
Lent Term, 2015

Electromagnetism
University of Cambridge Part IB and Part II Mathematical Tripos

David Tong

Department of Applied Mathematics and Theoretical Physics,

Centre for Mathematical Sciences,

Wilberforce Road,

Cambridge, CB3 OBA, UK

http://www.damtp.cam.ac.uk/user/tong/em.html

d.tong@damtp.cam.ac.uk

mailto:d.tong@damtp.cam.ac.uk


Maxwell Equations

∇ · E =
ρ

ε0

∇ ·B = 0

∇× E = −∂B

∂t

∇×B = µ0

(
J + ε0

∂E

∂t

)
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Recommended Books and Resources

There is more or less a well established route to teaching electromagnetism. A number

of good books follow this.

• David J. Griffiths, “Introduction to Electrodynamics”

A superb book. The explanations are clear and simple. It doesn’t cover quite as much

as we’ll need for these lectures, but if you’re looking for a book to cover the basics then

this is the first one to look at.

• Edward M. Purcell and David J. Morin “Electricity and Magnetism”

Another excellent book to start with. It has somewhat more detail in places than

Griffiths, but the beginning of the book explains both electromagnetism and vector

calculus in an intertwined fashion. If you need some help with vector calculus basics,

this would be a good place to turn. If not, you’ll need to spend some time disentangling

the two topics.

• J. David Jackson, “Classical Electrodynamics”

The most canonical of physics textbooks. This is probably the one book you can find

on every professional physicist’s shelf, whether string theorist or biophysicist. It will

see you through this course and next year’s course. The problems are famously hard.

But it does have div, grad and curl in polar coordinates on the inside cover.

• A. Zangwill, “Modern Electrodynamics”

A great book. It is essentially a more modern and more friendly version of Jackson.

Although, embarrassingly, Maxwell’s equations on the inside cover have a typo.

• Feynman, Leighton and Sands, “The Feynman Lectures on Physics, Volume II”

Feynman’s famous lectures on physics are something of a mixed bag. Some explanations

are wonderfully original, but others can be a little too slick to be helpful. And much of

the material comes across as old-fashioned. Volume two covers electromagnetism and,

in my opinion, is the best of the three.

A number of excellent lecture notes, including the Feynman lectures, are available

on the web. Links can be found on the course webpage:

http://www.damtp.cam.ac.uk/user/tong/em.html
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1. Introduction

There are, to the best of our knowledge, four forces at play in the Universe. At the very

largest scales — those of planets or stars or galaxies — the force of gravity dominates.

At the very smallest distances, the two nuclear forces hold sway. For everything in

between, it is force of electromagnetism that rules.

At the atomic scale, electromagnetism (admittedly in conjunction with some basic

quantum effects) governs the interactions between atoms and molecules. It is the force

that underlies the periodic table of elements, giving rise to all of chemistry and, through

this, much of biology. It is the force which binds atoms together into solids and liquids.

And it is the force which is responsible for the incredible range of properties that

different materials exhibit.

At the macroscopic scale, electromagnetism manifests itself in the familiar phenom-

ena that give the force its name. In the case of electricity, this means everything from

rubbing a balloon on your head and sticking it on the wall, through to the fact that you

can plug any appliance into the wall and be pretty confident that it will work. For mag-

netism, this means everything from the shopping list stuck to your fridge door, through

to trains in Japan which levitate above the rail. Harnessing these powers through the

invention of the electric dynamo and motor has transformed the planet and our lives

on it.

As if this wasn’t enough, there is much more to the force of electromagnetism for it

is, quite literally, responsible for everything you’ve ever seen. It is the force that gives

rise to light itself.

Rather remarkably, a full description of the force of electromagnetism is contained in

four simple and elegant equations. These are known as the Maxwell equations. There

are few places in physics, or indeed in any other subject, where such a richly diverse

set of phenomena flows from so little. The purpose of this course is to introduce the

Maxwell equations and to extract some of the many stories they contain.

However, there is also a second theme that runs through this course. The force of

electromagnetism turns out to be a blueprint for all the other forces. There are various

mathematical symmetries and structures lurking within the Maxwell equations, struc-

tures which Nature then repeats in other contexts. Understanding the mathematical

beauty of the equations will allow us to see some of the principles that underly the laws

of physics, laying the groundwork for future study of the other forces.
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1.1 Charge and Current

Each particle in the Universe carries with it a number of properties. These determine

how the particle interacts with each of the four forces. For the force of gravity, this

property is mass. For the force of electromagnetism, the property is called electric

charge.

For the purposes of this course, we can think of electric charge as a real number,

q ∈ R. Importantly, charge can be positive or negative. It can also be zero, in which

case the particle is unaffected by the force of electromagnetism.

The SI unit of charge is the Coulomb, denoted by C. It is, like all SI units, a parochial

measure, convenient for human activity rather than informed by the underlying laws

of the physics. (We’ll learn more about how the Coulomb is defined in Section 3.5).

At a fundamental level, Nature provides us with a better unit of charge. This follows

from the fact that charge is quantised: the charge of any particle is an integer multiple

of the charge carried by the electron which we denoted as −e, with

e = 1.60217657× 10−19 C

A much more natural unit would be to simply count charge as q = ne with n ∈ Z.

Then electrons have charge −1 while protons have charge +1 and neutrons have charge

0. Nonetheless, in this course, we will bow to convention and stick with SI units.

(An aside: the charge of quarks is actually q = −e/3 and q = 2e/3. This doesn’t

change the spirit of the above discussion since we could just change the basic unit. But,

apart from in extreme circumstances, quarks are confined inside protons and neutrons

so we rarely have to worry about this).

One of the key goals of this course is to move beyond the dynamics of point particles

and onto the dynamics of continuous objects known as fields. To aid in this, it’s useful

to consider the charge density,

ρ(x, t)

defined as charge per unit volume. The total charge Q in a given region V is simply

Q =
∫
V
d3x ρ(x, t). In most situations, we will consider smooth charge densities, which

can be thought of as arising from averaging over many point-like particles. But, on

occasion, we will return to the idea of a single particle of charge q, moving on some

trajectory r(t), by writing ρ = qδ(x − r(t)) where the delta-function ensures that all

the charge sits at a point.
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More generally, we will need to describe the movement of charge from one place to

another. This is captured by a quantity known as the current density J(x, t), defined

as follows: for every surface S, the integral

I =

∫
S

J · dS

counts the charge per unit time passing through S. (Here dS is the unit normal to

S). The quantity I is called the current. In this sense, the current density is the

current-per-unit-area.

The above is a rather indirect definition of the cur-

S

Figure 1: Current flux

rent density. To get a more intuitive picture, consider a

continuous charge distribution in which the velocity of a

small volume, at point x, is given by v(x, t). Then, ne-

glecting relativistic effects, the current density is

J = ρv

In particular, if a single particle is moving with velocity

v = ṙ(t), the current density will be J = qvδ3(x − r(t)).

This is illustrated in the figure, where the underlying charged particles are shown as

red balls, moving through the blue surface S.

As a simple example, consider electrons mov-

v

A

Figure 2: The wire

ing along a wire. We model the wire as a long

cylinder of cross-sectional area A as shown be-

low. The electrons move with velocity v, paral-

lel to the axis of the wire. (In reality, the elec-

trons will have some distribution of speeds; we

take v to be their average velocity). If there are

n electrons per unit volume, each with charge

q, then the charge density is ρ = nq and the current density is J = nqv. The current

itself is I = |J|A.

Throughout this course, the current density J plays a much more prominent role

than the current I. For this reason, we will often refer to J simply as the “current”

although we’ll be more careful with the terminology when there is any possibility for

confusion.
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1.1.1 The Conservation Law

The most important property of electric charge is that it’s conserved. This, of course,

means that the total charge in a system can’t change. But it means much more than

that because electric charge is conserved locally. An electric charge can’t just vanish

from one part of the Universe and turn up somewhere else. It can only leave one point

in space by moving to a neighbouring point.

The property of local conservation means that ρ can change in time only if there

is a compensating current flowing into or out of that region. We express this in the

continuity equation,

∂ρ

∂t
+∇ · J = 0 (1.1)

This is an important equation. It arises in any situation where there is some quantity

that is locally conserved.

To see why the continuity equation captures the right physics, it’s best to consider

the change in the total charge Q contained in some region V .

dQ

dt
=

∫
V

d3x
∂ρ

∂t
= −

∫
V

d3x ∇ · J = −
∫
S

J · dS

From our previous discussion,
∫
S

J · dS is the total current flowing out through the

boundary S of the region V . (It is the total charge flowing out, rather than in, because

dS is the outward normal to the region V ). The minus sign is there to ensure that if

the net flow of current is outwards, then the total charge decreases.

If there is no current flowing out of the region, then dQ/dt = 0. This is the statement

of (global) conservation of charge. In many applications we will take V to be all of

space, R3, with both charges and currents localised in some compact region. This

ensures that the total charge remains constant.

1.2 Forces and Fields

Any particle that carries electric charge experiences the force of electromagnetism. But

the force does not act directly between particles. Instead, Nature chose to introduce

intermediaries. These are fields.

In physics, a “field” is a dynamical quantity which takes a value at every point in

space and time. To describe the force of electromagnetism, we need to introduce two
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fields, each of which is a three-dimensional vector. They are called the electric field E

and the magnetic field B,

E(x, t) and B(x, t)

When we talk about a “force” in modern physics, we really mean an intricate interplay

between particles and fields. There are two aspects to this. First, the charged particles

create both electric and magnetic fields. Second, the electric and magnetic fields guide

the charged particles, telling them how to move. This motion, in turn, changes the

fields that the particles create. We’re left with a beautiful dance with the particles and

fields as two partners, each dictating the moves of the other.

This dance between particles and fields provides a paradigm which all other forces in

Nature follow. It feels like there should be a deep reason that Nature chose to introduce

fields associated to all the forces. And, indeed, this approach does provide one over-

riding advantage: all interactions are local. Any object — whether particle or field —

affects things only in its immediate neighbourhood. This influence can then propagate

through the field to reach another point in space, but it does not do so instantaneously.

It takes time for a particle in one part of space to influence a particle elsewhere. This

lack of instantaneous interaction allows us to introduce forces which are compatible

with the theory of special relativity, something that we will explore in more detail in

Section 5

The purpose of this course is to provide a mathematical description of the interplay

between particles and electromagnetic fields. In fact, you’ve already met one side of

this dance: the position r(t) of a particle of charge q is dictated by the electric and

magnetic fields through the Lorentz force law,

F = q(E + ṙ×B) (1.2)

The motion of the particle can then be determined through Newton’s equation F = mr̈.

We explored various solutions to this in the Dynamics and Relativity course. Roughly

speaking, an electric field accelerates a particle in the direction E, while a magnetic

field causes a particle to move in circles in the plane perpendicular to B.

We can also write the Lorentz force law in terms of the charge distribution ρ(x, t)

and the current density J(x, t). Now we talk in terms of the force density f(x, t), which

is the force acting on a small volume at point x. Now the Lorentz force law reads

f = ρE + J×B (1.3)

– 5 –



1.2.1 The Maxwell Equations

In this course, most of our attention will focus on the other side of the dance: the way

in which electric and magnetic fields are created by charged particles. This is described

by a set of four equations, known collectively as the Maxwell equations. They are:

∇ · E =
ρ

ε0
(1.4)

∇ ·B = 0 (1.5)

∇× E +
∂B

∂t
= 0 (1.6)

∇×B− µ0ε0
∂E

∂t
= µ0J (1.7)

The equations involve two constants. The first is the electric constant (known also, in

slightly old-fashioned terminology, as the permittivity of free space),

ε0 ≈ 8.85× 10−12 m−3Kg−1 s2C2

It can be thought of as characterising the strength of the electric interactions. The

other is the magnetic constant (or permeability of free space),

µ0 = 4π × 10−7 mKgC−2

≈ 1.25× 10−6 mKgC−2

The presence of 4π in this formula isn’t telling us anything deep about Nature. It’s

more a reflection of the definition of the Coulomb as the unit of charge. (We will explain

this in more detail in Section 3.5). Nonetheless, this can be thought of as characterising

the strength of magnetic interactions (in units of Coulombs).

The Maxwell equations (1.4), (1.5), (1.6) and (1.7) will occupy us for the rest of the

course. Rather than trying to understand all the equations at once, we’ll proceed bit

by bit, looking at situations where only some of the equations are important. By the

end of the lectures, we will understand the physics captured by each of these equations

and how they fit together.
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However, equally importantly, we will also explore the mathematical structure of the

Maxwell equations. At first glance, they look just like four random equations from

vector calculus. Yet this couldn’t be further from the truth. The Maxwell equations

are special and, when viewed in the right way, are the essentially unique equations

that can describe the force of electromagnetism. The full story of why these are the

unique equations involves both quantum mechanics and relativity and will only be told

in later courses. But we will start that journey here. The goal is that by the end of

these lectures you will be convinced of the importance of the Maxwell equations on

both experimental and aesthetic grounds.
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2. Electrostatics

In this section, we will be interested in electric charges at rest. This means that there

exists a frame of reference in which there are no currents; only stationary charges. Of

course, there will be forces between these charges but we will assume that the charges

are pinned in place and cannot move. The question that we want to answer is: what

is the electric field generated by these charges?

Since nothing moves, we are looking for time independent solutions to Maxwell’s

equations with J = 0. This means that we can consistently set B = 0 and we’re left

with two of Maxwell’s equations to solve. They are

∇ · E =
ρ

ε0
(2.1)

and

∇× E = 0 (2.2)

If you fix the charge distribution ρ, equations (2.1) and (2.2) have a unique solution.

Our goal in this section is to find it.

2.1 Gauss’ Law

Before we proceed, let’s first present equation (2.1) in a slightly different form that

will shed some light on its meaning. Consider some closed region V ⊂ R3 of space.

We’ll denote the boundary of V by S = ∂V . We now integrate both sides of (2.1) over

V . Since the left-hand side is a total derivative, we can use the divergence theorem to

convert this to an integral over the surface S. We have∫
V

d3x ∇ · E =

∫
S

E · dS =
1

ε0

∫
V

d3x ρ

The integral of the charge density over V is simply the total charge contained in the

region. We’ll call it Q =
∫
d3x ρ. Meanwhile, the integral of the electric field over S is

called the flux through S. We learn that the two are related by∫
S

E · dS =
Q

ε0
(2.3)

This is Gauss’s law. However, because the two are entirely equivalent, we also refer to

the original (2.1) as Gauss’s law.
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S

S’

S

Figure 3: The flux through S and S′ is

the same.

Figure 4: The flux through S vanishes.

Notice that it doesn’t matter what shape the surface S takes. As long as it surrounds

a total charge Q, the flux through the surface will always be Q/ε0. This is shown, for

example, in the left-hand figure above. The choice of S is called the Gaussian surface;

often there’s a smart choice that makes a particular problem simple.

Only charges that lie inside V contribute to the flux. Any charges that lie outside will

produce an electric field that penetrates through S at some point, giving negative flux,

but leaves through the other side of S, depositing positive flux. The total contribution

from these charges that lie outside of V is zero, as illustrated in the right-hand figure

above.

For a general charge distribution, we’ll need to use both Gauss’ law (2.1) and the

extra equation (2.2). However, for rather special charge distributions – typically those

with lots of symmetry – it turns out to be sufficient to solve the integral form of Gauss’

law (2.3) alone, with the symmetry ensuring that (2.2) is automatically satisfied. We

start by describing these rather simple solutions. We’ll then return to the general case

in Section 2.2.

2.1.1 The Coulomb Force

We’ll start by showing that Gauss’ law (2.3) reproduces the more familiar Coulomb

force law that we all know and love. To do this, take a spherically symmetric charge

distribution, centered at the origin, contained within some radius R. This will be our

model for a particle. We won’t need to make any assumption about the nature of the

distribution other than its symmetry and the fact that the total charge is Q.
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We want to know the electric field at some radius r >

S
R

r

Figure 5:

R. We take our Gaussian surface S to be a sphere of radius

r as shown in the figure. Gauss’ law states∫
S

E · dS =
Q

ε0

At this point we make use of the spherical symmetry of the

problem. This tells us that the electric field must point ra-

dially outwards: E(x) = E(r)r̂. And, since the integral is

only over the angular coordinates of the sphere, we can pull

the function E(r) outside. We have∫
S

E · dS = E(r)

∫
S

r̂ · dS = E(r) 4πr2 =
Q

ε0

where the factor of 4πr2 has arisen simply because it’s the area of the Gaussian sphere.

We learn that the electric field outside a spherically symmetric distribution of charge

Q is

E(x) =
Q

4πε0r2
r̂ (2.4)

That’s nice. This is the familiar result that we’ve seen before. (See, for example, the

notes on Dynamics and Relativity). The Lorentz force law (1.2) then tells us that a

test charge q moving in the region r > R experiences a force

F =
Qq

4πε0r2
r̂

This, of course, is the Coulomb force between two static charged particles. Notice that,

as promised, 1/ε0 characterises the strength of the force. If the two charges have the

same sign, so that Qq > 0, the force is repulsive, pushing the test charge away from

the origin. If the charges have opposite signs, Qq < 0, the force is attractive, pointing

towards the origin. We see that Gauss’s law (2.1) reproduces this simple result that we

know about charges.

Finally, note that the assumption of symmetry was crucial in our above analysis.

Without it, the electric field E(x) would have depended on the angular coordinates of

the sphere S and so been stuck inside the integral. In situations without symmetry,

Gauss’ law alone is not enough to determine the electric field and we need to also use

∇ × E = 0. We’ll see how to do this in Section 2.2. If you’re worried, however, it’s

simple to check that our final expression for the electric field (2.4) does indeed solve

∇× E = 0.
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Coulomb vs Newton

The inverse-square form of the force is common to both electrostatics and gravity. It’s

worth comparing the relative strengths of the two forces. For example, we can look

at the relative strengths of Newtonian attraction and Coulomb repulsion between two

electrons. These are point particles with mass me and charge −e given by

e ≈ 1.6× 10−19 Coulombs and me ≈ 9.1× 10−31 Kg

Regardless of the separation, we have

FCoulomb

FNewton

=
e2

4πε0

1

Gm2
e

The strength of gravity is determined by Newton’s constant G ≈ 6.7×10−11 m3Kg−1s2.

Plugging in the numbers reveals something extraordinary:

FCoulomb

FNewton

≈ 1042

Gravity is puny. Electromagnetism rules. In fact you knew this already. The mere act

of lifting up you arm is pitching a few electrical impulses up against the gravitational

might of the entire Earth. Yet the electrical impulses win.

However, gravity has a trick up its sleeve. While electric charges come with both

positive and negative signs, mass is only positive. It means that by the time we get to

macroscopically large objects — stars, planets, cats — the mass accumulates while the

charges cancel to good approximation. This compensates the factor of 10−42 suppression

until, at large distance scales, gravity wins after all.

The fact that the force of gravity is so ridiculously tiny at the level of fundamental

particles has consequence. It means that we can neglect gravity whenever we talk

about the very small. (And indeed, we shall neglect gravity for the rest of this course).

However, it also means that if we would like to understand gravity better on these very

tiny distances – for example, to develop a quantum theory of gravity — then it’s going

to be tricky to get much guidance from experiment.

2.1.2 A Uniform Sphere

The electric field outside a spherically symmetric charge distribution is always given by

(2.4). What about inside? This depends on the distribution in question. The simplest

is a sphere of radius R with uniform charge distribution ρ. The total charge is

Q =
4π

3
R3ρ
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Let’s pick our Gaussian surface to be a sphere, centered at

S

R

r

Figure 6:

the origin, of radius r < R. The charge contained within

this sphere is 4πρr3/3 = Qr3/R3, so Gauss’ law gives∫
S

E · dS =
Qr3

ε0R3

Again, using the symmetry argument we can write E(r) =

E(r)r̂ and compute∫
S

E · dS = E(r)

∫
S

r̂ · dS = E(r) 4πr2 =
Qr3

ε0R3

This tells us that the electric field grows linearly inside the sphere

E(x) =
Qr

4πε0R3
r̂ r < R (2.5)

Outside the sphere we revert to the inverse-square

R r

E

Figure 7:

form (2.4). At the surface of the sphere, r = R, the

electric field is continuous but the derivative, dE/dr,

is not. This is shown in the graph.

2.1.3 Line Charges

Consider, next, a charge smeared out along a line which

L

z

r

Figure 8:

we’ll take to be the z-axis. We’ll take uniform charge den-

sity η per unit length. (If you like you could consider a

solid cylinder with uniform charge density and then send

the radius to zero). We want to know the electric field due

to this line of charge.

Our set-up now has cylindrical symmetry. We take the

Gaussian surface to be a cylinder of length L and radius r.

We have ∫
S

E · dS =
ηL

ε0

Again, by symmetry, the electric field points in the radial

direction, away from the line. We’ll denote this vector in cylindrical polar coordinates

as r̂ so that E = E(r)r̂. The symmetry means that the two end caps of the Gaussian
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surface don’t contribute to the integral because their normal points in the ẑ direction

and ẑ · r̂ = 0. We’re left only with a contribution from the curved side of the cylinder,∫
S

E · dS = E(r) 2πrL =
ηL

ε0

So that the electric field is

E(r) =
η

2πε0r
r̂ (2.6)

Note that, while the electric field for a point charge drops off as 1/r2 (with r the radial

distance), the electric field for a line charge drops off more slowly as 1/r. (Of course, the

radial distance r means slightly different things in the two cases: it is r =
√
x2 + y2 + z2

for the point particle, but is r =
√
x2 + y2 for the line).

