tij = uivj , but

S = v ⊗ u

has components Sij = viuj .

8.3.3 Contractions

For rank n tensor Tijp...q, introduce Sp...q with (n− 2) indices defined by

Sp...q = δijTijp...q = Tiip...q
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i.e. contracting the two indices i and j.
Then S is a tensor of rank (n− 2).
To prove this, see

S′p...q = δijT
′
ijp...q

= δijRiaRjbRpc...RqdTabc...d

= δabRpc...RqdTabc...d

= Rpc...RqdSc...d

which is the correct transformation law for n− 2 indices.

Example. For rank 2 tensors: scalar Tii = trace of 3× 3 matrix Tij .
in matrix notation:

T ′ii = tr (T ′) = tr
(
RTRT

)
= tr (T ) = Tii.

8.4 Symmetric and antisymmetric tensors

If

T...i...j... =

{
+T...j...i... T symmetric in index i,j
−T...j...i... T antisymmetric in index i,j

(If this holds in one coordinate system, then it holds in all of the systems).
T is totally symmetric/antisymmetric if it is symmetric/antisymmetric in all
pairs of indices.

Example. δij is totally symmetric rank 2 tensor.
εijk is totally antisymmetric rank 3 tensor.

For any n, there are totally symmetric tensors of rank n. e.g.: Let u be a vector,
Tij...k = uiuj ...uk.
In 3D:
any totally antisymmetric rank 3 tensor T has the form

Tijk = λεijk

since, if T123 = λ, then all the other components are fixed to be ±λ or 0 due to
antisymmetry.
Any totally anti-symmetric tensor T of rank greater than 3 must be trivial, i.e.
T = 0. This is because for any choice of more than 3 indices ij...k ∈ {1, 2, 3} in
Tij...k, at least two of them must be the same.

8.5 Tensors as multi-linear maps, quotient rule

Multi-linear map T from n vectors a,b, ...c to R is the map T (a,b, ..., c) that
is linear in each vector separately.
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So in a basis B = {ei}, a = aiei etc.
Linearity gives

T (a,b, ..., c) = Tij...kaibj ...ck

where the coefficients
Tij...k = T (ei, ej , ..., ek)

For any other basis B′ = {e′i} related by rotation R,

T ′ij...k = T
(
e′i, e

′
j , ..., e

′
k

)
= T (Ripep, Rjqeq, ..., Rkrer)

= RipRjq...RkrTpq...r

So Tij...k is a tensor of rank n.

Conversely, given a tensor T of rank n, define T (a,b, ..., c) to be

Tij...kaibj ...ck

for components in some basis - independent of choice of basis (as T is a tensor
and have contractions) so defines a multi-linear map on vectors.
Thus there is a 1-1 correspondence between rank n tensors and multi-linear maps
from n vector to R.

8.6 Quotient rule

We know that if Ti...jp...q (n indices in i...j and m indices in p...q) is a tensor of
rank m+ n and up...q is any tensor of rank m, then contraction

vi...j = Ti...jp...qup...q

is a tensor of rank n.
The converse is called quotient rule: Suppose Ti...jp...q is any array of numbers
(given for each basis) such that for any tensor up...q,

vi...j = Ti...jp...qup...q

is a tensor of rank n, then Ti...jp...q is also a tensor (rank m+ n).

Proof. take
up...q = cp...dq

for m vectors c, ...,d. Then some vi...j is a tensor.
We have: for any n vectors a, ...,b,

vi...jai...bj = Ti...jp...qai...bjcp...dq

is scalar, so define a multi-linear map on m+ n vectors so coefficients Ti...q must
be a tensor (of rank m+ n).
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8.7 Tensor calculus

A tensor field is a tensor Tij...k (x) at each point.
It is smooth if each component function is smooth (in any coordinate system).
Then the derivative

∂

∂xp
...

∂

∂xq
Tij...k

(m of the partial derivatives) is a new tensor of rank (m+ n).
Correct transformation law on new indices follows from Chain rule: if

x′p = Rpqxq

(R rotation, constant) then

∂

∂x′p
= Rpq

∂

∂xq

so e.g. rank T and one derivative

∂T ′i
∂x′p

= Rpq
∂

∂xq
(RijTj) = RpqRij

(
∂Tj
∂xc

)

Integrals: of a tensor field e.g. ∫
V

Tij...kdV

is defined by integrals of component functions. The transformation rule for the
result holds (so it’s still a tensor). e.g. integrals are limits of sums.

The divergence theorem can be generalised from vectors to tensors:

Theorem. Let V be a volume bounded by smooth closed surface S = ∂V ,
outward unit normal n, and let Tij...kl be a smooth tensor field. Then∫

S

Tij...klnldS =

∫
V

∂

∂xl
(Tij...kl) dV (14)

Proof. apply vector divergence theorem to vector field f defined by

vl = aibj ...ckTij...kl

where a, b, ... c are any constant vectors. Then

∇ · v =
∂vl
∂xl

= aibj ...ck
∂

∂xl
Tij...kl

n · v = aibj ...ckTij...klnl

so we get (14) contracted with aibj ...ck on both sides.
Setting a, b, ..., c to all choice of basis vectors gives (14).
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8.8 Tensors of rank 2

Decomposition: any Tij can be written as sum of symmetric and anti-symmetric
parts:

Tij = Sij +Aij

where

Sij =
Tij + Tji

2
,

Aij =
Tij − Tji

2

Then further reduce symmetric part:

Sij = Pij +
1

3
δijQ

with Pij traceless (i.e. Pii = 0) and Q = Sii = Tii, since Aii = 0.
If T is a tensor then A,S, P,Q are all tensors too.

Tensor no. of independent components

T 9

A 3

S 6

P 5

Q 1

For anti-symmetric: any anti-symmetric 3× 3 matrix A can be written

(Aij) =

 0 B3 −B2

−B3 0 B1

B2 −B1 0


Then

Aij = εijkBk

because (what?)
ε− δ identity:

Bk =
1

2
εijkAij ⇐⇒ Aij = εijkBk

Note also

Bk =
1

2
εijkTij

as εijkδij = 0.
Summary:

Tij = Pij + εijkBk +
1

3
δijQ

where

Bk =
1

2
εijkTij

Q = Tkk

Pij =
Tij + Tji

2
− 1

3
δijTkk
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Example. If Fi (r) is a vector field, then its derivative Tij = ∂Fi

∂xj
is rank 2

tensor with

Pij =
1

2

(
∂Fi
∂xj

+
∂Fj
∂xi

)
− 1

3
δij (∇ · F)

Bk =
1

2
εijk

∂Fi
∂xj

= −1

2
(∇× F)k

Q =
∂Fk
∂xk

= ∇ · F.

8.9 The inertia tensor

Consider masses mα, position rα, all rotating with angular velocity ω about 0.
So velocities vα = ω × rα.
Total angular momentum about 0 is

L =
∑
α

rα ×mαvα =
∑

mαrα × (ω × rα)

In components Li = Iijωj , where

Iij =
∑
α

mα

(
(rα)k (rα)k δij − (rα)i (rα)j

)
is the inertia tensor about 0.
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