2.1.4 Surface Charges and Discontinuities

Now consider an infinite plane, which we E

E

z=0

Figure 9:

take to be z = 0, carrying uniform charge

per unit area, σ. We again take our Gaus-

sian surface to be a cylinder, this time with

its axis perpendicular to the plane as shown

in the figure. In this context, the cylin-

der is sometimes referred to as a Gaussian

“pillbox” (on account of Gauss’ well known

fondness for aspirin). On symmetry grounds, we have

E = E(z)ẑ

Moreover, the electric field in the upper plane, z > 0, must point in the opposite

direction from the lower plane, z < 0, so that E(z) = −E(−z).

The surface integral now vanishes over the curved side of the cylinder and we only

get contributions from the end caps, which we take to have area A. This gives∫
S

E · dS = E(z)A− E(−z)A = 2E(z)A =
σA

ε0

The electric field above an infinite plane of charge is therefore

E(z) =
σ

2ε0
(2.7)

Note that the electric field is independent of the distance from the plane! This is

because the plane is infinite in extent: the further you move from it, the more comes

into view.
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D

D

1

2

a

L

Figure 10: The normal component of the

electric field is discontinuous

Figure 11: The tangential component of

the electric field is continuous.

There is another important point to take away from this analysis. The electric field

is not continuous on either side of a surface of constant charge density. We have

E(z → 0+)− E(z → 0−) =
σ

ε0
(2.8)

For this to hold, it is not important that the plane stretches to infinity. It’s simple to

redo the above analysis for any arbitrary surface with charge density σ. There is no

need for σ to be uniform and, correspondingly, there is no need for E at a given point

to be parallel to the normal to the surface n̂. At any point of the surface, we can take

a Gaussian cylinder, as shown in the left-hand figure above, whose axis is normal to

the surface at that point. Its cross-sectional area A can be arbitrarily small (since, as

we saw, it drops out of the final answer). If E± denotes the electric field on either side

of the surface, then

n̂ · E|+ − n̂ · E|− =
σ

ε0
(2.9)

In contrast, the electric field tangent to the surface is continuous. To see this, we

need to do a slightly different calculation. Consider, again, an arbitrary surface with

surface charge. Now we consider a loop C with a length L which lies parallel to the

surface and a length a which is perpendicular to the surface. We’ve drawn this loop in

the right-hand figure above, where the surface is now shown side-on. We integrate E

around the loop. Using Stoke’s theorem, we have∮
C

E · dr =

∫
∇× E · dS

where S is the surface bounded by C. In the limit a→ 0, the surface S shrinks to zero

size so this integral gives zero. This means that the contribution to line integral must

also vanish, leaving us with

n̂× E+ − n̂× E− = 0

This is the statement that the electric field tangential to the surface is continuous.
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A Pair of Planes

E=0

E=0

−σ

+σ

E

Figure 12:

As a simple generalisation, consider a pair of infi-

nite planes at z = 0 and z = a, carrying uniform

surface charge density ±σ respectively as shown in

the figure. To compute the electric field we need

only add the fields for arising from two planes, each

of which takes the form (2.7). We find that the

electric field between the two planes is

E =
σ

ε0
ẑ 0 < z < a (2.10)

while E = 0 outside the planes

A Plane Slab

We can rederive the discontinuity (2.9) in the electric field by considering an infinite

slab of thickness 2d and charge density per unit volume ρ. When our Gaussian pillbox

lies inside the slab, with z < d, we have

2AE(z) =
2zAρ

ε0
⇒ E(z) =

ρz

ε0

Meanwhile, for z > d we get our earlier result (2.7). The electric field is now continuous

as shown in the figure. Taking the limit d→ 0 and ρ→∞ such that the surface charge

σ = ρd remains constant reproduces the discontinuity (2.8).

E

−d

+d

z

Figure 13: The Gaussian surface for a

plane slab

Figure 14: The resulting electric field
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A Spherical Shell

Let’s give one last example that involves surface charge and

E

E−

+

Figure 15:

the associated discontinuity of the electric field. We’ll con-

sider a spherical shell of radius R, centered at the origin,

with uniform surface charge density σ. The total charge is

Q = 4πR2σ

We already know that outside the shell, r > R, the electric

field takes the standard inverse-square form (2.4). What

about inside? Well, since any surface with r < R doesn’t

surround a charge, Gauss’ law tells us that we necessarily

have E = 0 inside. That means that there is a discontinuity at the surface r = R,

E · r̂|+ − E · r̂|− =
Q

4πR2ε0
=
σ

ε0

in accord with the expectation (2.9).

2.2 The Electrostatic Potential

For all the examples in the last section, symmetry considerations meant that we only

needed to consider Gauss’ law. However, for general charge distributions Gauss’ law is

not sufficient. We also need to invoke the second equation, ∇× E = 0.

In fact, this second equation is easily dispatched since ∇ × E = 0 implies that the

electric field can be written as the gradient of some function,

E = −∇φ (2.11)

The scalar φ is called the electrostatic potential or scalar potential (or, sometimes, just

the potential). To proceed, we revert to the original differential form of Gauss’ law

(2.1). This now takes the form of the Poisson equation

∇ · E =
ρ

ε0
⇒ ∇2φ = − ρ

ε0
(2.12)

In regions of space where the charge density vanishes, we’re left solving the Laplace

equation

∇2φ = 0 (2.13)

Solutions to the Laplace equation are said to be harmonic functions.
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A few comments:

• The potential φ is only defined up to the addition of some constant. This seem-

ingly trivial point is actually the beginning of a long and deep story in theoretical

physics known as gauge invariance. We’ll come back to it in Section 5.3.1. For

now, we’ll eliminate this redundancy by requiring that φ(r)→ 0 as r →∞.

• We know from our study of Newtonian mechanics that the electrostatic potential

is proportional to the potential energy experienced by a test particle. (See Section

2.2 of the Dynamics and Relativity lecture notes). Specifically, a test particle of

mass m, position r(t) and charge q moving in a background electric field has

conserved energy

E =
1

2
mṙ · ṙ + qφ(r)

• The Poisson equation is linear in both φ and ρ. This means that if we know

the potential φ1 for some charge distribution ρ1 and the potential φ2 for another

charge distribution ρ2, then the potential for ρ1 +ρ2 is simply φ1 +φ2. What this

really means is that the electric field for a bunch of charges is just the sum of

the fields generated by each charge. This is called the principle of superposition

for charges. This linearity of the equations is what makes electromagnetism easy

compared to other forces of Nature.

• We stated above that ∇×E = 0 is equivalent to writing E = −∇φ. This is true

when space is R3 or, in fact, if we take space to be any open ball in R3. But if our

background space has a suitably complicated topology then there are solutions to

∇×E = 0 which cannot be written in the form E = −∇φ. This is tied ultimately

to the beautiful mathematical theory of de Rham cohomology. Needless to say, in

this starter course we’re not going to worry about these issues. We’ll always take

spacetime to have topology R4 and, correspondingly, any spatial hypersurface to

be R3.

2.2.1 The Point Charge

Let’s start by deriving the Coulomb force law yet again. We’ll take a particle of charge

Q and place it at the origin. This time, however, we’ll assume that the particle really is

a point charge. This means that the charge density takes the form of a delta-function,

ρ(x) = Qδ3(x). We need to solve the equation

∇2φ = −Q
ε0
δ3(x) (2.14)
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You’ve solved problems of this kind in your Methods course. The solution is essentially

the Green’s function for the Laplacian ∇2, an interpretation that we’ll return to in

Section 2.2.3. Let’s recall how we find this solution. We first look away from the

origin, r 6= 0, where there’s no funny business going on with delta-function. Here,

we’re looking for the spherically symmetric solution to the Laplace equation. This is

φ =
α

r

for some constant α. To see why this solves the Laplace equation, we need to use the

result

∇r = r̂ (2.15)

where r̂ is the unit radial vector in spherical polar coordinates, so x = rr̂. Using the

chain rule, this means that ∇(1/r) = −r̂/r2 = −x/r3. This gives us

∇φ = − α
r3

x ⇒ ∇2φ = −α
(
∇ · x
r3
− 3 x · x

r5

)
But ∇ · x = 3 and we find that ∇2φ = 0 as required.

It remains to figure out what to do at the origin where the delta-function lives.

This is what determines the overall normalization α of the solution. At this point, it’s

simplest to use the integral form of Gauss’ law to transfer the problem from the origin

to the far flung reaches of space. To do this, we integrate (2.14) over some region V

which includes the origin. Integrating the charge density gives

ρ(x) = Qδ3(x) ⇒
∫
V

d3x ρ = Q

So, using Gauss’ law (2.3), we require∫
S

∇φ · dS = −Q
ε0

But this is exactly the kind of surface integral that we were doing in the last section.

Substituting φ = α/r into the above equation, and choosing S to be a sphere of radius

r, tells us that we must have α = Q/4πε0, or

φ =
Q

4πε0r
(2.16)

Taking the gradient of this using (2.15) gives us Coulomb’s law

E(x) = −∇φ =
Q

4πε0r2
r̂
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The derivation of Coulomb’s law using the potential was somewhat more involved than

the technique using Gauss’ law alone that we saw in the last section. However, as we’ll

now see, introducing the potential allows us to write down the solution to essentially

any problem.

A Note on Notation

Throughout these lectures, we will use x and r interchangeably to denote position

in space. For example, sometimes we’ll write integration over a volume as
∫
d3x and

sometimes as
∫
d3r. The advantage of the r notation is that it looks more natural when

working in spherical polar coordinates. For example, we have |r| = r which is nice.

The disadvantage is that it can lead to confusion when working in other coordinate

systems, in particular cylindrical polar. For this reason, we’ll alternate between the

two notations, adopting the attitude that clarity is more important than consistency.

2.2.2 The Dipole

A dipole consists of two point charges, Q and −Q, a distance d apart. We place the

first charge at the origin and the second at r = −d. The potential is simply the sum

of the potential for each charge,

φ =
1

4πε0

(
Q

r
− Q

|r + d|

)
Similarly, the electric field is just the sum of the electric fields made by the two point

charges. This follows from the linearity of the equations and is a simple application of

the principle of superposition that we mentioned earlier.

It will prove fruitful to ask what the dipole looks like far from the two point charges,

at a distance r � |d|. We need to Taylor expand the second term above. The vector

version of the Taylor expansion for a general function f(r) is given by

f(r + d) ≈ f(r) + d · ∇f(r) +
1

2
(d · ∇)2f(r) + . . . (2.17)

Applying this to the function 1/|r + d| gives

1

|r + d|
≈ 1

r
+ d · ∇1

r
+

1

2
(d · ∇)2 1

r
+ . . .

=
1

r
− d · r

r3
− 1

2

(
d · d
r3
− 3(d · r)2

r5

)
+ . . .
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(To derive the last term, it might be easiest to use index notation for d · ∇ = di∂i).

For our dipole, we’ll only need the first two terms in this expansion. They give the

potential

φ ≈ Q

4πε0

(
1

r
− 1

r
− d · ∇1

r
+ . . .

)
=

Q

4πε0

d · r
r3

+ . . . (2.18)

We see that the potential for a dipole falls off as 1/r2. Correspondingly, the electric

field drops off as 1/r3; both are one power higher than the fields for a point charge.

The electric field is not spherically symmetric. The leading order contribution is

governed by the combination

p = Qd

This is called the electric dipole moment. By convention, it points from the negative

charge to the positive. The dipole electric field is

E = −∇φ =
1

4πε0

(
3(p · r̂)r̂− p

r3

)
+ . . . (2.19)

Notice that the sign of the electric field depends on where you sit in space. In some

parts, the force will be attractive; in other parts repulsive.

It’s sometimes useful to consider the limit d → 0 and Q → ∞ such that p = Qd

remains fixed. In this limit, all the . . . terms in (2.18) and (2.19) disappear since they

contain higher powers of d. Often when people talk about the “dipole”, they implicitly

mean taking this limit.

2.2.3 General Charge Distributions

Our derivation of the potential due to a point charge (2.16), together with the principle

of superposition, is actually enough to solve – at least formally – the potential due to

any charge distribution. This is because the solution for a point charge is nothing other

than the Green’s function for the Laplacian. The Green’s function is defined to be the

solution to the equation

∇2G(r; r′) = δ3(r− r′)

which, from our discussion of the point charge, we now know to be

G(r; r′) = − 1

4π

1

|r− r′|
(2.20)

– 20 –



We can now apply our usual Green’s function methods to the general Poisson equation

(2.12). In what follows, we’ll take ρ(r) 6= 0 only in some compact region, V , of space.

The solution to the Poisson equation is given by

φ(r) = − 1

ε0

∫
V

d3r′ G(r; r′) ρ(r′) =
1

4πε0

∫
V

d3r′
ρ(r′)

|r− r′|
(2.21)

(To check this, you just have to keep your head and remember whether the operators

are hitting r or r′. The Laplacian acts on r so, if we compute ∇2φ, it passes through

the integral in the above expression and hits G(r; r′), leaving behind a delta-function

which subsequently kills the integral).

Similarly, the electric field arising from a general charge distribution is

E(r) = −∇φ(r) = − 1

4πε0

∫
V

d3r′ ρ(r′)∇ 1

|r− r′|

=
1

4πε0

∫
V

d3r′ ρ(r′)
r− r′

|r− r′|3

Given a very complicated charge distribution ρ(r), this equation will give back an

equally complicated electric field E(r). But if we sit a long way from the charge

distribution, there’s a rather nice simplification that happens. . .

Long Distance Behaviour

Suppose now that you want to know what the electric field
r’

r

V

Figure 16:

looks like far from the region V . This means that we’re inter-

ested in the electric field at r with |r| � |r′| for all r′ ∈ V . We

can apply the same Taylor expansion (2.17), now replacing d

with −r′ for each r′ in the charged region. This means we can

write

1

|r− r′|
=

1

r
− r′ · ∇1

r
+

1

2
(r′ · ∇)2 1

r
+ . . .

=
1

r
+

r · r′

r3
+

1

2

(
3(r · r′)2

r5
− r′ · r′

r3

)
+ . . . (2.22)

and our potential becomes

φ(r) =
1

4πε0

∫
V

d3r′ ρ(r′)

(
1

r
+

r · r′

r3
+ . . .

)
The leading term is just

φ(r) =
Q

4πε0r
+ . . .
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where Q =
∫
V
d3r′ ρ(r′) is the total charge contained within V . So, to leading order, if

you’re far enough away then you can’t distinguish a general charge distribution from

a point charge localised at the origin. But if you’re careful with experiments, you can

tell the difference. The first correction takes the form of a dipole,

φ(r) =
1

4πε0

(
Q

r
+

p · r̂
r2

+ . . .

)
where

p =

∫
V

d3r′ r′ρ(r′)

is the dipole moment of the distribution. One particularly important situation is when

we have a neutral object with Q = 0. In this case, the dipole is the dominant contri-

bution to the potential.

We see that an arbitrarily complicated, localised charge distribution can be char-

acterised by a few simple quantities, of decreasing importance. First comes the total

charge Q. Next the dipole moment p which contains some basic information about

how the charges are distributed. But we can keep going. The next correction is called

the quadrupole and is given by

∆φ =
1

2

1

4πε0

rirjQij

r5

where Qij is a symmetric traceless tensor known as the quadrupole moment, given by

Qij =

∫
V

d3r′ ρ(r′)
(
3r′ir

′
j − δijr′ 2

)
It contains some more refined information about how the charges are distributed. After

this comes the octopole and so on. The general name given to this approach is the mul-

tipole expansion. It involves expanding the function φ in terms of spherical harmonics.

A systematic treatment can be found, for example, in the book by Jackson.

A Comment on Infinite Charge Distributions

In the above, we assumed for simplicity that the charge distribution was restricted to

some compact region of space, V . The Green’s function approach still works if the

charge distribution stretches to infinity. However, for such distributions it’s not always

possible to pick φ(r)→ 0 as r →∞. In fact, we saw an example of this earlier. For an

infinite line charge, we computed the electric field in (2.6). It goes as

E(r) =
ρ

2πr
r̂
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where now r2 = x2 + y2 is the cylindrical radial coordinate perpendicular to the line.

The potential φ which gives rise to this is

φ(r) = − η

2πε0
log

(
r

r0

)
Because of the log function, we necessarily have φ(r) → ∞ as r → ∞. Instead, we

need to pick an arbitrary, but finite distance, r0 at which the potential vanishes.

2.2.4 Field Lines

The usual way of depicting a vector is to draw an arrow whose length is proportional

to the magnitude. For the electric field, there’s a slightly different, more useful way

to show what’s going on. We draw continuous lines, tangent to the electric field E,

with the density of lines proportional to the magnitude of E. This innovation, due

to Faraday, is called the field line. (They are what we have been secretly drawing

throughout these notes).

Field lines are continuous. They begin and end only at charges. They can never

cross.

The field lines for positive and negative point charges are:

+ −

By convention, the positive charges act as sources for the lines, with the arrows emerg-

ing. The negative charges act as sinks, with the arrows approaching.

It’s also easy to draw the equipotentials — surfaces of constant φ — on this same

figure. These are the surfaces along which you can move a charge without doing any

work. The relationship E = −∇φ ensures that the equipotentials cut the field lines at

right angles. We usually draw them as dotted lines:

+ −

– 23 –



Meanwhile, we can (very) roughly sketch the field lines and equipotentials for the dipole

(on the left) and for a pair of charges of the same sign (on the right):

+ − + +

2.2.5 Electrostatic Equilibrium

Here’s a simple question: can you trap an electric charge using only other charges? In

other words, can you find some arrangements of charges such that a test charge sits in

stable equilibrium, trapped by the fields of the others.

There’s a trivial way to do this: just allow a negative charge to sit directly on top of

a positive charge. But let’s throw out this possibility. We’ll ask that the equilibrium

point lies away from all the other charges.

There are some simple set-ups that spring to mind that might achieve this. Maybe

you could place four positive charges at the vertices of a pyramid; or perhaps 8 positive

charges at the corners of a cube. Is it possible that a test positive charge trapped in

the middle will be stable? It’s certainly repelled from all the corners, so it might seem

plausible.

The answer, however, is no. There is no electrostatic equilibrium. You cannot trap

an electric charge using only other stationary electric charges, at least not in a stable

manner. Since the potential energy of the particle is proportional to φ, mathematically,

this is the statement that a harmonic function, obeying ∇2φ = 0, can have no minimum

or maximum.

To prove that there can be no electrostatic equilibrium, let’s suppose the opposite:

that there is some point in empty space r? that is stable for a particle of charge q < 0.

By “empty space”, we mean that ρ(r) = 0 in a neighbourhood of r?. Because the point

is stable, if the particle moves away from this point then it must always be pushed

back. This, in turn, means that the electric field must always point inwards towards

the point r?; never away. We could then surround r? by a small surface S and compute∫
S

E · dS < 0
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But, by Gauss’ law, the right-hand side must be the charge contained within S which,

by assumption, is zero. This is our contradiction: electrostatic equilibrium does not

exist.

Of course, if you’re willing to use something other than electrostatic forces then you

can construct equilibrium situations. For example, if you restrict the test particle to

lie on a plane then it’s simple to check that equal charges placed at the corners of a

polygon will result in a stable equilibrium point in the middle. But to do this you need

to use other forces to keep the particle in the plane in the first place.

2.3 Electrostatic Energy

There is energy stored in the electric field. In this section, we calculate how much.

Let’s start by recalling a fact from our first course on classical mechanics1. Suppose

we have some test charge q moving in a background electrostatic potential φ. We’ll

denote the potential energy of the particle as U(r). (We used the notation V (r) in the

Dynamics and Relativity course but we’ll need to reserve V for the voltage later). The

potential U(r) of the particle can be thought of as the work done bringing the particle

in from infinity;

U(r) = −
∫ r

∞
F · dr = +q

∫ r

∞
∇φ · dr = qφ(r)

where we’ve assumed our standard normalization of φ(r)→ 0 as r →∞.

Consider a distribution of charges which, for now, we’ll take to be made of point

charges qi at positions ri. The electrostatic potential energy stored in this configuration

is the same as the work required to assemble the configuration in the first place. (This

is because if you let the charges go, this is how much kinetic energy they will pick up).

So how much work does it take to assemble a collection of charges?

Well, the first charge is free. In the absence of any electric field, you can just put it

where you like — say, r1. The work required is W1 = 0.

To place the second charge at r2 takes work

W2 =
q1q2

4πε0

1

|r1 − r2|
Note that if the two charges have the same sign, so q1q2 > 0, then W2 > 0 which is

telling us that we need to put work in to make them approach. If q1q2 < 0 then W2 < 0

where the negative work means that the particles wanted to be drawn closer by their

mutual attraction.
1See Section 2.2 of the lecture notes on Dynamics and Relativity.
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The third charge has to battle against the electric field due to both q1 and q2. The

work required is

W3 =
q3

4πε0

(
q2

|r2 − r3|
+

q1

|r1 − r3|

)
and so on. The total work needed to assemble all the charges is the potential energy

stored in the configuration,

U =
N∑
i=1

Wi =
1

4πε0

∑
i<j

qiqj
|ri − rj|

(2.23)

where
∑

i<j means that we sum over each pair of particles once. In fact, you probably

could have just written down (2.23) as the potential energy stored in the configuration.

The whole purpose of the above argument was really just to nail down a factor of 1/2:

do we sum over all pairs of particles
∑

i<j or all particles
∑

i 6=j? The answer, as we

have seen, is all pairs.

We can make that factor of 1/2 even more explicit by writing

U =
1

2

1

4πε0

∑
i

∑
j 6=i

qiqj
|ri − rj|

(2.24)

where now we sum over each pair twice.

There is a slicker way of writing (2.24). The potential at ri due to all the other

charges qj, j 6= i is

φ(ri) =
1

4πε0

∑
j 6=i

qj
|ri − rj|

which means that we can write the potential energy as

U =
1

2

N∑
i=1

qiφ(ri) (2.25)

This is the potential energy for a set of point charges. But there is an obvious general-

ization to charge distributions ρ(r). We’ll again assume that ρ(r) has compact support

so that the charge is localised in some region of space. The potential energy associated

to such a charge distribution should be

U =
1

2

∫
d3r ρ(r)φ(r) (2.26)

where we can quite happily take the integral over all of R3, safe in the knowledge that

anywhere that doesn’t contain charge has ρ(r) = 0 and so won’t contribute.
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Now this is in a form that we can start to play with. We use Gauss’ law to rewrite

it as

U =
ε0
2

∫
d3r (∇ · E)φ =

ε0
2

∫
d3r [∇ · (Eφ)− E · ∇φ]

But the first term is a total derivative. And since we’re taking the integral over all of

space and φ(r) → 0 as r → ∞, this term just vanishes. In the second term we can

replace ∇φ = −E. We find that the potential energy stored in a charge distribution

has an elegant expression solely in terms of the electric field that it creates,

U =
ε0
2

∫
d3r E · E (2.27)

Isn’t that nice!

2.3.1 The Energy of a Point Particle

There is a subtlety in the above derivation. In fact, I totally tried to pull the wool over

your eyes. Here it’s time to own up.

First, let me say that the final result (2.27) is right: this is the energy stored in the

electric field. But the derivation above was dodgy. One reason to be dissatisfied is

that we computed the energy in the electric field by equating it to the potential energy

stored in a charge distribution that creates this electric field. But the end result doesn’t

depend on the charge distribution. This suggests that there should be a more direct

way to arrive at (2.27) that only talks about fields and doesn’t need charges. And there

is. You’ll see it in next year’s Electrodynamics course.

But there is also another, more worrying problem with the derivation above. To

illustrate this, let’s just look at the simplest situation of a point particle. This has

electric field

E =
q

4πε0r2
r̂ (2.28)

So, by (2.27), the associated electric field should carry energy. But we started our

derivation above by assuming that a single particle didn’t carry any energy since it

didn’t take any work to put the particle there in the first place. What’s going on?

Well, there was something of a sleight of hand in the derivation above. This occurs

when we went from the expression qφ in (2.25) to ρφ in (2.26). The former omits the

“self-energy” terms; there is no contribution arising from qiφ(ri). However, the latter

includes them. The two expressions are not quite the same. This is also the reason

that our final expression for the energy (2.27) is manifestly positive, while qφ can be

positive or negative.
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So which is right? Well, which form of the energy you use rather depends on the

context. It is true that (2.27) is the correct expression for the energy stored in the

electric field. But it is also true that you don’t have to do any work to put the first

charge in place since we’re obviously not fighting against anything. Instead, the “self-

energy” contribution coming from E ·E in (2.28) should simply be thought of — using

E = mc2 — as a contribution to the mass of the particle.

We can easily compute this contribution for, say, an electron with charge q = −e.
Let’s call the radius of the electron a. Then the energy stored in its electric field is

Energy =
ε0
2

∫
d3r E · E =

e2

32πε0

∫ ∞
a

dr
4πr2

r4
=

e2

8πε0

1

a

We see that, at least as far as the energy is concerned, we’d better not treat the electron

as a point particle with a → 0 or it will end up having infinite mass. And that will

make it really hard to move.

So what is the radius of an electron? For the above calculation to be consistent, the

energy in the electric field can’t be greater than the observed mass of the electron me.

In other words, we’d better have

mec
2 >

e2

8πε0

1

a
⇒ a >

e2

8πε0

1

mec2
(2.29)

That, at least, puts a bound on the radius of the electron, which is the best we can

do using classical physics alone. To give a more precise statement of the radius of the

electron, we need to turn to quantum mechanics.

A Quick Foray into Quantum Electrodynamics

To assign a meaning of “radius” to seemingly point-like particles, we really need the

machinery of quantum field theory. In that context, the size of the electron is called its

Compton wavelength. This is the distance scale at which the electron gets surrounded

by a swarm of electron-positron pairs which, roughly speaking, smears out the charge

distribution. This distance scale is

a =
~
mec

We see that the inequality (2.29) translates into an inequality on a bunch of fundamental

constants. For the whole story to hang together, we require

e2

8πε0~c
< 1
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This is an almost famous combination of constants. It’s more usual to define the

combination

α =
e2

4πε0~c
This is known as the fine structure constant. It is dimensionless and takes the value

α ≈ 1

137

Our discussion above requires α < 2. We see that Nature happily meets this require-

ment.

2.3.2 The Force Between Electric Dipoles

As an application of our formula for electrostatic energy, we can compute the force

between two, far separated dipoles. We place the first dipole, p1, at the origin. It gives

rise to a potential

φ(r) =
1

4πε0

p1 · r
r3

Now, at some distance away, we place a second dipole. We’ll take this to consist of a

charge Q at position r and a charge −Q at position r− d, with d� r. The resulting

dipole moment is p2 = Qd. The potential energy of this system is given by (2.25),

U =
Q

2

(
φ(r)− φ(r− d)

)
=

1

8πε0

(
Qp1 · r
r3

− Qp1 · (r− d)

|r− d|3

)
=

Q

8πε0

(
p1 · r
r3
− p1 · (r− d)

(
1

r3
+

3d · r
r5

+ . . .

))
=

Q

8πε0

(
p1 · d
r3
− 3(p1 · r)(d · r)

r5

)
where, to get to the second line, we’ve Taylor expanded the denominator of the second

term. This final expression can be written in terms of the second dipole moment. We

find the nice, symmetric expression for the potential energy of two dipoles separated

by distance r,

U =
1

8πε0

(
p1 · p2

r3
− 3(p1 · r)(p2 · r)

r5

)
But, we know from our first course on dynamics that the force between two objects is

just given by F = −∇U . We learn that the force between two dipoles is given by

F =
1

8πε0
∇
(

3(p1 · r)(p2 · r)

r5
− p1 · p2

r3

)
(2.30)
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The strength of the force, and even its sign, depends on the orientation of the two

dipoles. If p1 and p2 lie parallel to each other and to r then the resulting force is

attractive. If p1 and p2 point in opposite directions, and lie parallel to r, then the force

is repulsive. The expression above allows us to compute the general force.

2.4 Conductors

Let’s now throw something new into the mix. A conductor is a region of space which

contains charges that are free to move. Physically, think “metal”. We want to ask

what happens to the story of electrostatics in the presence of a conductor. There are

a number of things that we can say straight away:

• Inside a conductor we must have E = 0. If this isn’t the case, the charges would

move. But we’re interested in electrostatic situations where nothing moves.

• Since E = 0 inside a conductor, the electrostatic potential φ must be constant

throughout the conductor.

• Since E = 0 and ∇ · E = ρ/ε0, we must also have ρ = 0. This means that the

interior of the conductor can’t carry any charge.

• Conductors can be neutral, carrying both positive and negative charges which

balance out. Alternatively, conductors can have net charge. In this case, any net

charge must reside at the surface of the conductor.

• Since φ is constant, the surface of the conductor must be an equipotential. This

means that any E = −∇φ is perpendicular to the surface. This also fits nicely

with the discussion above since any component of the electric field that lies tan-

gential to the surface would make the surface charges move.

• If there is surface charge σ anywhere in the conductor then, by our previous

discontinuity result (2.9), together with the fact that E = 0 inside, the electric

field just outside the conductor must be

E =
σ

ε0
n̂ (2.31)

Problems involving conductors are of a slightly different nature than those we’ve

discussed up to now. The reason is that we don’t know from the start where the charges

are, so we don’t know what charge distribution ρ that we should be solving for. Instead,

the electric fields from other sources will cause the charges inside the conductor to shift

around until they reach equilibrium in such a way that E = 0 inside the conductor. In
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general, this will mean that even neutral conductors end up with some surface charge,

negative in some areas, positive in others, just enough to generate an electric field inside

the conductor that precisely cancels that due to external sources.

An Example: A Conducting Sphere

To illustrate the kind of problem that we have to deal with, it’s probably best just to

give an example. Consider a constant background electric field. (It could, for example,

be generated by two charged plates of the kind we looked at in Section 2.1.4). Now

place a neutral, spherical conductor inside this field. What happens?

We know that the conductor can’t suffer an electric field inside it. Instead, the

mobile charges in the conductor will move: the negative ones to one side; the positive

ones to the other. The sphere now becomes polarised. These charges counteract the

background electric field such that E = 0 inside the conductor, while the electric field

outside impinges on the sphere at right-angles. The end result must look qualitatively

like this:

+

+

+

+

+

−

−

−

−

−

−

−

+

− +

+

We’d like to understand how to compute the electric field in this, and related, situations.

We’ll give the answer in Section 2.4.4.

An Application: Faraday Cage

Consider some region of space that doesn’t contain any charges, surrounded by a con-

ductor. The conductor sits at constant φ = φ0 while, since there are no charges inside,

we must have ∇2φ = 0. But this means that φ = φ0 everywhere. This is because, if it

didn’t then there would be a maximum or minimum of φ somewhere inside. And we

know from the discussion in Section 2.2.5 that this can’t happen. Therefore, inside a

region surrounded by a conductor, we must have E = 0.

This is a very useful result if you want to shield a region from electric fields. In

this context, the surrounding conductor is called a Faraday cage. As an application, if

you’re worried that they’re trying to read your mind with electromagnetic waves, then

you need only wrap your head in tin foil and all concerns should be alleviated.
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2.4.1 Capacitors

Let’s now solve for the electric field in some conductor problems.

+Q −Q

z

Figure 17:

The simplest examples are capacitors. These are a pair of con-

ductors, one carrying charge Q, the other charge −Q.

Parallel Plate Capacitor

To start, we’ll take the conductors to have flat, parallel surfaces

as shown in the figure. We usually assume that the distance d

between the surfaces is much smaller than
√
A, where A is the

area of the surface. This means that we can neglect the effects

that arise around the edge of plates and we’re justified in assuming that the electric

field between the two plates is the same as it would be if the plates were infinite in

extent. The problem reduces to the same one that we considered in Section 2.1.4. The

electric field necessarily vanishes inside the conductor while, between the plates we have

the result (2.10),

E =
σ

ε0
ẑ

where σ = Q/A and we have assumed the plates are separated in the z-direction. We

define the capacitance C to be

C =
Q

V

where V is the voltage or potential difference which is, as the name suggests, the dif-

ference in the potential φ on the two conductors. Since E = −dφ/dz is constant, we

must have

φ = −Ez + c ⇒ V = φ(0)− φ(d) = Ed =
Qd

Aε0

and the capacitance for parallel plates of area A, separated by distance d, is

C =
Aε0
d

Because V was proportional to Q, the charge has dropped out of our expression for the

capacitance. Instead, C depends only on the geometry of the set-up. This is a general

property; we will see another example below.
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Capacitors are usually employed as a method to store electrical energy. We can see

how much. Using our result (2.27), we have

U =
ε0
2

∫
d3x E · E =

Aε0
2

∫ d

0

dz

(
σ

ε0

)2

=
Q2

2C

This is the energy stored in a parallel plate capacitor.

Concentric Sphere Capacitor

Consider a spherical conductor of radius R1. Around this we

R2

+Q

−Q

R1

Figure 18:

place another conductor in the shape of a spherical shell with

inner surface lying at radius R2. We add charge +Q to the

sphere and −Q to the shell. From our earlier discussion of

charged spheres and shells, we know that the electric field be-

tween the two conductors must be

E =
Q

4πε0r2
r̂ R1 < r < R2

Correspondingly, the potential is

φ =
Q

4πε0r
R1 < r < R2

and the capacitance is given by C = 4πε0R1R2/(R2 −R1).

2.4.2 Boundary Value Problems

Until now, we’ve thought of conductors as carrying some fixed charge Q. These con-

ductors then sit at some constant potential φ. If there are other conductors in the

vicinity that carry a different charge then, as we’ve seen above, there will be some fixed

potential difference, V = ∆φ between them.

However, we can also think of a subtly different scenario. Suppose that we instead

fix the potential φ in a conductor. This means that, whatever else happens, whatever

other charges are doing all around, the conductor remains at a fixed φ. It never deviates

from this value.

Now, this sounds a bit strange. We’ve seen above that the electric potential of

a conductor depends on the distance to other conductors and also on the charge it

carries. If φ remains constant, regardless of what objects are around it, then it must

mean that the charge on the conductor is not fixed. And that’s indeed what happens.

– 33 –



Having conductors at fixed φ means that charge can flow in and out of the conductor.

We implicitly assume that there is some background reservoir of charge which the

conductor can dip into, taking and giving charge so that φ remains constant.

We can think of this reservoir of charge as follows: suppose that, somewhere in the

background, there is a huge conductor with some charge Q which sits at some potential

φ. To fix the potential of any other conductor, we simply attach it to one of this big

reservoir-conductor. In general, some amount of charge will flow between them. The

big conductor doesn’t miss it, while the small conductor makes use of it to keep itself

at constant φ.

The simplest example of the situation above arises if you connect your conductor to

the planet Earth. By convention, this is taken to have φ = 0 and it ensures that your

conductor also sits at φ = 0. Such conductors are said to be grounded. In practice,

one may ground a conductor inside a chip in your cell phone by attaching it the metal

casing.

Mathematically, we can consider the following problem. Take some number of ob-

jects, Si. Some of the objects will be conductors at a fixed value of φi. Others will

carry some fixed charge Qi. This will rearrange itself into a surface charge σi such

that E = 0 inside while, outside the conductor, E = 4πσn̂. Our goal is to understand

the electric field that threads the space between all of these objects. Since there is no

charge sitting in this space, we need to solve the Laplace equation

∇2φ = 0

subject to one of two boundary conditions

• Dirichlet Boundary Conditions: The value of φ is fixed on a given surface Si

• Neumann Boundary Conditions: The value of ∇φ · n̂ is fixed perpendicular to a

given surface Si

Notice that, for each Si, we need to decide which of the two boundary conditions we

want. We don’t get to chose both of them. We then have the following theorem.

Theorem: With either Dirichlet or Neumann boundary conditions chosen on each

surface Si, the Laplace equation has a unique solution.
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Proof: Suppose that there are two solutions, φ1 and φ2 with the same specified bound-

ary conditions. Let’s define f = φ1 − φ2. We can look at the following expression∫
V

d3r ∇ · (f∇f) =

∫
V

d3r ∇f · ∇f (2.32)

where the ∇2f term vanishes by the Laplace equation. But, by the divergence theorem,

we know that ∫
V

d3r ∇ · (f∇f) =
∑
i

∫
Si

f ∇f · dS

However, if we’ve picked Dirichlet boundary conditions then f = 0 on the boundary,

while Neumann boundary conditions ensure that ∇f = 0 on the boundary. This means

that the integral vanishes and, from (2.32), we must have ∇f = 0 throughout space.

But if we have imposed Dirichlet boundary conditions somewhere, then f = 0 on that

boundary and so f = 0 everywhere. Alternatively, if we have Neumann boundary

conditions on all surfaces than ∇f = 0 everywhere and the two solutions φ1 and φ2

can differ only by a constant. But, as discussed in Section 2.2, this constant has no

physical meaning. �

2.4.3 Method of Images

For particularly simple situations, there is a rather cute method that we can use to

solve problems involving conductors. Although this technique is somewhat limited, it

does give us some good intuition for what’s going on. It’s called the method of images.

A charged particle near a conducting plane

Consider a conductor which fills all of space x < 0. We’ll ground this conductor so that

φ = 0 for x < 0. Then, at some point x = d > 0, we place a charge q. What happens?

We’re looking for a solution to the Poisson equation with a delta-function source at

x = d = (d, 0, 0), together with the requirement that φ = 0 on the plane x = 0. From

our discussion in the previous section, there’s a unique solution to this kind of problem.

We just have to find it.

Here’s the clever trick. Forget that there’s a conductor at x < 0. Instead, suppose

that there’s a charge −q placed opposite the real charge at x = −d. This is called the

image charge. The potential for this pair of charges is just the potential

φ =
1

4πε0

(
q√

(x− d)2 + y2 + z2
− q√

(x+ d)2 + y2 + z2

)
(2.33)
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Figure 19: A particle near a conducting

plane...

Figure 20: ...looks like a dipole

By construction, this has the property that φ = 0 for x = 0 and it has the correct

source at x = (d, 0, 0). Therefore, this must be the right solution when x ≥ 0. A

cartoon of this is shown in the figures. Of course, it’s the wrong solution inside the

conductor where the electric field vanishes. But that’s trivial to fix: we just replace it

with φ = 0 for x < 0.

With the solution (2.33) in hand, we can now dispense with the image charge and

explore what’s really going on. We can easily compute the electric field from (2.33). If

we focus on the electric field in the x direction, it is

Ex = −∂φ
∂x

=
q

4πε0

(
x− d
|r− d|3/2

− x+ d

|r + d|3/2

)
x ≥ 0

Meanwhile, Ex = 0 for x < 0. The discontinuity of Ex at the surface of the conductor

determines the induced surface charge (2.31). It is

σ = Exε0|x=0 = − q

2π

d

(d2 + y2 + z2)3/2

We see that the surface charge is mostly concentrated on the plane at the point closest

to the real charge. As you move away, it falls off as 1/(y2 + z2)3/2. We can compute

the total induced surface charge by doing a simple integral,

qinduced =

∫
dydz σ = −q

The charge induced on the conductor is actually equal to the image charge. This is

always true when we use the image charge technique.

Finally, as far as the real charge +q is concerned, as long as it sits at x > 0, it feels

an electric field which is identical in all respects to the field due to an image charge −q
embedded in the conductor. This means, in particular, that it will experience a force

F = − q2

16πε0d2
x̂

This force is attractive, pulling the charge towards the conductor.
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A charged particle near a conducting sphere

We can play a similar game for a particle near a grounded, conducting sphere. The

details are only slightly more complicated. We’ll take the sphere to sit at the origin

and have radius R. The particle has charge q and sits at x = d = (d, 0, 0), with d > R.

Our goal is to place an image charge q′ somewhere inside the sphere so that φ = 0 on

the surface.

There is a way to derive the answer using conformal transformations. However,

here we’ll just state it. You should choose a particle of charge q′ = −qR/d, placed at

x = R2/d and, by symmetry, y = z = 0. A cartoon of this is shown in the figure.
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Figure 21: A particle near a conducting

sphere...

Figure 22: ...looks like a slightly different

dipole

The resulting potential is

φ =
q

4πε0

(
1√

(x− d)2 + y2 + z2
− R

d

1√
(x−R2/d)2 + y2 + z2

)

With a little algebra, you can check that φ = 0 whenever x2 + y2 + z2 = R2. With

a little more algebra, you can easily determine the induced surface charge and check

that, when integrated over the sphere, we indeed have qinduced = q′. Once again, our

charge experiences a force towards the conductor.

Above we’ve seen how to treat a grounded sphere. But what if we instead have an

isolated conductor with some fixed charge, Q? It’s easy to adapt the problem above.

We simply add the necessary excess charge Q− q′ as an image that sits at the origin of

the sphere. This will induce an electric field which emerges radially from the sphere.

Because of the principle of superposition, we just add this to the previous electric field

and see that it doesn’t mess up the fact that the electric field is perpendicular to the

surface. This is now our solution.

2.4.4 Many many more problems

There are many more problems that you can cook up involving conductors, charges and

electrostatics. Very few of them can be solved by the image charge method. Instead, you
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need to develop a number of basic tools of mathematical physics. A fairly comprehensive

treatment of this can be found in the first 100 or so pages of Jackson.

For now, I would just like to leave you with the solution to the example that kicked

off this section: what happens if you take a conducting sphere and place it in a constant

electric field? This problem isn’t quite solved by the image charge method. But it’s

solved by something similar: an image dipole.

We’ll work in spherical polar coordinates and chose the original, constant electric

field to point in the ẑ direction,

E0 = E0ẑ ⇒ φ0 = −E0z = −E0r cos θ

Take the conducting sphere to have radius R and be centered on the the origin. Let’s

add to this an image dipole with potential (2.18). We’ll place the dipole at the origin,

and orient it along the z axis like so:
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Figure 23: A conducting sphere between

charged plates...

Figure 24: ...looks like a dipole between

the plates

The resulting potential is

φ = −E0

(
r − R3

r2

)
cos θ

Since we’ve added a dipole term, we can be sure that this still solves the Laplace

equation outside the conductor. Moreover, by construction, φ = 0 when r = R. This

is all we wanted from our solution. The induced surface charge can again be computed

by evaluating the electric field just outside the conductor. It is

σ = − 1

ε0

∂φ

∂r
= E0

(
1 +

2R3

r3

)∣∣∣∣
r=R

cos θ = 3E0 cos θ

We see that the surface charge is positive in one hemisphere and negative in the other.

The total induced charge averages to zero.

– 38 –



2.4.5 A History of Electrostatics

Perhaps the simplest demonstration of the attractive properties of electric charge comes

from rubbing a balloon on your head and sticking it to the wall. This phenomenon was

known, at least in spirit, to the ancient Greeks and is credited to Thales of Miletus

around 600 BC. Although, in the absence of any ancient balloons, he had to make do

with polishing pieces of amber and watching it attract small objects.

A systematic, scientific approach to electrostatics starts with William Gilbert, physi-

cist, physician and one-time bursar of St Johns. His most important work, De Magnete,

published in 1600 showed, among other things, that many materials, not just amber,

could be electrified. With due deference, he referred to these as “electrics”, derived

from the Greek “ηλεκτρoν” (electron) meaning “amber”. These are materials that we

now call “insulators”.

There was slow progress over the next 150 years, much of it devoted to building ma-

chines which could store electricity. A notable breakthrough came from the experiments

of the little-known English scientist Stephen Grey, who was the first to appreciate that

the difficulty in electrifying certain objects is because they are conductors, with any

charge quickly flowing through them and away. Grey spent most of his life as an am-

ateur astronomer, although his amateur status appears to be in large part because he

fell foul of Isaac Newton who barred his entry into more professional scientific circles.

He performed his experiments on conductors in the 1720s, late in life when the lack of

any income left him destitute and pensioned to Chaterhouse (which was, perhaps, the

world’s fanciest poorhouse). Upon Newton’s death, the scientific community clamoured

to make amends. Grey was awarded the Royal Society’s first Copley medal. Then, pre-

sumably because they felt guilty, he was also awarded the second. Grey’s experiments

were later reproduced by the French chemist Charles François de Cisternay DuFay, who

came to the wonderful conclusion that all objects can be electrified by rubbing apart

from “metals, liquids and animals”. He does not, to my knowledge, state how much

rubbing of animals he tried before giving up. He was also the first to notice that static

electricity can give rise to both attractive and repulsive forces.

By the 1750s, there were many experiments on electricity, but little theory to explain

them. Most ideas rested on a fluid description of electricity, but arguments raged over

whether a single fluid or two fluids were responsible. The idea that there were both

positive and negative charges, then thought of as a surplus and deficit of fluid, was

introduced independently by the botanist William Watson and the US founding father

Benjamin Franklin. Franklin is arguably the first to suggest that charge is conserved

although his statement wasn’t quite as concise as the continuity equation:
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It is now discovered and demonstrated, both here and in Europe, that the

Electrical Fire is a real Element, or Species of Matter, not created by the

Friction, but collected only.

Benjamin Franklin, 1747

Still, it’s nice to know that charge is conserved both in the US and in Europe.

A quantitative understanding of the theory of electrostatics came only in the 1760s.

A number of people suggested that the electrostatic force follows an inverse-square

law, prominent among them Joseph Priestly who is better known for the discovery of

Oxygen and, of at least equal importance, the invention of soda water. In 1769, the

Scottish physicist John Robison announced that he had measured the force to fall off as

1/r2.06. This was before the invention of error bars and he seems to receive little credit.

Around the same time, the English scientist Henry Cavendish, discover of Hydrogen

and weigher of the Earth, performed a number of experiments to demonstrate the

inverse-square law but, as with his many of his other electromagnetic discoveries, he

chose not to publish. It was left to French physicist Charles Augustin de Coulomb to

clean up, publishing the results of his definitive experiments in 1785 on the force that

now carries his name.

In its final form, Coulomb’s law becomes transmuted into Gauss’ law. For once, this

was done by the person after whom it’s named. Gauss derived this result in 1835,

although it wasn’t published until 1867.
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3. Magnetostatics

Charges give rise to electric fields. Current give rise to magnetic fields. In this section,

we will study the magnetic fields induced by steady currents. This means that we are

again looking for time independent solutions to the Maxwell equations. We will also

restrict to situations in which the charge density vanishes, so ρ = 0. We can then set

E = 0 and focus our attention only on the magnetic field. We’re left with two Maxwell

equations to solve:

∇×B = µ0J (3.1)

and

∇ ·B = 0 (3.2)

If you fix the current density J, these equations have a unique solution. Our goal in

this section is to find it.

Steady Currents

Before we solve (3.1) and (3.2), let’s pause to think about the kind of currents that we’re

considering in this section. Because ρ = 0, there can’t be any net charge. But, of course,

we still want charge to be moving! This means that we necessarily have both positive

and negative charges which balance out at all points in space. Nonetheless, these

charges can move so there is a current even though there is no net charge transport.

This may sound artificial, but in fact it’s exactly what happens in a typical wire. In

that case, there is background of positive charge due to the lattice of ions in the metal.

Meanwhile, the electrons are free to move. But they all move together so that at each

point we still have ρ = 0. The continuity equation, which captures the conservation of

electric charge, is

∂ρ

∂t
+∇ · J = 0

Since the charge density is unchanging (and, indeed, vanishing), we have

∇ · J = 0

Mathematically, this is just saying that if a current flows into some region of space, an

equal current must flow out to avoid the build up of charge. Note that this is consistent

with (3.1) since, for any vector field, ∇ · (∇×B) = 0.
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3.1 Ampère’s Law

The first equation of magnetostatics,

∇×B = µ0J (3.3)

is known as Ampère’s law. As with many of these vector dif-

J

S

C

Figure 25:

ferential equations, there is an equivalent form in terms of inte-

grals. In this case, we choose some open surface S with boundary

C = ∂S. Integrating (3.3) over the surface, we can use Stokes’

theorem to turn the integral of ∇ × B into a line integral over

the boundary C,∫
S

∇×B · dS =

∮
C

B · dr = µ0

∫
S

J · dS

Recall that there’s an implicit orientation in these equations. The surface S comes

with a normal vector n̂ which points away from S in one direction. The line integral

around the boundary is then done in the right-handed sense, meaning that if you stick

the thumb of your right hand in the direction n̂ then your fingers curl in the direction

of the line integral.

The integral of the current density over the surface S is the same thing as the total

current I that passes through S. Ampère’s law in integral form then reads∮
C

B · dr = µ0I (3.4)

For most examples, this isn’t sufficient to determine the form of the magnetic field;

we’ll usually need to invoke (3.2) as well. However, there is one simple example where

symmetry considerations mean that (3.4) is all we need...

3.1.1 A Long Straight Wire

Consider an infinite, straight wire carrying current I. We’ll take it to point in the ẑ

direction. The symmetry of the problem is jumping up and down telling us that we

need to use cylindrical polar coordinates, (r, ϕ, z), where r =
√
x2 + y2 is the radial

distance away from the wire.

We take the open surface S to lie in the x − y plane, centered on the wire. For the

line integral in (3.4) to give something that doesn’t vanish, it’s clear that the magnetic

field has to have some component that lies along the circumference of the disc.
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But, by the symmetry of the problem, that’s actually the

S

C

I

ϕ z

r

Figure 26:

only component that B can have: it must be of the form

B = B(r)ϕ̂. (If this was a bit too quick, we’ll derive

this more carefully below). Any magnetic field of this

form automatically satisfies the second Maxwell equation

∇·B = 0. We need only worry about Ampère’s law which

tells us∮
C

B · dr = B(r)

∫ 2π

0

r dϕ = 2πrB(r) = µ0I

We see that the strength of the magnetic field is

B =
µ0I

2πr
ϕ̂ (3.5)

The magnetic field circles the wire using the ”right-hand rule”: stick the thumb of your

right hand in the direction of the current and your fingers curl in the direction of the

magnetic field.

Note that the simplest example of a magnetic field falls off as 1/r. In contrast, the

simplest example of an electric field – the point charge – falls of as 1/r2. You can trace

this difference back to the geometry of the two situations. Because magnetic fields

are sourced by currents, the simplest example is a straight line and the 1/r fall-off is

because there are two transverse directions to the wire. Indeed, we saw in Section 2.1.3

that when we look at a line of charge, the electric field also drops off as 1/r.

3.1.2 Surface Currents and Discontinuities

Consider the flat plane lying at z = 0 with a surface current density that we’ll call K.

Note that K is the current per unit length, as opposed to J which is the current per

unit area. You can think of the surface current as a bunch of wires, all lying parallel

to each other.

We’ll take the current to lie in the x-direction: K = Kx̂ as shown below.

z

x

y

K

From our previous result, we know that the B field should curl around the current in

the right-handed sense. But, with an infinite number of wires, this can only mean that
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B is oriented along the y direction. In fact, from the symmetry of the problem, it must

look like

z

x

y
B

B

with B pointing in the −ŷ direction when z > 0 and in the +ŷ direction when z < 0.

We write

B = −B(z)ŷ

with B(z) = −B(−z). We invoke Ampère’s law using the following open surface:

C

z

x

y

with length L in the y direction and extending to ±z. We have∮
C

B · dr = LB(z)− LB(−z) = 2LB(z) = µ0KL

so we find that the magnetic field is constant above an infinite plane of surface current

B(z) =
µ0K

2
z > 0

This is rather similar to the case of the electric field in the presence of an infinite plane

of surface charge.

The analogy with electrostatics continues. The magnetic field is not continuous

across a plane of surface current. We have

B(z → 0+)−B(z → 0−) = µ0K

In fact, this is a general result that holds for any surface current K. We can prove this

statement by using the same curve that we used in the Figure above and shrinking it

– 44 –



until it barely touches the surface on both sides. If the normal to the surface is n̂ and

B± denotes the magnetic field on either side of the surface, then

n̂×B|+ − n̂×B|− = µ0K (3.6)

Meanwhile, the magnetic field normal to the surface is continuous. (To see this, you

can use a Gaussian pillbox, together with the other Maxwell equation ∇ ·B = 0).

When we looked at electric fields, we saw that the normal component was discontinu-

ous in the presence of surface charge (2.9) while the tangential component is continuous.

For magnetic fields, it’s the other way around: the tangential component is discontin-

uous in the presence of surface currents.

A Solenoid

A solenoid consists of a surface current that travels around a cylin- B

z

r

Figure 27:

der. It’s simplest to think of a single current-carrying wire winding

many times around the outside of the cylinder. (Strictly speaking,

the cross-sectional shape of the solenoid doesn’t have to be a circle –

it can be anything. But we’ll stick with a circle here for simplicity).

To make life easy, we’ll assume that the cylinder is infinitely long.

This just means that we can neglect effects due to the ends.

We’ll again use cylindrical polar coordinates, (r, ϕ, z), with the

axis of the cylinder along ẑ. By symmetry, we know that B will

point along the z-axis. Its magnitude can depend only on the radial

distance: B = B(r)ẑ. Once again, any magnetic field of this form immediately satisfies

∇ ·B = 0.

We solve Ampère’s law in differential form. Anywhere other than

C

Figure 28:

the surface of the solenoid, we have J = 0 and

∇×B = 0 ⇒ dB

dr
= 0 ⇒ B(r) = constant

Outside the solenoid, we must have B(r) = 0 since B(r) is constant

and we know B(r)→ 0 as r →∞. To figure out the magnetic field

inside the solenoid, we turn to the integral form of Ampère’s law

and consider the surface S, bounded by the curve C shown in the

figure. Only the line that runs inside the solenoid contributes to

the line integral. We have ∮
C

B · dr = BL = µ0INL
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where N is the number of windings of wire per unit length. We learn that inside the

solenoid, the constant magnetic field is given by

B = µ0IN ẑ (3.7)

Note that, since K = IN , this is consistent with our general formula for the disconti-

nuity of the magnetic field in the presence of surface currents (3.6).

3.2 The Vector Potential

For the simple current distributions of the last section, symmetry considerations were

enough to lead us to a magnetic field which automatically satisfied

∇ ·B = 0 (3.8)

But, for more general currents, this won’t be the case. Instead we have to ensure that

the second magnetostatic Maxwell equation is also satisfied.

In fact, this is simple to do. We are guaranteed a solution to ∇ ·B = 0 if we write

the magnetic field as the curl of some vector field,

B = ∇×A (3.9)

Here A is called the vector potential. While magnetic fields that can be written in the

form (3.9) certainly satisfy ∇ · B = 0, the converse is also true; any divergence-free

magnetic field can be written as (3.9) for some A.

(Actually, this previous sentence is only true if our space has a suitably simple

topology. Since we nearly always think of space as R3 or some open ball on R3,

we rarely run into subtleties. But if space becomes more interesting then the possible

solutions to ∇ ·B = 0 also become more interesting. This is analogous to the story of

the electrostatic potential that we mentioned briefly in Section 2.2).

Using the expression (3.9), Ampère’s law becomes

∇×B = −∇2A +∇(∇ ·A) = µ0J (3.10)

where, in the first equality, we’ve used a standard identity from vector calculus. This

is the equation that we have to solve to determine A and, through that, B.
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3.2.1 Magnetic Monopoles

Above, we dispatched with the Maxwell equation ∇ · B = 0 fairly quickly by writing

B = ∇×A. But we never paused to think about what this equation is actually telling

us. In fact, it has a very simple interpretation: it says that there are no magnetic

charges. A point-like magnetic charge g would source the magnetic field, giving rise a

1/r2 fall-off

B =
gr̂

4πr2

An object with this behaviour is usually called a magnetic monopole. Maxwell’s equa-

tions says that they don’t exist. And we have never found one in Nature.

However, we could ask: how robust is this conclusion? Are we sure that magnetic

monopoles don’t exist? After all, it’s easy to adapt Maxwell’s equations to allow for

presence of magnetic charges: we simply need to change (3.8) to read ∇·B = ρm where

ρm is the magnetic charge distribution. Of course, this means that we no longer get to

use the vector potential A. But is that such a big deal?

The twist comes when we turn to quantum mechanics. Because in quantum mechan-

ics we’re obliged to use the vector potential A. Not only is the whole framework of

electromagnetism in quantum mechanics based on writing things using A, but it turns

out that there are experiments that actually detect certain properties of A that are lost

when we compute B = ∇×A. I won’t explain the details here, but if you’re interested

then look up the “Aharonov-Bohm effect”.

Monopoles After All?

To summarise, magnetic monopoles have never been observed. We have a law of physics

(3.8) which says that they don’t exist. And when we turn to quantum mechanics we

need to use the vector potential A which automatically means that (3.8) is true. It

sounds like we should pretty much forget about magnetic monopoles, right?

Well, no. There are actually very good reasons to suspect that magnetic monopoles

do exist. The most important part of the story is due to Dirac. He gave a beautiful

argument which showed that it is in fact possible to introduce a vector potential A

which allows for the presence of magnetic charge, but only if the magnetic charge g is

related to the charge of the electron e by

ge = 2π~n n ∈ Z (3.11)

This is known as the Dirac quantization condition.
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Moreover, following work in the 1970s by ’t Hooft and Polyakov, we now realise that

magnetic monopoles are ubiquitous in theories of particle physics. Our best current

theory – the Standard Model – does not predict magnetic monopoles. But every theory

that tries to go beyond the Standard Model, whether Grand Unified Theories, or String

Theory or whatever, always ends up predicting that magnetic monopoles should exist.

They’re one of the few predictions for new physics that nearly all theories agree upon.

These days most theoretical physicists think that magnetic monopoles probably exist

and there have been a number of experiments around the world designed to detect them.

However, while theoretically monopoles seem like a good bet, their future observational

status is far from certain. We don’t know how heavy magnetic monopoles will be, but

all evidence suggests that producing monopoles is beyond the capabilities of our current

(or, indeed, future) particle accelerators. Our only hope is to discover some that Nature

made for us, presumably when the Universe was much younger. Unfortunately, here

too things seem against us. Our best theories of cosmology, in particular inflation,

suggest that any monopoles that were created back in the Big Bang have long ago been

diluted. At a guess, there are probably only a few floating around our entire observable

Universe. The chances of one falling into our laps seem slim. But I hope I’m wrong.

3.2.2 Gauge Transformations

The choice of A in (3.9) is far from unique: there are lots of different vector potentials

A that all give rise to the same magnetic field B. This is because the curl of a gradient

is automatically zero. This means that we can always add any vector potential of the

form ∇χ for some function χ and the magnetic field remains the same,

A′ = A +∇χ ⇒ ∇×A′ = ∇×A

Such a change of A is called a gauge transformation. As we will see in Section 5.3.1, it is

closely tied to the possible shifts of the electrostatic potential φ. Ultimately, such gauge

transformations play a key role in theoretical physics. But, for now, we’re simply going

to use this to our advantage. Because, by picking a cunning choice of χ, it’s possible

to simplify our quest for the magnetic field.

Claim: We can always find a gauge transformation χ such that A′ satisfies ∇·A′ = 0.

Making this choice is usually referred to as Coulomb gauge.

Proof: Suppose that we’ve found some A which gives us the magnetic field that

we want, so ∇ × A = B, but when we take the divergence we get some function

∇ ·A = ψ(x). We instead choose A′ = A +∇χ which now has divergence

∇ ·A′ = ∇ ·A +∇2χ = ψ +∇2χ

– 48 –



So if we want ∇ ·A′ = 0, we just have to pick our gauge transformation χ to obey

∇2χ = −ψ

But this is just the Poisson equation again. And we know from our discussion in Section

2 that there is always a solution. (For example, we can write it down in integral form

using the Green’s function). �

Something a Little Misleading: The Magnetic Scalar Potential

There is another quantity that is sometimes used called the magnetic scalar potential,

Ω. The idea behind this potential is that you might be interested in computing the

magnetic field in a region where there are no currents and the electric field is not

changing with time. In this case, you need to solve ∇× B = 0, which you can do by

writing

B = −∇Ω

Now calculations involving the magnetic field really do look identical to those involving

the electric field.

However, you should be wary of writing the magnetic field in this way. As we’ll

see in more detail in Section 5.3.1, we can always solve two of Maxwell’s equations by

writing E and B in terms of the electric potential φ and vector potential A and this

formulation becomes important as we move onto more advanced areas of physics. In

contrast, writing B = −∇Ω is only useful in a limited number of situations. The reason

for this really gets to the heart of the difference between electric and magnetic fields:

electric charges exist; magnetic charges don’t!

3.2.3 Biot-Savart Law

We’re now going to use the vector potential to solve for the magnetic field B in the

presence of a general current distribution. From now, we’ll always assume that we’re

working in Coulomb gauge and our vector potential obeys ∇ ·A = 0. Then Ampère’s

law (3.10) becomes a whole lot easier: we just have to solve

∇2A = −µ0J (3.12)

But this is just something that we’ve seen already. To see why, it’s perhaps best to

write it out in Cartesian coordinates. This then becomes three equations,

∇2Ai = −µ0Ji (i = 1, 2, 3) (3.13)

and each of these is the Poisson equation.
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It’s worth giving a word of warning at this point: the expression ∇2A is simple in

Cartesian coordinates where, as we’ve seen above, it reduces to the Laplacian on each

component. But, in other coordinate systems, this is no longer true. The Laplacian

now also acts on the basis vectors such as r̂ and ϕ̂. So in these other coordinate

systems, ∇2A is a little more of a mess. (You should probably use the identity ∇2A =

−∇ × (∇ × A) + ∇(∇ · A) if you really want to compute in these other coordinate

systems).

Anyway, if we stick to Cartesian coordinates then everything is simple. In fact,

the resulting equations (3.13) are of exactly the same form that we had to solve in

electrostatics. And, in analogy to (2.21), we know how to write down the most general

solution using Green’s functions. It is

Ai(x) =
µ0

4π

∫
V

d3x′
Ji(x

′)

|x− x′|

Or, if you’re feeling bold, you can revert back to vector notation and write

A(x) =
µ0

4π

∫
V

d3x′
J(x′)

|x− x′|
(3.14)

where you’ve just got to remember that the vector index on A links up with that on J

(and not on x or x′).

Checking Coulomb Gauge

We’ve derived a solution to (3.12), but this is only a solution to Ampère’s equation

(3.10) if the resulting A obeys the Coulomb gauge condition, ∇ · A = 0. Let’s now

check that it does. We have

∇ ·A(x) =
µ0

4π

∫
V

d3x′ ∇ ·
(

J(x′)

|x− x′|

)
where you need to remember that the index of ∇ is dotted with the index of J, but the

derivative in ∇ is acting on x, not on x′. We can write

∇ ·A(x) =
µ0

4π

∫
V

d3x′ J(x′) · ∇
(

1

|x− x′|

)
= −µ0

4π

∫
V

d3x′ J(x′) · ∇′
(

1

|x− x′|

)
Here we’ve done something clever. Now our ∇′ is differentiating with respect to x′. To

get this, we’ve used the fact that if you differentiate 1/|x− x′| with respect to x then
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you get the negative of the result from differentiating with respect to x′. But since ∇′
sits inside an

∫
d3x′ integral, it’s ripe for integrating by parts. This gives

∇ ·A(x) = −µ0

4π

∫
V

d3x′
[
∇′ ·

(
J(x′)

|x− x′|

)
−∇′ · J(x′)

(
1

|x− x′|

)]
The second term vanishes because we’re dealing with steady currents obeying ∇·J = 0.

The first term also vanishes if we take the current to be localised in some region of space,

V̂ ⊂ V so that J(x) = 0 on the boundary ∂V . We’ll assume that this is the case. We

conclude that

∇ ·A = 0

and (3.14) is indeed the general solution to the Maxwell equations (3.1) and (3.2) as

we’d hoped.

The Magnetic Field

From the solution (3.14), it is simple to compute the magnetic field B = ∇×A. Again,

we need to remember that the ∇ acts on the x in (3.14) rather than the x′. We find

B(x) =
µ0

4π

∫
V

d3x′
J(x′)× (x− x′)

|x− x′|3
(3.15)

This is known as the Biot-Savart law. It describes the magnetic field due to a general

current density.

There is a slight variation on (3.15) which more often goes by the name of the Biot-

Savart law. This arises if the current is restricted to a thin wire which traces out a

curve C. Then, for a current density J passing through a small volume δV , we write

JδV = (JA)δx where A is the cross-sectional area of the wire and δx lies tangent to

C. Assuming that the cross-sectional area is constant throughout the wire, the current

I = JA is also constant. The Biot-Savart law becomes

B(x) =
µ0I

4π

∫
C

dx′ × (x− x′)

|x− x′|3
(3.16)

This describes the magnetic field due to the current I in the wire.

An Example: The Straight Wire Revisited

Of course, we already derived the answer for a straight wire in (3.5) without using this

fancy vector potential technology. Before proceeding, we should quickly check that the

Biot-Savart law reproduces our earlier result. As before, we’ll work in cylindrical polar
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coordinates. We take the wire to point along the ẑ axis and use

ϕ

x

x−x’

x’

r

I

Figure 29:

r2 = x2 + y2 as our radial coordinate. This means that the line

element along the wire is parametrised by dx′ = ẑdz and, for a point

x away from the wire, the vector dx′×(x−x′) points along the tangent

to the circle of radius r,

dx′ × (x− x′) = rϕ̂ dz

So we have

B =
µ0Iϕ̂

4π

∫ +∞

−∞
dz

r

(r2 + z2)3/2
=
µ0I

2πr
ϕ̂

which is the same result we found earlier (3.5).

3.3 Magnetic Dipoles

We’ve seen that the Maxwell equations forbid magnetic monopoles with a long-range

B ∼ 1/r2 fall-off (3.11). So what is the generic fall-off for some distribution of currents

which are localised in a region of space? In this section we will see that, if you’re

standing suitably far from the currents, you’ll typically observe a dipole-like magnetic

field.

3.3.1 A Current Loop

We start with a specific, simple example. Consider

I

B

Figure 30:

a circular loop of wire C of radius R carrying a

current I. We can guess what the magnetic field

looks like simply by patching together our result

for straight wires: it must roughly take the shape

shown in the figure However, we can be more ac-

curate. Here we restrict ourselves only to the mag-

netic field far from the loop.

To compute the magnetic field far away, we won’t

start with the Biot-Savart law but instead return to the original expression for A given

in (3.14). We’re going to return to the notation in which a point in space is labelled as

r rather than x. (This is more appropriate for long-distance distance fields which are

essentially an expansion in r = |r|). The vector potential is then given by

A(r) =
µ0

4π

∫
V

d3r′
J(r′)

|r− r′|
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Writing this in terms of the current I (rather than the current density J), we have

A(r) =
µ0I

4π

∮
C

dr′

|r− r′|
We want to ask what this looks like far from the loop. Just as we did for the electrostatic

potential, we can Taylor expand the integrand using (2.22),

1

|r− r′|
=

1

r
+

r · r′

r3
+ . . .

So that

A(r) =
µ0I

4π

∮
C

dr′
(

1

r
+

r · r′

r3
+ . . .

)
(3.17)

The first term in this expansion vanishes because we’re integrating around a circle.

This is just a reflection of the fact that there are no magnetic monopoles. For the

second term, there’s a way to write it in slightly more manageable form. To see this,

let’s introduce an arbitrary constant vector g and use this to look at∮
C

dr′ · g (r · r′)

Recall that, from the point of view of this integral, both g and r are constant vectors;

it’s the vector r′ that we’re integrating over. This is now the kind of line integral of a

vector that allows us to use Stokes’ theorem. We have∮
C

dr′ · g (r · r′) =

∫
S

dS · ∇ × (g (r · r′)) =

∫
S

dSi εijk∂
′
j(gkrlr

′
l)

where, in the final equality, we’ve resorted to index notation to help us remember what’s

connected to what. Now the derivative ∂′ acts only on the r′ and we get∮
C

dr′ · g (r · r′) =

∫
S

dSi εijkgkrj = g ·
∫
S

dS× r

But this is true for all constant vectors g which means that it must also hold as a vector

identity once we strip away g. We have∮
C

dr′ (r · r′) = S × r

where we’ve introduced the vector area S of the surface S bounded by C, defined as

S =

∫
S

dS

If the boundary C lies in a plane – as it does for us – then the vector S points out of

the plane.
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Now let’s apply this result to our vector potential (3.17). With the integral over r′,

we can treat r as the constant vector g that we introduced in the lemma. With the

first term vanishing, we’re left with

A(r) =
µ0

4π

m× r

r3
(3.18)

where we’ve introduced the magnetic dipole moment

m = IS

This is our final, simple, answer for the long-range behaviour of the vector potential

due to a current loop. It remains only to compute the magnetic field. A little algebra

gives

B(r) =
µ0

4π

(
3(m · r̂)r̂−m

r3

)
(3.19)

Now we see why m is called the magnetic dipole; this form of the magnetic field is

exactly the same as the dipole electric field (2.19).

I stress that the B field due to a current loop and E field due to two charges don’t

look the same close up. But they have identical “dipole” long-range fall-offs.

3.3.2 General Current Distributions

We can now perform the same kind of expansion for a general current distribution J

localised within some region of space. We use the Taylor expansion (2.22) in the general

form of the vector potential (3.14),

Ai(r) =
µ0

4π

∫
d3r′

Ji(r
′)

|r− r′|
=
µ0

4π

∫
d3r′

(
Ji(r

′)

r
+
Ji(r

′) (r · r′)
r3

+ . . .

)
(3.20)

where we’re using a combination of vector and index notation to help remember how

the indices on the left and right-hand sides match up.

The first term above vanishes. Heuristically, this is because currents can’t stop and

end, they have to go around in loops. This means that the contribution from one part

must be cancelled by the current somewhere else. To see this mathematically, we use

the slightly odd identity

∂j(Jjri) = (∂jJj) ri + Ji = Ji (3.21)

where the last equality follows from the continuity condition ∇ · J = 0. Using this,

we see that the first term in (3.20) is a total derivative (of ∂/∂r′i rather than ∂/∂ri)

which vanishes if we take the integral over R3 and keep the current localised within

some interior region.
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For the second term in (3.20) we use a similar trick, now with the identity

∂j(Jjrirk) = (∂jJj)rirk + Jirk + Jkri = Jirk + Jkri

Because J in (3.20) is a function of r′, we actually need to apply this trick to the

Jir
′
j terms in the expression. We once again abandon the boundary term to infinity.

Dropping the argument of J, we can use the identity above to write the relevant piece

of the second term as∫
d3r′ Ji rjr

′
j =

∫
d3r′

rj
2

(Jir
′
j − Jjr′i) =

∫
d3r′

1

2
(Ji (r · r′)− r′i(J · r))

But now this is in a form that is ripe for the vector product identity a × (b × c) =

b(a · c)− c(a · b). This means that we can rewrite this term as∫
d3r′ J (r · r′) =

1

2
r×

∫
d3r′ J× r′ (3.22)

With this in hand, we see that the long distance fall-off of any current distribution

again takes the dipole form (3.18)

A(r) =
µ0

4π

m× r

r3

now with the magnetic dipole moment given by the integral,

m =
1

2

∫
d3r′ r′ × J(r′) (3.23)

Just as in the electric case, the multipole expansion continues to higher terms. This

time you need to use vector spherical harmonics. Just as in the electric case, if you

want further details then look in Jackson.

3.4 Magnetic Forces

We’ve seen that a current produces a magnetic field. But a current is simply moving

charge. And we know from the Lorentz force law that a charge q moving with velocity

v will experience a force

F = qv ×B

This means that if a second current is placed somewhere in the neighbourhood of the

first, then they will exert a force on one another. Our goal in this section is to figure

out this force.
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3.4.1 Force Between Currents

y
z

x

I2

B

I1

1

d

Figure 31:

Let’s start simple. Take two parallel wires carrying cur-

rents I1 and I2 respectively. We’ll place them a distance d

apart in the x direction.

The current in the first wire sets up a magnetic field

(3.5). So if the charges in the second wire are moving with

velocity v, they will each experience a force

F = qv ×B = qv ×
(
µ0I1

2πd

)
ŷ

where ŷ is the direction of the magnetic field experienced by the second wire as shown

in the Figure. The next step is to write the velocity v in terms of the current I2 in the

second wire. We did this in Section 1.1 when we first introduced the idea of currents: if

there’s a density n of these particles and each carries charge q, then the current density

is

J2 = nqv

For a wire with cross-sectional area A, the total current is just I2 = J2A. For our

set-up, J2 = J2ẑ.

Finally, we want to compute the force on the wire per unit length, f . Since the

number of charges per unit length is nA and F is the force on each charge, we have

f = nAF =

(
µ0I1I2

2πd

)
ẑ× ŷ = −

(
µ0I1I2

2πd

)
x̂ (3.24)

This is our answer for the force between two parallel wires. If the two currents are

in the same direction, so that I1I2 > 0, the overall minus sign means that the force

between two wires is attractive. For currents in opposite directions, with I1I2 < 0, the

force is repulsive.

The General Force Between Currents

We can extend our discussion to the force experienced between two current distributions

J1 and J2. We start by considering the magnetic field B(r) due to the first current J1.

As we’ve seen, the Biot-Savart law (3.15) tells us that this can be written as

B(r) =
µ0

4π

∫
d3r′

J1(r′)× (r− r′)

|r− r′|3
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If the current J1 is localised on a curve C1, then we can replace this volume integral

with the line integral (3.16)

B(r) =
µ0I1

4π

∮
C1

dr1 × (r− r1)

|r− r1|3

Now we place a second current distribution J2 in this magnetic field. It experiences a

force per unit area given by (1.3), so the total force is

F =

∫
d3r J2(r)×B(r) (3.25)

Again, if the current J2 is restricted to lie on a curve C2, then this volume integral can

be replaced by the line integral

F = I2

∮
C2

dr×B(r)

and the force can now be expressed as a double line integral,

F =
µ0

4π
I1I2

∮
C1

∮
C2

dr2 ×
(
dr1 ×

r2 − r1

|r2 − r1|3

)
In general, this integral will be quite tricky to perform. However, if the currents are

localised, and well-separated, there is a somewhat better approach where the force can

be expressed purely in terms of the dipole moment of the current.

3.4.2 Force and Energy for a Dipole

We start by asking a slightly different question. We’ll forget about the second current

and just focus on the first: call it J(r). We’ll place this current distribution in a

magnetic field B(r) and ask: what force does it feel?

In general, there will be two kinds of forces. There will be a force on the centre of

mass of the current distribution, which will make it move. There will also be a torque

on the current distribution, which will want to make it re-orient itself with respect to

the magnetic field. Here we’re going to focus on the former. Rather remarkably, we’ll

see that we get the answer to the latter for free!

The Lorentz force experienced by the current distribution is

F =

∫
V

d3r J(r)×B(r)
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We’re going to assume that the current is localised in some small region r = R and

that the magnetic field B varies only slowly in this region. This allows us to Taylor

expand

B(r) = B(R) + (r · ∇)B(R) + . . .

We then get the expression for the force

F = −B(R)×
∫
V

d3r J(r) +

∫
V

d3r J(r)× [(r · ∇)B(R)] + . . .

The first term vanishes because the currents have to go around in loops; we’ve already

seen a proof of this following equation (3.20). We’re going to do some fiddly manipula-

tions with the second term. To help us remember that the derivative ∇ is acting on B,

which is then evaluated at R, we’ll introduce a dummy variable r′ and write the force

as

F =

∫
V

d3r J(r)× [(r · ∇′)B(r′)]

∣∣∣∣
r′=R

(3.26)

Now we want to play around with this. First, using the fact that ∇ × B = 0 in the

vicinity of the second current, we’re going to show, that we can rewrite the integrand

as

J(r)× [(r · ∇′)B(r′)] = −∇′ × [(r ·B(r′))J(r)]

To see why this is true, it’s simplest to rewrite it in index notation. After shuffling a

couple of indices, what we want to show is:

εijkJj(r) rl ∂
′
lBk(r

′) = εijkJj(r) rl ∂
′
kBl(r

′)

Or, subtracting one from the other,

εijkJj(r) rl (∂′lBk(r
′)− ∂′kBl(r

′)) = 0

But the terms in the brackets are the components of ∇ × B and so vanish. So our

result is true and we can rewrite the force (3.26) as

F = −∇′ ×
∫
V

d3r (r ·B(r′)) J(r)

∣∣∣∣
r′=R

Now we need to manipulate this a little more. We make use of the identity (3.22) where

we replace the constant vector by B. Thus, up to some relabelling, (3.22) is the same

as ∫
V

d3r (B · r)J =
1

2
B×

∫
V

d3r J× r = −B×m
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where m is the magnetic dipole moment of the current distribution. Suddenly, our

expression for the force is looking much nicer: it reads

F = ∇× (B×m)

where we’ve dropped the r′ = R notation because, having lost the integral, there’s no

cause for confusion: the magnetic dipole m is a constant, while B varies in space. Now

we invoke a standard vector product identity. Using ∇·B = 0, this simplifies and we’re

left with a simple expression for the force on a dipole

F = ∇(B ·m) (3.27)

After all that work, we’re left with something remarkably simple. Moreover, like many

forces in Newtonian mechanics, it can be written as the gradient of a function. This

function, of course, is the energy U of the dipole in the magnetic field,

U = −B ·m (3.28)

This is an important expression that will play a role in later courses in Quantum

Mechanics and Statistical Physics. For now, we’ll just highlight something clever: we

derived (3.28) by considering the force on the centre of mass of the current. This is

related to how U depends on r. But our final expression also tells us how the energy

depends on the orientation of the dipole m at fixed position. This is related to the

torque. Computing the force gives us the torque for free. This is because, ultimately,

both quantities are derived from the underlying energy.

The Force Between Dipoles

As a particular example of the force (3.27), consider the case where the magnetic field

is set up by a dipole m1. We know that the resulting long-distance magnetic field is

(3.23),

B(r) =
µ0

4π

(
3(m1 · r̂)r̂−m1

r3

)
(3.29)

Now we’ll consider how this affects the second dipole m = m2. From (3.27), we have

F =
µ0

4π
∇
(

3(m1 · r̂)(m2 · r̂)−m1 ·m2

r3

)
where r is the vector from m1 to m2. Note that the structure of the force is identical

to that between two electric dipoles in (2.30). This is particularly pleasing because
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we used two rather different methods to calculate these forces. If we act with the

derivative, we have

F =
3µ0

4πr4

[
(m1 · r̂)m2 + (m2 · r̂)m1 + (m1 ·m2)r̂− 5(m1 · r̂)(m2 · r̂)r̂

]
(3.30)

First note that if we swap m1 and m2, so that we also send r → −r, then the force

swaps sign. This is a manifestation of Newton’s third law: every action has an equal

and opposite reaction. Recall from Dynamics and Relativity lectures that we needed

Newton’s third law to prove the conservation of momentum of a collection of particles.

We see that this holds for a bunch of dipoles in a magnetic field.

But there was also a second part to Newton’s third law: to prove the conservation

of angular momentum of a collection of particles, we needed the force to lie parallel to

the separation of the two particles. And this is not true for the force (3.30). If you set

up a collection of dipoles, they will start spinning, seemingly in contradiction of the

conservation of angular momentum. What’s going on?! Well, angular momentum is

conserved, but you have to look elsewhere to see it. The angular momentum carried

by the dipoles is compensated by the angular momentum carried by the magnetic field

itself.

Finally, a few basic comments: the dipole force drops off as 1/r4, quicker than the

Coulomb force. Correspondingly, it grows quicker than the Coulomb force at short

distances. If m1 and m2 point in the same direction and lie parallel to the separation

R, then the force is attractive. If m1 and m2 point in opposite directions and lie

parallel to the separation between them, then the force is repulsive. The expression

(3.30) tells us the general result.

3.4.3 So What is a Magnet?

Until now, we’ve been talking about the magnetic field

Figure 32:

associated to electric currents. But when asked to en-

visage a magnet, most people would think if a piece of

metal, possibly stuck to their fridge, possibly in the form

of a bar magnet like the one shown in the picture. How

are these related to our discussion above?

These metals are permanent magnets. They often in-

volve iron. They can be thought of as containing many

microscopic magnetic dipoles, which align to form a large

magnetic dipole M. In a bar magnet, the dipole M points between the two poles. The
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iron filings in the picture trace out the magnetic field which takes the same form that

we saw for the current loop in Section 3.3.

This means that the leading force between two magnets is described by our result

(3.30). Suppose that M1, M2 and the separation R all lie along a line. If M1 and M2

point in the same direction, then the North pole of one magnet faces the South pole

of another and (3.30) tells us that the force is attractive. Alternatively, if M1 and M2

point in opposite directions then two poles of the same type face each other and the

force is repulsive. This, of course, is what we all learned as kids.

The only remaining question is: where do the microscopic dipole moments m come

from? You might think that these are due to tiny electric atomic currents but this

isn’t quite right. Instead, they have a more fundamental origin. The electric charges

— which are electrons — possess an inherent angular momentum called spin. Roughly

you can think of the electron as spinning around its own axis in much the same way as

the Earth spins. But, ultimately, spin is a quantum mechanical phenomenon and this

classical analogy breaks down when pushed too far. The magnitude of the spin is:

s =
1

2
~

where, recall, ~ has the same dimensions as angular momentum.

We can push the classical analogy of spin just a little further. Classically, an electri-

cally charged spinning ball would give rise to a magnetic dipole moment. So one may

wonder if the spinning electron also gives rise to a magnetic dipole. The answer is yes.

It is given by

m = g
e

2m
s

where e is the charge of the electron and m is its mass. The number g is dimensionless

and called, rather uninspiringly, the g-factor. It has been one of the most important

numbers in the history of theoretical physics, with several Nobel prizes awarded to

people for correctly calculating it! The classical picture of a spinning electron suggests

g = 1. But this is wrong. The first correct prediction (and, correspondingly, first Nobel

prize) was by Dirac. His famous relativistic equation for the electron gives

g = 2

Subsequently it was observed that Dirac’s prediction is not quite right. The value of g

receives corrections. The best current experimental value is

g = 2.00231930419922± (1.5× 10−12)
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Rather astonishingly, this same value can be computed theoretically using the frame-

work of quantum field theory (specifically, quantum electrodynamics). In terms of

precision, this is one of the great triumphs of theoretical physics.

There is much much more to the story of magnetism, not least what causes the

magnetic dipoles m to align themselves in a material. The details involve quantum

mechanics and are beyond the scope of this course. However, we will return to a

discussion of the classical properties of magnetic materials in Section 7

3.5 Units of Electromagnetism

More than any other subject, electromagnetism is awash with different units. In large

part this is because electromagnetism has such diverse applications and everyone from

astronomers, to electrical engineers, to particle physicists needs to use it. But it’s still

annoying. Here we explain the basics of SI units.

The SI unit of charge is the Coulomb. We mentioned in the introduction that the

fundamental unit of charge, carried by the electron and proton, is

e ≈ 1.6× 10−19 C

If you rub a balloon on your sweater, it picks up a charge of around 10−6 C or so.

A bolt of lightening deposits a charge of about 15 C. The total charge that passes

through an AA battery in its lifetime is about 5000 C.

The SI unit of current is the Ampere, denoted A. It is defined as one Coulomb of

charge passing every second. Although, strictly speaking, it’s the other way around: the

Ampere is taken to be one of the base units and the Coulomb is defined as the amount

of charge transported by a current of 1 A in a second. The current that runs through

single ion channels in cell membranes is about 10−12 A. The current that powers your

toaster is around 1 A to 10 A. There is a current in the Earth’s atmosphere, known as

the Birkeland current, which creates the aurora and varies between 105 A and 106 A.

Galactic size currents in so-called Seyfert galaxies (particularly active galaxies) have

been measured at a whopping 1018 A.

The official definition of the Ampere uses, perhaps fairly, Ampère’s law and, specif-

ically, the force between two parallel wires that we computed in Section 3.4.1. An

Ampere is the current that each wire must carry, when separated by a distance of 1 m,

in order to experience an attractive force-per-unit-length of 2 × 10−7 Nm−1. (Recall

that a Newton is the unit of force needed to accelerate 1 Kg at 1 ms−1). From our
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result (3.24), we see that if we plug in I1 = I2 = 1 A and d = 1 m then this force is

f =
µ0

2π
A2m−1

This definition is the reason that µ0 has the strange-looking value µ0 = 4π×10−7 mKgC−2.

This definition should also convince you that SI units are arbitrary and, viewed from

the perspective of fundamental physics, slightly daft.

The electric field is measured in units of NC−1. The electrostatic potential φ has

units of Volts, denoted V , where the 1 Volt is the potential difference between two

infinite, parallel plates which create an electric field of 1 NC−1. A nerve cell sits at

around 10−2 V . An AA battery sits at 1.5 V . The largest man-made voltage is 107 V

produced in a van der Graaf generator. This doesn’t compete well with what Nature

is capable of. The potential difference between the ends of a lightening bolt can be

108 V . The voltage around a pulsar (a spinning neutron star) can be 1015 V .

The unit of a magnetic field is the Tesla, denoted T . A particle of charge 1 C, passing

through a magnetic field of 1 T at 1 ms−1 will experience a force of 1 N . From the

examples that we’ve seen above it’s clear that 1 C is a lot of charge. Correspondingly,

1 T is a big magnetic field. Our best instruments (SQUIDs) can detect changes in

magnetic fields of 10−18 T . The magnetic field in your brain is 10−12 T . The strength

of the Earth’s magnetic field is around 10−5 T while a magnet stuck to your fridge has

about 10−3 T . The strongest magnetic field we can create on Earth is around 100 T .

Again, Nature beats us quite considerably. The magnetic field around neutron stars can

be between 106 T and 109 T . (There is an exception here: in “heavy ion collisions”,

in which gold or lead nuclei are smashed together in particle colliders, it is thought

that magnetic fields comparable to those of neutron stars are created. However, these

magnetic fields are fleeting and small. They are stretch over the size of a nucleus and

last for a millionth of a second or so).

As the above discussion amply demonstrates, SI units are based entirely on historical

convention rather than any deep underlying physics. A much better choice is to pick

units of charge such that we can discard ε0 and µ0. There are two commonly used

frameworks that do this, called Lorentz-Heaviside units and Gaussian units. I should

warn you that the Maxwell equations take a slightly different form in each.

To fully embrace natural units, we should also set the speed of light c = 1. (See

the rant in the Dynamics and Relativity lectures). However we can’t set everything

to one. There is one combination of the fundamental constants of Nature which is
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dimensionless. It is known as the fine structure constant,

α =
e2

4πε0~c

and takes value α ≈ 1/137. Ultimately, this is the correct measure of the strength of

the electromagnetic force. It tells us that, in units with ε0 = ~ = c = 1, the natural,

dimensionless value of the charge of the electron is e ≈ 0.3.

3.5.1 A History of Magnetostatics

The history of magnetostatics, like electrostatics, starts with the Greeks. The fact

that magnetic iron ore, sometimes known as “lodestone”, can attract pieces of iron was

apparently known to Thales. He thought that he had found the soul in the stone. The

word “magnetism” comes from the Greek town Magnesia, which is situated in an area

rich in lodestone.

It took over 1500 years to turn Thales’ observation into something useful. In the 11th

century, the Chinese scientist Shen Kuo realised that magnetic needles could be used

to build a compass, greatly improving navigation.

The modern story of magnetism begins, as with electrostatics, with William Gilbert.

From the time of Thales, it had been thought that electric and magnetic phenomenon

are related. One of Gilbert’s important discoveries was, ironically, to show that this is

not the case: the electrostatic forces and magnetostatic forces are different.

Yet over the next two centuries, suspicions remained. Several people suggested that

electric and magnetic phenomena were related, although no credible arguments were

given. The two just smelled alike. The following unisightful quote from Henry Elles,

written in 1757 to the Royal Society, pretty much sums up the situation: “There are

some things in the power of magnetism very similar to those of electricity. But I do

not by any means think them the same”. A number of specific relationships between

electricity and magnetism were suggested and all subsequently refuted by experiment.

When the breakthrough finally came, it took everyone by surprise. In 1820, the Dan-

ish scientist Hans Christian Ørsted noticed that the needle on a magnet was deflected

when a current was turned on or off. After that, progress was rapid. Within months,

Ørsted was able to show that a steady current produces the circular magnetic field

around a wire that we have seen in these lectures. In September that year, Ørsted’s

experiments were reproduced in front of the French Academy by Francois Arago, a talk

which seemed to mobilise the country’s entire scientific community. First out of the
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blocks were Jean-Baptiste Biot and Félix Savart who quickly determined the strength

of the magnetic field around a long wire and the mathematical law which bears their

name.

Of those inspired by the Arago’s talk, the most important was André-Marie Ampère.

Skilled in both experimental and theoretical physics, Ampère determined the forces

that arise between current carrying wires and derived the mathematical law which

now bears his name:
∮

B · dr = µ0I. He was also the first to postulate that there

exists an atom of electricity, what we would now call the electron. Ampère’s work was

published in 1827 a book with the catchy title “Memoir on the Mathematical Theory

of Electrodynamic Phenomena, Uniquely Deduced from Experience”. It is now viewed

as the beginning of the subject of electrodynamics.
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4. Electrodynamics

For static situations, Maxwell’s equations split into the equations of electrostatics, (2.1)

and (2.2), and the equations of magnetostatics, (3.1) and (3.2). The only hint that there

is a relationship between electric and magnetic fields comes from the fact that they are

both sourced by charge: electric fields by stationary charge; magnetic fields by moving

charge. In this section we will see that the connection becomes more direct when things

change with time.

4.1 Faraday’s Law of Induction

“I was at first almost frightened when I saw such mathematical force made

to bear upon the subject, and then wondered to see that the subject stood

it so well.”

Faraday to Maxwell, 1857

One of the Maxwell equations relates time varying magnetic fields to electric fields,

∇× E +
∂B

∂t
= 0 (4.1)

This equation tells us that if you change a magnetic field, you’ll create an electric field.

In turn, this electric field can be used to accelerate charges which, in this context, is

usually thought of as creating a current in wire. The process of creating a current

through changing magnetic fields is called induction.

We’ll consider a wire to be a conductor, stretched along B

S

C

Figure 33:

a stationary, closed curve, C, as shown in the figure. We will

refer to closed wires of this type as a “circuit”. We integrate

both sides of (4.1) over a surface S which is bounded by C,∫
S

(∇× E) · dS = −
∫
S

∂B

∂t
· dS

By Stokes theorem, we can write this as∫
C

E · dr = −
∫
S

∂B

∂t
· dS = − d

dt

∫
S

B · dS

Recall that the line integral around C should be in the right-handed sense; if the fingers

on your right-hand curl around C then your thumb points in the direction of dS. (This

means that in the figure dS points in the same direction as B). To get the last equality

above, we need to use the fact that neither C nor S change with time. Both sides
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of this equation are usually given names. The integral of the electric field around the

curve C is called the electromotive force, E , or emf for short,

E =

∫
C

E · dr

It’s not a great name because the electromotive force is not really a force. Instead

it’s the tangential component of the force per unit charge, integrated along the wire.

Another way to think about it is as the work done on a unit charge moving around the

curve C. If there is a non-zero emf present then the charges will be accelerated around

the wire, giving rise to a current.

The integral of the magnetic field over the surface S is called the magnetic flux Φ

through S,

Φ =

∫
S

B · dS

The Maxwell equation (4.1) can be written as

E = −dΦ

dt
(4.2)

In this form, the equation is usually called Faraday’s Law. Sometimes it is called the

flux rule.

Faraday’s law tells us that if you change the magnetic flux through S then a current

will flow. There are a number of ways to change the magnetic field. You could simply

move a bar magnet in the presence of circuit, passing it through the surface S; or you

could replace the bar magnet with some other current density, restricted to a second

wire C ′, and move that; or you could keep the second wire C ′ fixed and vary the current

in it, perhaps turning it on and off. All of these will induce a current in C.

However, there is then a secondary effect. When a current flows in C, it will create

its own magnetic field. We’ve seen how this works for steady currents in Section 3. This

induced magnetic field will always be in the direction that opposes the change. This

is called Lenz’s law. If you like, “Lenz’s law” is really just the minus sign in Faraday’s

law (4.2).
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We can illustrate this with a simple example. Con-
B

I

Figure 34: Lenz’s law

sider the case where C is a circle, lying in a plane. We’ll

place it in a uniform B field and then make B smaller

over time, so Φ̇ < 0. By Faraday’s law, E > 0 and the

current will flow in the right-handed direction around

C as shown. But now you can wrap your right-hand

in a different way: point your thumb in the direction

of the current and let your fingers curl to show you the

direction of the induced magnetic field. These are the circles drawn in the figure. You

see that the induced current causes B to increase inside the loop, counteracting the

original decrease.

Lenz’s law is rather like a law of inertia for magnetic fields. It is necessary that

it works this way simply to ensure energy conservation: if the induced magnetic field

aided the process, we’d get an unstable runaway situation in which both currents and

magnetic fields were increasing forever.

4.1.1 Faraday’s Law for Moving Wires

There is another, related way to induce cur-

y

z

x

B

C

v

Figure 35: Moving circuit

rents in the presence of a magnetic field: you can

keep the field fixed, but move the wire. Perhaps

the simplest example is shown in the figure: it’s

a rectangular circuit, but where one of the wires

is a metal bar that can slide backwards and for-

wards. This whole set-up is then placed in a

magnetic field, which passes up, perpendicular

through the circuit.

Slide the bar to the left with speed v. Each charge q in the bar experiences a Lorentz

force qvB, pushing it in the y direction. This results in an emf which, now, is defined

as the integrated force per charge. In this case, the resulting emf is

E = vBd

where d is the length of the moving bar. But, because the area inside the circuit

is getting smaller, the flux through C is also decreasing. In this case, it’s simple to
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compute the change of flux: it is

dΦ

dt
= −vBd

We see that once again the change of flux is related to the emf through the flux rule

E = −dΦ

dt

Note that this is the same formula (4.2) that we derived previously, but the physics

behind it looks somewhat different. In particular, we used the Lorentz force law and

didn’t need the Maxwell equations.

As in our previous example, the emf will drive a current around the loop C. And,

just as in the previous example, this current will oppose the motion of the bar. In this

case, it is because the current involves charges moving with some speed u around the

circuit. These too feel a Lorentz force law, now pushing the bar back to the right. This

means that if you let the bar go, it will not continue with constant speed, even if the

connection is frictionless. Instead it will slow down. This is the analog of Lenz’s law in

the present case. We’ll return to this example in Section 4.1.3 and compute the bar’s

subsequent motion.

(t)C

(t)

δS

S

C δ

(t+  t)

(t+  t)

Sc

Figure 36: Moving Circuits

The General Case

There is a nice way to include both the effects of time-

dependent magnetic fields and the possibility that the

circuit C changes with time. We consider the moving

loop C(t), as shown in the figure. Now the change in

flux through a surface S has two terms: one because B

may be changing, and one because C is changing. In a

small time δt, we have

δΦ = Φ(t+ δt)− Φ(t) =

∫
S(t+δt)

B(t+ δt) · dS−
∫
S(t)

B(t) · dS

=

∫
S(t)

∂B

∂t
δt · dS +

[∫
S(t+δt)

−
∫
S(t)

]
B(t) · dS +O(δt2)

We can do something with the middle terms. Consider the closed surface created by

S(t) and S(t + δt), together with the cylindrical region swept out by C(t) which we

call Sc. Because ∇ ·B = 0, the integral of B(t) over any closed surface vanishes. But
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∫
S(t+δt)

−
∫
S(t)

is the top and bottom part of the closed surface, with the minus sign

just ensuring that the integral over the bottom part S(t) is in the outward direction.

This means that we must have[∫
S(t+δt)

−
∫
S(t)

]
B(t) · dS = −

∫
Sc

B(t) · dS

For the integral over Sc, we can write the surface element as

dS = (dr× v)δt

where dr is the line element along C(t) and v is the velocity of a point on C. We find

that the expression for the change in flux can be written as

dΦ

dt
= lim

δt→0

δΦ

δt
=

∫
S(t)

∂B

∂t
· dS −

∫
C(t)

(v ×B) · dr

where we’ve taken the liberty of rewriting (dr× v) ·B = dr · (v×B). Now we use the

Maxwell equation (4.1) to rewrite the ∂B/∂t in terms of the electric field. This gives

us our final expression

dΦ

dt
= −

∫
C

(E + v ×B) · dr

where the right-hand side now includes the force tangential to the wire from both

electric fields and also from the motion of the wire in the presence of magnetic fields.

The electromotive force should be defined to include both of these contributions,

E =

∫
C

(E + v ×B) · dr

and we once again get the flux rule E = −dΦ/dt.

4.1.2 Inductance and Magnetostatic Energy

In Section 2.3, we computed the energy stored in the electric field by considering the

work done in building up a collection of charges. But we didn’t repeat this calculation

for the magnetic field in Section 3. The reason is that we need the concept of emf to

describe the work done in building up a collection of currents.

Suppose that a constant current I flows along some curve C. From the results of

Section 3 we know that this gives rise to a magnetic field and hence a flux Φ =
∫
S

B ·dS
through the surface S bounded by C. Now increase the current I. This will increase

the flux Φ. But we’ve just learned that the increase in flux will, in turn, induce an emf

around the curve C. The minus sign of Lenz’s law ensures that this acts to resist the

change of current. The work needed to build up a current is what’s needed to overcome

this emf.
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Inductance

If a current I flowing around a curve C gives rise to a flux Φ =
∫
S

B · dS then the

inductance L of the circuit is defined to be

L =
Φ

I

The inductance is a property only of our choice of curve C.

An Example: The Solenoid

A solenoid consists of a cylinder of length l and cross-sectional area A. B

Figure 37:

We take l �
√
A so that any end-effects can be neglected. A wire

wrapped around the cylinder carries current I and winds N times per

unit length. We previously computed the magnetic field through the

centre of the solenoid to be (3.7)

B = µ0IN

This means that a flux through a single turn is Φ0 = µ0INA. The

solenoid consists of Nl turns of wire, so the total flux is

Φ = µ0IN
2Al = µ0IN

2V

with V = Al the volume inside the solenoid. The inductance of the solenoid is therefore

L = µ0N
2V

Magnetostatic Energy

The definition of inductance is useful to derive the energy stored in the magnetic field.

Let’s take our circuit C with current I. We’ll try to increase the current. The induced

emf is

E = −dΦ

dt
= −LdI

dt

As we mentioned above, the induced emf can be thought of as the work done in moving

a unit charge around the circuit. But we have current I flowing which means that, in

time δt, a charge Iδt moves around the circuit and the amount of work done is

δW = EIδt = −LI dI
dt
δt ⇒ dW

dt
= −LI dI

dt
= −L

2

dI2

dt

– 71 –



The work needed to build up the current is just the opposite of this. Integrating over

time, we learn that the total work necessary to build up a current I along a curve with

inductance L is

W =
1

2
LI2 =

1

2
IΦ

Following our discussion for electric energy in (2.3), we identify this with the energy U

stored in the system. We can write it as

U =
1

2
I

∫
S

B · dS =
1

2
I

∫
S

∇×A · dS =
1

2
I

∮
C

A · dr =
1

2

∫
d3x J ·A

where, in the last step, we’ve used the fact that the current density J is localised on

the curve C to turn the integral into one over all of space. At this point we turn to the

Maxwell equation ∇×B = µ0J to write the energy as

U =
1

2µ0

∫
d3x (∇×B) ·A =

1

2µ0

∫
d3x [∇ · (B×A) + B · (∇×A)]

We assume that B and A fall off fast enough at infinity so that the first term vanishes.

We’re left with the simple expression

U =
1

2µ0

∫
d3x B ·B

Combining this with our previous result (2.27) for the electric field, we have the energy

stored in the electric and magnetic fields,

U =

∫
d3x

(
ε0
2

E · E +
1

2µ0

B ·B
)

(4.3)

This is a nice result. But there’s something a little unsatisfactory behind our derivation

of (4.3). First, we had to approach the energy in both the electric and magnetic fields

in a rather indirect manner, by focussing not on the fields but on the work done to

assemble the necessary charges and currents. There’s nothing wrong with this, but it’s

not a very elegant approach and it would be nice to understand the energy directly

from the fields themselves. This is something that will be rectified in next year’s

Electrodynamics course.

Second, we computed the energy for the electric fields and magnetic fields alone and

then simply added them. We can’t be sure, at this point, that there isn’t some mixed

contribution to the energy such as E · B. It turns out that there are no such terms.

Again, we’ll postpone a proof of this until the next course.
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4.1.3 Resistance

You may have noticed that our discussion above has been a little qualitative. If the

flux changes, we have given expressions for the induced emf E but we have not given

an explicit expression for the resulting current. And there’s a good reason for this: it’s

complicated.

The presence of an emf means that there is a force on the charges in the wire. And

we know from Newtonian mechanics that a force will cause the charges to accelerate.

This is where things start to get complicated. Accelerating charges will emit waves of

electromagnetic radiation, a process that you will cover in next year’s Electrodynamics

course. Relatedly, there will be an opposition to the formation of the current through

the process that we’ve called Lenz’s law.

So things are tricky. What’s more, in real wires and materials there is yet another

complication: friction. Throughout these lectures we have modelled our charges as if

they are moving unimpeded, whether through the vacuum of space or through a con-

ductor. But that’s not the case when electrons move in real materials. Instead, there’s

stuff that gets in their way: various messy impurities in the material, or sound waves

(usually called phonons in this context) which knock them off-course, or even other

electrons. All these effects contribute to a friction force that acts on the moving elec-

trons. The upshot of this is that the electrons do not accelerate forever. In fact, they

do not accelerate for very long at all. Instead, they very quickly reach an equilibrium

speed, analogous to the “terminal velocity” that particles reach when falling in grav-

itational field while experiencing air resistance. In many circumstances, the resulting

current I is proportional to the applied emf. This relationship is called Ohm’s law. It

is

E = IR (4.4)

The constant of proportionality R is called the resistance. The emf is E =
∫

E · dx. If

we write E = −∇φ, then E = V , the potential difference between two ends of the wire.

This gives us the version of Ohm’s law that is familiar from school: V = IR.

The resistance R depends on the size and shape of the wire. If the wire has length

L and cross-sectional area A, we define the resistivity as ρ = AR/L. (It’s the same

Greek letter that we earlier used to denote charge density. They’re not the same thing.

Sorry for any confusion!) The resistivity has the advantage that it’s a property of

the material only, not its dimensions. Alternatively, we talk about the conductivity

σ = 1/ρ. (This is the same Greek letter that we previously used to denote surface
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charge density. They’re not the same thing either.) The general form of Ohm’s law is

then

J = σE

Unlike the Maxwell equations, Ohm’s law does not represent a fundamental law of

Nature. It is true in many, perhaps most, materials. But not all. There is a very

simple classical model, known as the Drude model, which treats electrons as billiard

balls experiencing linear drag which gives rise to Ohm’s law. (We will describe it in

Section 7.6). But a proper derivation of Ohm’s law needs quantum mechanics and a

more microscopic understanding of what’s happening in materials. Needless to say, this

is (way) beyond the scope of this course. So, at least in this small section, we will take

Ohm’s law (4.4) as an extra input in our theory.

When Ohm’s law holds, the physics is very different. Now the applied force (or,

in this case, the emf) is proportional to the velocity of the particles rather than the

acceleration. It’s like living in the world that Aristotle envisaged rather than the one

Galileo understood. But it also means that the resulting calculations typically become

much simpler.

An Example

Let’s return to our previous example of a slid-

y

z

x

C

v
B

Figure 38:

ing bar of length d and mass m which forms a

circuit, sitting in a magnetic field B = Bẑ. But

now we will take into account the effect of elec-

trical resistance. We take the resistance of the

sliding bar to be R. But we’ll make life easy for

ourselves and assume that the resistance of the

rest of the circuit is negligible.

There are two dynamical degrees of freedom

in our problem: the position x of the sliding bar and the current I that flows around the

circuit. We take I > 0 if the current flows along the bar in the positive ŷ direction. The

Lorentz force law tells us that the force on a small volume of the bar is F = IB ŷ× ẑ.

The force on the whole bar is therefore

F = IBd x̂

The equation of motion for the position of the wire is then

mẍ = IBd
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Now we need an equation that governs the current I(t). If the total emf around the

circuit comes from the induced emf, we have

E = −dΦ

dt
= −Bdẋ

Ohm’s law tells us that E = IR. Combining these, we get a simple differential equation

for the position of the bar

mẍ = −B
2d2

R
ẋ

which we can solve to see that any initial velocity of the bar, v, decays exponentially:

ẋ(t) = −ve−B2d2t/mR

Note that, in this calculation we neglected the magnetic field created by the current.

It’s simple to see the qualitative effect of this. If the bar moves to the left, so ẋ < 0, then

the flux through the circuit decreases. The induced current is I > 0 which increases B

inside the circuit which, in accord with Lenz’s law, attempts to counteract the reduced

flux.

In the above derivation, we assumed that the total emf around the circuit was pro-

vided by the induced emf. This is tantamount to saying that no current flows when the

bar is stationary. But we can also relax this assumption and include in our analysis an

emf E0 across the circuit (provided, for example, by a battery) which induces a current

I0 = E0d/R. Now the total emf is

E = E0 + Einduced = E0 −Bdẋ

The total current is again given by Ohms law I = E/R. The position of the bar is now

governed by the equation

mẍ = −Bd
R

(E0 −Bdẋ)

Again, it’s simple to solve this equation.

Joule Heating

In Section 4.1.2, we computed the work done in changing the current in a circuit C.

This ignored the effect of resistance. In fact, if we include the resistance of a wire then

we need to do work just to keep a constant current. This should be unsurprising. It’s

the same statement that, in the presence of friction, we need to do work to keep an

object moving at a constant speed.
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Let’s return to a fixed circuit C. As we mentioned above, if a battery provides an

emf E0, the resulting current is I = E0/R. We can now run through arguments similar

to those that we saw when computing the magnetostatic energy. The work done in

moving a unit charge around C is E0 which means that amount of work necessary to

keep a current I moving for time δt is

δW = E0Iδt = I2Rδt

We learn that the power (work per unit time) dissipated by a current passing through

a circuit of resistance R is dW/dt = I2R. This is not energy that can be usefully stored

like the magnetic and electric energy (4.3); instead it is lost to friction which is what

we call heat. (The difference between heat and other forms of energy is explained in

the Thermodynamics section in the Statistical Physics notes). The production of heat

by a current is called Joule heating or, sometimes, Ohmic heating.

4.1.4 Michael Faraday (1791-1867)

“The word “physicist” is both to my mouth and ears so awkward that

I think I shall never be able to use it. The equivalent of three separate

sounds of “s” in one word is too much.”

Faraday in a letter to William Whewell 2

Michael Faraday’s route into science was far from the standard one. The son

of a blacksmith, he had little schooling and, at the age of 14, was apprenticed to a

bookbinder. There he remained until the age of 20 when Faraday attended a series of

popular lectures at the Royal Institution by the chemist Sir Humphry Davy. Inspired,

Faraday wrote up these lectures, lovingly bound them and presented them to Davy as

a gift. Davy was impressed and some months later, after suffering an eye injury in an

explosion, turned to Faraday to act as his assistant.

Not long after, Davy decided to retire and take a two-year leisurely tour of Europe,

meeting many of the continent’s top scientists along the way. He asked Faraday to join

him and his wife, half as assistant, half as valet. The science part of this was a success;

the valet part less so. But Faraday dutifully played his roles, emptying his master’s

chamber pot each morning, while aiding in a number of important scientific discoveries

along the way, including a wonderful caper in Florence where Davy and Faraday used

Galileo’s old lens to burn a diamond, reducing it, for the first time, to Carbon.

2According to the rest of the internet, Faraday complains about three separate sounds of “i”. The

rest of the internet is wrong. I’m grateful to Frank James, editor of Faraday’s correspondence, for

confirming this.
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Back in England, Faraday started work at the Royal Institution. He would remain

there for over 45 years. An early attempt to study electricity and magnetism was

abandoned after a priority dispute with his former mentor Davy and it was only after

Davy’s death in 1829 that Faraday turned his attentions fully to the subject. He made

his discovery of induction on 28th October, 1831. The initial experiment involved two,

separated coils of wire, both wrapped around the same magnet. Turning on a current

in one wire induces a momentary current in the second. Soon after, he found that

a current is also induced by passing a loop of wire over a magnet. The discovery of

induction underlies the electrical dynamo and motor, which convert mechanical energy

into electrical energy and vice-versa.

Faraday was not a great theorist and the mathematical expression that we have

called Faraday’s law is due to Maxwell. Yet Faraday’s intuition led him to make one

of the most important contributions of all time to theoretical physics: he was the first

to propose the idea of the field.

As Faraday’s research into electromagnetism increased, he found himself needing to

invent more and more words to describe the phenomena he was seeing. Since he didn’t

exactly receive a classical education, he turned to William Whewell, then Master of

Trinity, for some advice. Between them, they cooked up the words ‘anode’, ‘cathode’,

‘ion’, ‘dielectric’, ‘diamagnetic’ and ‘paramagnetic’. They also suggested the electric

charge be renamed ‘Franklinic’ in honour of Benjamin Franklin. That one didn’t stick.

The last years of Faraday’s life were spent in the same way as Einstein: seeking a

unified theory of gravity and electromagnetism. The following quote describes what is,

perhaps, the first genuine attempt at unification:

Gravity: Surely his force must be capable of an experimental relation to

Electricity, Magnetism and the other forces, so as to bind it up with them

in reciprocal action and equivalent effect. Consider for a moment how to

set about touching this matter by facts and trial . . .

Faraday, 19th March, 1849.

As this quote makes clear, Faraday’s approach to this problem includes something

that Einstein’s did not: experiment. Ultimately, neither of them found a connection

between electromagnetism and gravity. But it could be argued that Faraday made the

more important contribution: while a null theory is useless, a null experiment tells you

something about Nature.
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4.2 One Last Thing: The Displacement Current

We’ve now worked our way through most of the Maxwell equations. We’ve looked at

Gauss’ law (which is really equivalent to Coulomb’s law)

∇ · E =
ρ

ε0
(4.5)

and the law that says there are no magnetic monopoles

∇ ·B = 0 (4.6)

and Ampère’s law

∇×B = µ0J (4.7)

and now also Faraday’s law

∇× E +
∂B

∂t
= 0 (4.8)

In fact, there’s only one term left to discuss. When fields change with time, there is an

extra term that appears in Ampère’s law, which reads in full:

∇×B = µ0

(
J + ε0

∂E

∂t

)
(4.9)

This extra term is called the displacement current. It’s not a great name because it’s

not a current. Nonetheless, as you can see, it sits in the equation in the same place as

the current which is where the name comes from.

So what does this extra term do? Well, something quite remarkable. But before we

get to this, there’s a story to tell you.

The first four equations above (4.5), (4.6), (4.7) and (4.8) — which include Ampère’s

law in unmodified form — were arrived at through many decades of painstaking ex-

perimental work to try to understand the phenomena of electricity and magnetism. Of

course, it took theoretical physicists and mathematicians to express these laws in the

elegant language of vector calculus. But all the hard work to uncover the laws came

from experiment.

The displacement current term is different. This was arrived at by pure thought

alone. This is one of Maxwell’s contributions to the subject and, in part, why his

name now lords over all four equations. He realised that the laws of electromagnetism

captured by (4.5) to (4.8) are not internally consistent: the displacement current term

has to be there. Moreover, once you add it, there are astonishing consequences.
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4.2.1 Why Ampère’s Law is Not Enough

We’ll look at the consequences in the next section. But for now, let’s just see why the

unmodified Ampère law (4.7) is inconsistent. We simply need to take the divergence

to find

µ0∇ · J = ∇ · (∇×B) = 0

This means that any current that flows into a given volume has to also flow out. But

we know that’s not always the case. To give a simple example, we can imagine putting

lots of charge in a small region and watching it disperse. Since the charge is leaving the

central region, the current does not obey ∇ · J = 0, seemingly in violation of Ampère’s

law.

There is a standard thought experiment involving cir-

R

+Q −Q

Figure 39:

cuits which is usually invoked to demonstrate the need to

amend Ampère’s law. This is shown in the figure. The idea

is to cook up a situation where currents are changing over

time. To do this, we hook it up to a capacitor — which can

be thought of as two conducting plates with a gap between

them — to a circuit of resistance R. The circuit includes a

switch. When the switch is closed, the current will flow out

of the capacitor and through the circuit, ultimately heating

up the resistor.

So what’s the problem here? Let’s try to compute the magnetic field created by the

current at some point along the circuit using Ampère’s law. We can take a curve C that

surrounds the wire and surface S with boundary C. If we chose S to be the obvious

choice, cutting through the wire, then the calculation is the same as we saw in Section

3.1. We have ∫
C

B · dr = µ0I (4.10)

where I is the current through the wire which, in this case, is changing with time.

Suppose, however, that we instead decided to bound the curve C with the surface

S ′, which now sneaks through the gap between the capacitor plates. Now there is no

current passing through S ′, so if we were to use Ampère’s law, we would conclude that

there is no magnetic field ∫
C

B · dr = 0 (4.11)
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Figure 40: This choice of surface sug-

gests there is a magnetic field

Figure 41: This choice of surface sug-

gests there is none.

This is in contradiction to our first calculation (4.10). So what’s going on here? Well,

Ampère’s law only holds for steady currents that are not changing with time. And we’ve

deliberately put together a situation where I is time dependent to see the limitations

of the law.

Adding the Displacement Current

Let’s now see how adding the displacement current (4.9) fixes the situation. We’ll

first look at the abstract issue that Ampère’s law requires ∇ · J = 0. If we add the

displacement current, then taking the divergence of (4.9) gives

µ0

(
∇ · J + ε0∇ ·

∂E

∂t

)
= ∇ · (∇×B) = 0

But, using Gauss’s law, we can write ε0∇ · E = ρ, so the equation above becomes

∇ · J +
∂ρ

∂t
= 0

which is the continuity equation that tells us that electric charge is locally conserved.

It’s only with the addition of the displacement current that Maxwell’s equations become

consistent with the conservation of charge.

Now let’s return to our puzzle of the circuit and capacitor. Without the displacement

current we found that B = 0 when we chose the surface S ′ which passes between

the capacitor plates. But the displacement current tells us that we missed something,

because the build up of charge on the capacitor plates leads to a time-dependent electric

field between the plates. For static situations, we computed this in (2.10): it is

E =
Q

ε0A
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where A is the area of each plate and Q is the charge that sits on each plate, and we are

ignoring the edge effects which is acceptable as long as the size of the plates is much

bigger than the gap between them. Since Q is increasing over time, the electric field is

also increasing

∂E

∂t
=

1

ε0A

dQ

dt
=

1

ε0A
I(t)

So now if we repeat the calculation of B using the surface S ′, we find an extra term

from (4.9) which gives ∫
C

B · dr =

∫
S′
µ0ε0

∂E

∂t
= µ0I

This is the same answer (4.10) that we found using Ampère’s law applied to the surface

S.

Great. So we see why the Maxwell equations need the extra term known as the

displacement current. Now the important thing is: what do we do with it? As we’ll

now see, the addition of the displacement current leads to one of the most wonderful

discoveries in physics: the explanation for light.

4.3 And There Was Light

The emergence of light comes from looking for solutions of Maxwell’s equations in which

the electric and magnetic fields change with time, even in the absence of any external

charges or currents. This means that we’re dealing with the Maxwell equations in

vacuum:

∇ · E = 0 and ∇×B = µ0ε0
∂E

∂t

∇ ·B = 0 and ∇× E = −∂B

∂t

The essence of the physics lies in the two Maxwell equations on the right: if the electric

field shakes, it causes the magnetic field to shake which, in turn, causes the electric

field to shake, and so on. To derive the equations governing these oscillations, we start

by computing the second time derivative of the electric field,

µ0ε0
∂2E

∂t2
=

∂

∂t
(∇×B) = ∇× ∂B

∂t
= −∇× (∇× E) (4.12)

To complete the derivation, we need the identity

∇× (∇× E) = ∇(∇ · E)−∇2E
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But, the first of Maxwell equations tells us that ∇ ·E = 0 in vacuum, so the first term

above vanishes. We find that each component of the electric field satisfies,

1

c2

∂2E

∂t2
−∇2E = 0 (4.13)

This is the wave equation. The speed of the waves, c, is given by

c =

√
1

µ0ε0

Identical manipulations hold for the magnetic field. We have

∂2B

∂t2
= − ∂

∂t
(∇× E) = −∇× ∂E

∂t
= − 1

µ0ε0
∇× (∇×B) =

1

µ0ε0
∇2B

where, in the last equality, we have made use of the vector identity (4.12), now applied

to the magnetic field B, together with the Maxwell equation ∇ ·B = 0. We again find

that each component of the magnetic field satisfies the wave equation,

1

c2

∂2B

∂t2
−∇2B = 0 (4.14)

The waves of the magnetic field travel at the same speed c as those of the electric field.

What is this speed? At the very beginning of these lectures we provided the numerical

values of the electric constant

ε0 = 8.854187817× 10−12 m−3Kg−1 s2C2

and the magnetic constant,

µ0 = 4π × 10−7 mKgC−2

Plugging in these numbers gives the speed of electric and magnetic waves to be

c = 299792458 ms−1

But this is something that we’ve seen before. It’s the speed of light! This, of course, is

because these electromagnetic waves are light. In the words of the man himself

“The velocity of transverse undulations in our hypothetical medium, calcu-

lated from the electro-magnetic experiments of MM. Kohlrausch and Weber,

agrees so exactly with the velocity of light calculated from the optical ex-

periments of M. Fizeau, that we can scarcely avoid the inference that light

consists in the transverse undulations of the same medium which is the

cause of electric and magnetic phenomena”

James Clerk Maxwell
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The simple calculation that we have just seen represents one of the most important

moments in physics. Not only are electric and magnetic phenomena unified in the

Maxwell equations, but now optics – one of the oldest fields in science – is seen to be

captured by these equations as well.

4.3.1 Solving the Wave Equation

We’ve derived two wave equations, one for E and one for B. We can solve these

independently, but it’s important to keep in our mind that the solutions must also

obey the original Maxwell equations. This will then give rise to a relationship between

E and B. Let’s see how this works.

We’ll start by looking for a special class of solutions in which waves propagate in the

x-direction and do not depend on y and z. These are called plane-waves because, by

construction, the fields E and B will be constant in the (y, z) plane for fixed x and t.

The Maxwell equation ∇·E = 0 tells us that we must have Ex constant in this case.

Any constant electric field can always be added as a solution to the Maxwell equations

so, without loss of generality, we’ll choose this constant to vanish. We look for solutions

of the form

E = (0, E(x, t), 0)

where E satisfies the wave equation (4.13) which is now

1

c2

∂2E

∂t2
−∇2E = 0

The most general solution to the wave equation takes the form

E(x, t) = f(x− ct) + g(x+ ct)

Here f(x−ct) describes a wave profile which moves to the right with speed c. (Because,

as t increases, x also has to increase to keep f constant). Meanwhile, g(x+ct) describes

a wave profile moving to the left with the speed c.

The most important class of solutions of this kind are those which oscillate with a

single frequency ω. Such waves are called monochromatic. For now, we’ll focus on

the right-moving waves and take the profile to be the sine function. (We’ll look at

the option to take cosine waves or other shifts of phase in a moment when we discuss

polarisation). We have

E = E0 sin
[
ω
(x
c
− t
)]
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We usually write this as

E = E0 sin (kx− ωt) (4.15)

where k is the wavenumber. The wave equation (4.13) requires that it is related to the

frequency by

ω2 = c2k2

Equations of this kind, expressing frequency in terms of wavenumber, are called dis-

persion relations. Because waves are so important in physics, there’s a whole bunch of

associated quantities which we can define. They are:

• The quantity ω is more properly called the angular frequency and is taken to be

positive. The actual frequency f = ω/2π measures how often a wave peak passes

you by. But because we will only talk about ω, we will be lazy and just refer to

this as frequency.

• The period of oscillation is T = 2π/ω.

• The wavelength of the wave is λ = 2π/k. This is the property of waves that

you first learn about in kindergarten. The wavelength of visible light is between

λ ∼ 3.9 × 10−7 m and 7 × 10−7 m. At one end of the spectrum, gamma rays

have wavelength λ ∼ 10−12 m and X-rays around λ ∼ 10−10 to 10−8 m. At the

other end, radio waves have λ ∼ 1 cm to 10 km. Of course, the electromagnetic

spectrum doesn’t stop at these two ends. Solutions exist for all λ.

Although we grow up thinking about wavelength, moving forward the wavenum-

ber k will turn out to be a more useful description of the wave.

• E0 is the amplitude of the wave.

So far we have only solved for the electric field. To determine the magnetic field,

we use ∇ · B = 0 to tell us that Bx is constant and we again set Bx = 0. We know

that the other components By and Bz must obey the wave equation (4.14). But their

behaviour is dictated by what the electric field is doing through the Maxwell equation

∇× E = −∂B/∂t. This tells us that

B = (0, 0, B)

with

∂B

∂t
= −∂E

∂x
= −kE0 cos(kx− ωt)
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We find

B =
E0

c
sin(kx− ωt) (4.16)

We see that the electric E and magnetic B fields oscillate in phase, but in orthogonal

directions. And both oscillate in directions which are orthogonal to the direction in

which the wave travels.

k

B

E

Because the Maxwell equations are linear, we’re allowed to add any number of solu-

tions of the form (4.15) and (4.16) and we will still have a solution. This sometimes

goes by the name of the principle of superposition. (We mentioned it earlier when

discussing electrostatics). This is a particularly important property in the context of

light, because it’s what allow light rays travelling in different directions to pass through

each other. In other words, it’s why we can see anything at all.

The linearity of the Maxwell equations also encourages us to introduce some new

notation which, at first sight, looks rather strange. We will often write the solutions

(4.15) and (4.16) in complex notation,

E = E0 ŷ ei(kx−ωt) , B =
E0

c
ẑ ei(kx−ωt) (4.17)

This is strange because the physical electric and magnetic fields should certainly be real

objects. You should think of them as simply the real parts of the expressions above.

But the linearity of the Maxwell equations means both real and imaginary parts of

E and B solve the Maxwell equations. And, more importantly, if we start adding

complex E and B solutions, then the resulting real and imaginary pieces will also solve

the Maxwell equations . The advantage of this notation is simply that it’s typically

easier to manipulate complex numbers than lots of cos and sin formulae.

However, you should be aware that this notation comes with some danger: whenever

you compute something which isn’t linear in E and B — for example, the energy stored

in the fields, which is a quadratic quantity — you can’t use the complex notation above;

you need to take the real part first.
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4.3.2 Polarisation

Above we have presented a particular solution to the wave equation. Let’s now look

at the most general solution with a fixed frequency ω. This means that we look for

solutions within the ansatz,

E = E0 e
i(k·x−ωt) and B = B0 e

i(k·x−ωt) (4.18)

where, for now, both E0 and B0 could be complex-valued vectors. (Again, we only get

the physical electric and magnetic fields by taking the real part of these equations).

The vector k is called the wavevector. Its magnitude, |k| = k, is the wavenumber and

the direction of k points in the direction of propagation of the wave. The expressions

(4.18) already satisfy the wave equations (4.13) and (4.14) if ω and k obey the dispersion

relation ω2 = c2k2.

We get further constraints on E0, B0 and k from the original Maxwell equations.

These are

∇ · E = 0 ⇒ ik · E0 = 0

∇ ·B = 0 ⇒ ik ·B0 = 0

∇× E = −∂B

∂t
⇒ ik× E0 = iωB0

Let’s now interpret these equations:

Linear Polarisation

Suppose that we take E0 and B0 to be real. The first two equations above say that both

E0 and B0 are orthogonal to the direction of propagation. The last of the equations

above says that E0 and B0 are also orthogonal to each other. You can check that the

fourth Maxwell equation doesn’t lead to any further constraints. Using the dispersion

relation ω = ck, the last constraint above can be written as

k̂× (E0/c) = B0

This means that the three vectors k̂, E0/c and B0 form a right-handed orthogonal triad.

Waves of this form are said to be linearly polarised. The electric and magnetic fields

oscillate in fixed directions, both of which are transverse to the direction of propagation.

Circular and Elliptic Polarisation

Suppose that we now take E0 and B0 to be complex. The actual electric and magnetic

fields are just the real parts of (4.18), but now the polarisation does not point in a fixed
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direction. To see this, write

E0 = α− iβ

The real part of the electric field is then

E = α cos(k · x− ωt) + β sin(k · x− ωt)

with Maxwell equations ensuring that α · k = β · k = 0. If we look at the direction of

E at some fixed point in space, say the origin x = 0, we see that it doesn’t point in

a fixed direction. Instead, it rotates over time within the plane spanned by α and β

(which is the plane perpendicular to k).

A special case arises when the phase of E0 is eiπ/4, so that |α| = |β|, with the further

restriction that α · β = 0. Then the direction of E traces out a circle over time in the

plane perpendicular to k. This is called circular polarisation. The polarisation is said

to be right-handed if β = k̂×α and left-handed if β = −k̂×α.

In general, the direction of E at some point in space will trace out an ellipse in the

plane perpendicular to the direction of propagation k. Unsurprisingly, such light is said

to have elliptic polarisation.

General Wave

A general solution to the wave equation consists of combinations of waves of different

wavenumbers and polarisations. It is naturally expressed as a Fourier decomposition

by summing over solutions with different wavevectors,

E(x, t) =

∫
d3k

(2π)3
E(k) ei(k·x−ωt)

Here, the frequency of each wave depends on the wavevector by the now-familiar dis-

persion relation ω = ck.

4.3.3 An Application: Reflection off a Conductor

There are lots of things to explore with electromagnetic waves and we will see many

examples in Section 7. For now, we look at a simple application: we will reflect waves

off a conductor. We all know from experience that conductors, like metals, look shiny.

Here we’ll see why.
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Suppose that the conductor occupies the half of space
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Figure 42:

x > 0. We start by shining the light head-on onto the

surface. This means an incident plane wave, travelling in

the x-direction,

Einc = E0 ŷ ei(kx−ωt)

where, as before, ω = ck. Inside the conductor, we know

that we must have E = 0. But the component E · ŷ lies

tangential to the surface and so, by continuity, must also

vanish just outside at x = 0−. We achieve this by adding a reflected wave, travelling

in the opposite direction

Eref = −E0 ŷ ei(−kx−ωt)

So that the combination E = Einc + Eref satisfies E(x = 0) = 0 as it must. This

is illustrated in the figure. (Note, however, that the figure is a little bit misleading:

the two waves are shown displaced but, in reality, both fill all of space and should be

superposed on top of each other).

We’ve already seen above that the corresponding magnetic field can be determined

by ∇× E = −∂B/∂t. It is given by B = Binc + Bref , with

Binc =
E0

c
ẑ ei(kx−ωt) and Bref =

E0

c
ẑ ei(−kx−ωt) (4.19)

This obeys B ·n = 0, as it should be continuity. But the tangential component doesn’t

vanish at the surface. Instead, we have

B · ẑ|x=0− =
2E0

c
e−iωt

Since the magnetic field vanishes inside the conductor, we have a discontinuity. But

there’s no mystery here. We know from our previous discussion (3.6) that this corre-

sponds to a surface current K induced by the wave

K =
2E0

cµ0

ŷ e−iωt

We see that the surface current oscillates with the frequency of the reflected wave.
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Reflection at an Angle
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Figure 43:

Let’s now try something a little more complicated: we’ll send in

the original ray at an angle, θ, to the normal as shown in the

figure. Our incident electric field is

Einc = E0 ŷ ei(k·x−ωt)

where

k = k cos θ x̂ + k sin θ ẑ

Notice that we’ve made a specific choice for the polarisation of the electric field: it is

out of the page in the figure, tangential to the surface. Now we have two continuity

conditions to worry about. We want to add a reflected wave,

Eref = −E0 ζ̂ e
i(k′·x−ω′t)

where we’ve allowed for the possibility that the polarisation ζ̂, the wavevector k′ and

frequency ω′ are all different from the incident wave. We require two continuity condi-

tions on the electric field

(Einc + Eref) · n̂ = 0 and (Einc + Eref)× n̂ = 0

where, for this set-up, the normal vector is n̂ = −x̂. This is achieved by taking ω′ = ω

and ζ = ŷ, so that the reflected wave changes neither frequency nor polarisation. The

reflected wavevector is

k′ = −k cos θ x̂ + k sin θ ẑ

We can also check what becomes of the magnetic field. It is B = Binc + Bref , with

Binc =
E0

c
(k̂× ŷ) ei(k·x−ω

′t) and Bref = −E0

c
(k̂′ × ŷ) ei(k

′·x−ω′t)

Note that, in contrast to (4.19), there is now a minus sign in the reflected Bref , but

this is simply to absorb a second minus sign coming from the appearance of k̂′ in the

polarisation vector. It is simple to check that the normal component B · n̂ vanishes at

the interface, as it must. Meanwhile, the tangential component again gives rise to a

surface current.
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The main upshot of all of this discussion is relationship between k and k′ which tells

us something that we knew when we were five: the angle of incidence is equal to the

angle of reflection. Only now we’ve derived this from the Maxwell equations. If this is

a little underwhelming, we’ll derive many more properties of waves in Section 7.

4.3.4 James Clerk Maxwell (1831-1879)

Still those papers lay before me,

Problems made express to bore me,

When a silent change came oer me,

In my hard uneasy chair.

Fire and fog, and candle faded,

Spectral forms the room invaded,

Little creatures, that paraded

On the problems lying there.

James Clerk Maxwell, “A Vision of a Wrangler, of a University, of

Pedantry, and of Philosophy”

James Clerk Maxwell was a very smart man. Born in Edinburgh, he was a student,

first in his hometown, and later in Cambridge, at Peterhouse and then at Trinity.

He held faculty positions at the University of Aberdeen (where they fired him) and

Kings College London before returning to Cambridge as the first Cavendish professor

of physics.

Perhaps the first very smart thing that Maxwell did

Figure 44: Maxwell’s vor-

tices

was to determine the composition of Saturn’s rings. He

didn’t do this using a telescope. He did it using mathe-

matics! He showed that neither a solid nor a fluid ring

could be stable. Such rings could only be made of many

small particles. For this he was awarded the Adams Prize.

(These days you can win this prize for much much less!)

Maxwell’s great work on electromagnetism was accom-

plished between 1861 and 1862. He started by construct-

ing an elaborate mechanical model of electricity and mag-

netism in which space is filled by vortices of an incom-

pressible fluid, separated by tiny rotating particles that give rise to electricity. One of

his illustrations is shown above. Needless to say, we don’t teach this picture of space
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anymore. From this, he managed to distill everything that was known about electro-

magnetism into 20 coupled equations in 20 variables. This was the framework in which

he discovered the displacement current and its consequences for light.

You might think that the world changed when Maxwell published his work. In

fact, no one cared. The equations were too hard for physicists, the physics too hard

for mathematicians. Things improved marginally in 1873 when Maxwell reduced his

equations to just four, albeit written in quaternion notation. The modern version

of Maxwell equations, written in vector calculus notation, is due to Oliver Heaviside

in 1881. In all, it took almost 30 years for people to appreciate the significance of

Maxwell’s acheivement.

Maxwell made a number of other important contributions to science, including the

first theory of colour vision and the theory of colour photography. His work on ther-

modynamics and statistical mechanics deserves at least equal status with his work

on electromagnetism. He was the first to understand the distribution of velocities of

molecules in a gas, the first to extract an experimental prediction from the theory of

atoms and, remarkably, the first (with the help of his wife) to build the experiment and

do the measurement, confirming his own theory.

4.4 Transport of Energy: The Poynting Vector

Electromagnetic waves carry energy. This is an important fact: we get most of our

energy from the light of the Sun. Here we’d like to understand how to calculate this

energy.

Our starting point is the expression (4.3) for the energy stored in electric and mag-

netic fields,

U =

∫
V

d3x

(
ε0
2

E · E +
1

2µ0

B ·B
)

The expression in brackets is the energy density. Here we have integrated this only

over some finite volume V rather than over all of space. This is because we want to

understand the way in which energy can leave this volume. We do this by calculating

dU

dt
=

∫
V

d3x

(
ε0E ·

∂E

∂t
+

1

µ0

B · ∂B

∂t

)
=

∫
V

d3x

(
1

µ0

E · (∇×B)− E · J− 1

µ0

B · (∇× E)

)
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where we’ve used the two Maxwell equations. Now we use the identity

E · (∇×B)−B · (∇× E) = −∇ · (E×B)

and write

dU

dt
= −

∫
V

d3x J · E− 1

µ0

∫
S

(E×B) · dS (4.20)

where we’ve used the divergence theorem to write the last term. This equation is

sometimes called the Poynting theorem.

The first term on the right-hand side is related to something that we’ve already seen

in the context of Newtonian mechanics. The work done on a particle of charge q moving

with velocity v for time δt in an electric field is δW = qv ·E δt. The integral
∫
V
d3xJ ·E

above is simply the generalisation of this to currents: it should be thought of as the

rate of gain of energy of the particles in the region V . Since it appears with a minus

sign in (4.20), it is the rate of loss of energy of the particles.

Now we can interpret (4.20). If we write it as

dU

dt
+

∫
V

d3x J · E = − 1

µ0

∫
S

(E×B) · dS

then the left-hand side is the combined change in energy of both fields and particles in

region V . Since energy is conserved, the right-hand side must describe the energy that

escapes through the surface S of region V . We define the Poynting vector

S =
1

µ0

E×B

This is a vector field. It tells us the magnitude and direction of the flow of energy in any

point in space. (It is unfortunate that the canonical name for the Poynting vector is S

because it makes it notationally difficult to integrate over a surface which we usually

also like to call S. Needless to say, these two things are not the same and hopefully no

confusion will arise).

Let’s now look at the energy carried in electromagnetic waves. Because the Poynting

vector is quadratic in E and B, we’re not allowed to use the complex form of the waves.

We need to revert to the real form. For linear polarisation, we write the solutions in

the form (4.17), but with arbitrary wavevector k,

E = E0 sin(k · x− ωt) and B =
1

c
(k̂× E0) sin(k · x− ωt)
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The Poynting vector is then

S =
E2

0

cµ0

k̂ sin2(k · x− ωt)

Averaging over a period, T = 2π/ω, we have

S̄ =
E2

0

2cµ0

k̂

We learn that the electromagnetic wave does indeed transport energy in its direction of

propagation k̂. It’s instructive to compare this to the energy density of the field (4.3).

Evaluated on the electromagnetic wave, the energy density is

u =
ε0
2

E · E +
1

2µ0

B ·B = ε0E
2
0 sin2(k · x− ωt)

Averaged over a period T = 2π/ω, this is

ū =
ε0E

2
0

2

Then, using c2 = 1/ε0µ0,we can write

S̄ = cūk̂

The interpretation is simply that the energy S̄ is equal to the energy density in the

wave ū times the speed of the wave, c.

4.4.1 The Continuity Equation Revisited

Recall that, way back in Section 1, we introduced the continuity equation for electric

charge,

∂ρ

∂t
+∇ · J = 0

This equation is not special to electric charge. It must hold for any quantity that is

locally conserved.

Now we have encountered another quantity that is locally conserved: energy. In the

context of Newtonian mechanics, we are used to thinking of energy as a single number.

Now, in field theory, it is better to think of energy density E(x, t). This includes the

energy in both fields and the energy in particles. Thinking in this way, we notice that

(4.20) is simply the integrated version of a continuity equation for energy. We could

equally well write it as

∂E
∂t

+∇ · S = 0

We see that the Poynting vector S is to energy what the current J is to charge.
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5. Electromagnetism and Relativity

We’ve seen that Maxwell’s equations have wave solutions which travel at the speed

of light. But there’s another place in physics where the speed of light plays a promi-

nent role: the theory of special relativity. How does electromagnetism fit with special

relativity?

Historically, the Maxwell equations were discovered before the theory of special rel-

ativity. It was thought that the light waves we derived above must be oscillations of

some substance which fills all of space. This was dubbed the aether. The idea was that

Maxwell’s equations only hold in the frame in which the aether is at rest; light should

then travel at speed c relative to the aether.

We now know that the concept of the aether is unnecessary baggage. Instead,

Maxwell’s equations hold in all inertial frames and are the first equations of physics

which are consistent with the laws of special relativity. Ultimately, it was by studying

the Maxwell equations that Lorentz was able to determine the form of the Lorentz

transformations which subsequently laid the foundation for Einstein’s vision of space

and time.

Our goal in this section is to view electromagnetism through the lens of relativity.

We will find that observers in different frames will disagree on what they call electric

fields and what they call magnetic fields. They will observe different charge densities

and different currents. But all will agree that these quantities are related by the same

Maxwell equations. Moreover, there is a pay-off to this. It’s only when we formulate

the Maxwell equations in a way which is manifestly consistent with relativity that we

see their true beauty. The slightly cumbersome vector calculus equations that we’ve

been playing with throughout these lectures will be replaced by a much more elegant

and simple-looking set of equations.

5.1 A Review of Special Relativity

We start with a very quick review of the relevant concepts of special relativity. (For

more details see the lecture notes on Dynamics and Relativity). The basic postulate of

relativity is that the laws of physics are the same in all inertial reference frames. The

guts of the theory tell us how things look to observers who are moving relative to each

other.

The first observer sits in an inertial frame S with spacetime coordinates (ct, x, y, z)

the second observer sits in an inertial frame S ′ with spacetime coordinates (ct′, x′, y′, z′).
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If we take S ′ to be moving with speed v in the x-direction relative to S then the

coordinate systems are related by the Lorentz boost

x′ = γ
(
x− v

c
ct
)

and ct′ = γ
(
ct− v

c
x
)

(5.1)

while y′ = y and z′ = z. Here c is the speed of light which has the value,

c = 299792458 ms−1

Meanwhile γ is the ubiquitous factor

γ =

√
1

1− v2/c2

The Lorentz transformation (5.1) encodes within it all of the fun ideas of time dilation

and length contraction that we saw in our first course on relativity.

5.1.1 Four-Vectors

It’s extremely useful to package these spacetime coordinates in 4-vectors, with indices

running from µ = 0 to µ = 3

Xµ = (ct, x, y, z) µ = 0, 1, 2, 3

Note that the index is a superscript rather than subscript. This will be important

shortly. A general Lorentz transformation is a linear map from X to X ′ of the form

(X ′)µ = Λµ
νX

ν

Here Λ is a 4× 4 matrix which obeys the matrix equation

ΛTηΛ = η ⇔ Λρ
µηρσΛσ

ν = ηµν (5.2)

with ηµν the Minkowski metric

ηµν = diag(+1,−1,−1,−1)

The solutions to (5.2) fall into two classes. The first class is simply rotations. Given a

3× 3 rotation matrix R obeying RTR = 1, we can construct a Lorentz transformation

Λ obeying (5.2) by embedding R in the spatial part,

Λµ
ν =


1 0 0 0

0

0 R

0

 (5.3)

These transformations describe how to relate the coordinates of two observers who are

rotated with respect to each other.
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The other class of solutions to (5.2) are the Lorentz boosts. These are the transfor-

mations appropriate for observers moving relative to each other. The Lorentz transfor-

mation (5.1) is equivalent to

Λµ
ν =


γ −γv/c 0 0

−γv/c γ 0 0

0 0 1 0

0 0 0 1

 (5.4)

There are similar solutions associated to boosts along the y and z axes.

The beauty of 4-vectors is that it’s extremely easy to write down invariant quantities.

These are things which all observers, no matter which their reference frame, can agree

on. To construct these we take the inner product of two 4-vectors. The trick is that

this inner product uses the Minkowski metric and so comes with some minus signs. For

example, the square of the distance from the origin to some point in spacetime labelled

by X is

X ·X = XµηµνX
ν = c2t2 − x2 − y2 − z2

which is the invariant interval. Similarly, if we’re given two four-vectors X and Y then

the inner product X · Y = XµηµνY
ν is also a Lorentz invariant.

5.1.2 Proper Time

The key to building relativistic theories of Nature is to find the variables that have

nice properties under Lorentz transformations. The 4-vectors X, labelling spacetime

points, are a good start. But we need more. Here we review how the other kinematical

variables of velocity, momentum and acceleration fit into 4-vectors.

Suppose that, in some frame, the particle traces out a worldline. The clever trick is to

find a way to parameterise this path in a way that all observers agree upon. The natural

choice is the proper time τ , the duration of time experienced by the particle itself.

If you’re sitting in some frame, watching some particle move with an old-fashioned

Newtonian 3-velocity u(t), then it’s simple to show that the relationship between your

time t and the proper time of the particle τ is given by

dt

dτ
= γ(u)
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The proper time allows us to define the 4-velocity and the 4-momentum. Suppose that

the particle traces out a path X(τ) in some frame. Then the 4-velocity is

U =
dX

dτ
= γ

(
c

u

)
Similarly, the 4-momentum is P = mU where m is the rest mass of the particle. We

write

P =

(
E/c

p

)
(5.5)

where E = mγc2 is the energy of the particle and p = γmu is the 3-momentum in

special relativity.

The importance of U and P is that they too are 4-vectors. Because all observers

agree on τ , the transformation law of U and P are inherited from X. This means that

under a Lorentz transformation, they too change as U → ΛU and P → ΛP . And it

means that inner products of U and P are guaranteed to be Lorentz invariant.

5.1.3 Indices Up, Indices Down

Before we move on, we do need to introduce one extra notational novelty. The minus

signs in the Minkowski metric η means that it’s useful to introduce a slight twist to

the usual summation convention of repeated indices. For all the 4-vectors that we

introduced above, we always place the spacetime index µ = 0, 1, 2, 3 as a superscript

(i.e. up) rather than a subscript.

Xµ =

(
ct

x

)
This is because the same object with an index down, Xµ, will mean something subtly

different. We define

Xµ =

(
ct

−x

)
With this convention, the Minkowski inner product can be written using the usual

convention of summing over repeated indices as

XµXµ = c2t2 − x · x

In contrast, XµXµ = c2t2 + x2 is a dumb thing to write in the context of special

relativity since it looks very different to observers in different inertial frames. In fact,

we will shortly declare it illegal to write things like XµXµ.
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There is a natural way to think of Xµ in terms of Xµ using the Minkowski metric

ηµν = diag(+1,−1,−1,−1). The following equation is trivially true:

Xµ = ηµνX
ν

This means that we can think of the Minkowski metric as allowing us to lower indices.

To raise indices back up, we need the inverse of ηµν which, fortunately, is the same

matrix: ηµν = diag(+1,−1,−1,−1) which means we have ηµρηρν = δµν and we can

write

Xν = ηνµXµ

From now on, we’re going to retain this distinction between all upper and lower indices.

All the four-vectors that we’ve met so far have upper indices. But all can be lowered

in the same way. For example, we have

Uµ = γ

(
c

−u

)
(5.6)

This trick of distinguishing between indices up and indices down provides a simple

formalism to ensure that all objects have nice transformation properties under the

Lorentz group. We insist that, just as in the usual summation convention, repeated

indices only ever appear in pairs. But now we further insist that pairs always appear

with one index up and the other down. The result will be an object which is invariant

under Lorentz transformations.

5.1.4 Vectors, Covectors and Tensors

In future courses, you will learn that there is somewhat deeper mathematics lying be-

hind distinguishing Xµ and Xµ: formally, these objects live in different spaces (some-

times called dual spaces). We’ll continue to refer to Xµ as vectors, but to distinguish

them, we’ll call Xµ covectors. (In slightly fancier language, the components of the vec-

tor Xµ are sometimes said to be contravariant while the components of the covector

Xµ are said to be covariant).

For now, the primary difference between a vector and covector is how they transform

under rotations and boosts. We know that, under a Lorentz transformation, any 4-

vector changes as

Xµ → X ′µ = Λµ
νX

ν
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From this, we see that a covector should transform as

Xµ → X ′µ = ηµρX
′ ρ

= ηµρΛ
ρ
σX

σ

= ηµρΛ
ρ
ση

σνXν

Using our rule for raising and lowering indices, now applied to the Lorentz transforma-

tion Λ, we can also write this as

Xµ → Λ ν
µ Xν

where our notation is now getting dangerously subtle: you have to stare to see whether

the upper or lower index on the Lorentz transformation comes first.

There is a sense in which Λ ν
µ can be thought of a the components of the inverse

matrix Λ−1. To see this, we go back to the definition of the Lorentz transformation

(5.2), and start to use our new rules for raising and lowering indices

Λρ
µηρσΛσ

ν = ηµν ⇒ Λρ
µΛρν = ηµν

⇒ Λρ
µΛ σ

ρ = δσµ

⇒ Λ σ
ρ Λρ

µ = δσµ

In the last line above, we’ve simply reversed the order of the two terms on the left.

(When written in index notation, these are just the entries of the matrix so there’s no

problem with commuting them). Now we compare this to the formula for the inverse

of a matrix,

(Λ−1)σρΛ
ρ
µ = δσµ ⇒ (Λ−1)σρ = Λ σ

ρ (5.7)

Note that you need to be careful where you place the indices in equations like this.

The result (5.7) is analogous to the statement that the inverse of a rotation matrix is

the transpose matrix. For general Lorentz transformations, we learn that the inverse

is sort of the transpose where “sort of” means that there are minus signs from raising

and lowering. The placement of indices in (5.7) tells us where those minus signs go.

The upshot of (5.7) is that if we want to abandon index notation all together then

vectors transform as X → ΛX while covectors – which, for the purpose of this sentence,

we’ll call X̃ – transform as X̃ → Λ−1X̃. However, in what follows, we have no intention

of abandoning index notation. Instead, we will embrace it. It will be our friend and

our guide in showing that the Maxwell equations are consistent with special relativity.
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A particularly useful example of a covector is the four-derivative. This is the rela-

tivistic generalisation of ∇, defined by

∂µ =
∂

∂Xµ
=

(
1

c

∂

∂t
,∇
)

Notice that the superscript on the spacetime 4-vector Xµ has migrated to a subscript

on the derivative ∂µ. For this to make notational sense, we should check that ∂µ does

indeed transform as covector. This is a simple application of the chain rule. Under a

Lorentz transformation, Xµ → X ′µ = Λµ
νX

ν , so we have

∂µ =
∂

∂Xµ
→ ∂

∂X ′µ
=

∂Xν

∂X ′µ
∂

∂Xν
= (Λ−1)νµ∂ν = Λ ν

µ ∂ν

which is indeed the transformation of a co-vector.

Tensors

Vectors and covectors are the simplest examples of objects which have nice transfor-

mation properties under the Lorentz group. But there are many more examples. The

most general object can have a bunch of upper indices and a bunch of lower indices,

T µ1...µnν1...νm . These objects are also called tensors of type (n,m). In order to qualify

as a tensor, they must transform under a Lorentz transformation as

T ′µ1...µnν1...νm = Λµ1
ρ1
. . .Λµn

ρnΛ σ1
ν1

. . .Λ σn
νn T

ρ1...ρn
σ1...σm

(5.8)

You can always use the Minkowski metric to raise and lower indices on tensors, changing

the type of tensor but keeping the total number of indices n+m fixed.

Tensors of this kind are the building blocks of all our theories. This is because if you

build equations only out of tensors which transform in this manner then, as long as

the µ, ν, . . . indices match up on both sides of the equation, you’re guaranteed to have

an equation that looks the same in all inertial frames. Such equations are said to be

covariant. You’ll see more of this kind of thing in courses on General Relativity and

Differential Geometry.

In some sense, this index notation is too good. Remember all those wonderful things

that you first learned about in special relativity: time dilation and length contraction

and twins and spaceships so on. You’ll never have to worry about those again. From

now on, you can guarantee that you’re working with a theory consistent with relativity

by ensuring two simple things

• That you only deal with tensors.

• That the indices match up on both sides of the equation.

It’s sad, but true. It’s all part of growing up and not having fun anymore.
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5.2 Conserved Currents

We started these lectures by discussing the charge density ρ(x, t), the current density

J(x, t) and their relation through the continuity equation,

∂ρ

∂t
+∇ · J = 0

which tells us that charge is locally conserved.

The continuity equation is already fully consistent with relativity. To see this, we

first need to appreciate that the charge and current densities sit nicely together in a

4-vector,

Jµ =

(
ρc

J

)
Of course, placing objects in a four-vector has consequence: it tells us how these objects

look to different observers. Let’s quickly convince ourselves that it makes sense that

charge density and current do indeed transform in this way. We can start by considering

a situation where there are only static charges with density ρ0 and no current. So

Jµ = (ρ0, 0). Now, in a frame that is boosted by velocity v, the current will appear as

J ′µ = Λµ
νJ

ν with the Lorentz transformation given by (5.4). The new charge density

and current are then

ρ′ = γρ0 , J′ = −γρv

The first of these equations tells us that different observers see different charge densities.

This is because of Lorentz contraction: charge density means charge per unit volume.

And the volume gets squeezed because lengths parallel to the motion undergo Lorentz

contraction. That’s the reason for the factor of γ in the observed charge density.

Meanwhile, the second of these equations is just the relativistic extension of the formula

J = ρv that we first saw in the introduction. (The extra minus sign is because v here

denotes the velocity of the boosted observer; the charge is therefore moving with relative

velocity −v).

In our new, relativistic, notation, the continuity equation takes the particularly sim-

ple form

∂µJ
µ = 0 (5.9)

This equation is Lorentz invariant. This follows simply because the indices are con-

tracted in the right way: one up, and one down.
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5.2.1 Magnetism and Relativity

We’ve learned something unsurprising: boosted charge gives rise to a current. But,

combined with our previous knowledge, this tells us something new and important:

boosted electric fields must give rise to magnetic fields. The rest of this chapter will

be devoted to understanding the details of how this happens. But first, we’re going to

look at a simple example where we can re-derive the magnetic force purely from the

Coulomb force and a dose of Lorentz contraction.

To start, consider a bunch of positive charges

A

vv

u

Figure 45:

+q moving along a line with speed +v and a bunch of

negative charges −q moving in the opposite direction

with speed−v as shown in the figure. If there is equal

density, n, of positive and negative charges then the

charge density vanishes while the current is

I = 2nAqv

where A is the cross-sectional area of the wire. Now consider a test particle, also

carrying charge q, which is moving parallel to the wire with some speed u. It doesn’t

feel any electric force because the wire is neutral, but we know it experiences a magnetic

force. Here we will show how to find an expression for this force without ever invoking

the phenomenon of magnetism.

The trick is to move to the rest frame of the test particle. This means we have to

boost by speed u. The usual addition formula tells us that the velocities of the positive

and negative charges now differ, given by

v± =
v ∓ u

1∓ uv/c2

But with the boost comes a Lorentz contraction which means that the charge density

changes. Moreover, because the velocities of positive and negative charges are now

different, this will mean that, viewed from the rest frame of our particle, the wire is

no longer neutral. Let’s see how this works. First, we’ll introduce n0, the density of

charges when the particles in the wire are at rest. Then the charge density in the

original frame is

ρ = qn = γ(v)qn0

In this frame the wire is neutral because the positive and negative charges travel at

the same speed, albeit in opposite directions. However, in our new frame, the charge
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densities are

ρ± = qn± = qγ(v±)n0 =
(

1∓ uv

c2

)
γ(u)γ(v) qn0

where you’ve got to do a little bit of algebra to get to the last result. Since v− > v+,

we have n− > n+ and the wire carries negative charge. The overall net charge density

in the new frame is

ρ′ = qn′ = q(n+ − n−) = −2uv

c2
γ(u) qn

But we know that a line of electric charge creates an electric field; we calculated it in

(2.6); it is

E(r) = −2uv

c2

γ(u) qnA

2πε0r
r̂

where r is the radial direction away from the wire. This means that, in its rest frame,

the particle experiences a force

F ′ = −uγ(u)
nAq2v

πε0c2r

where the minus sign tells us that the force is towards the wire for u > 0. But if there’s

a force in one frame, there must also be a force in another. Transforming back to where

we came from, we conclude that even when the wire is neutral there has to be a force

F =
F ′

γ(u)
= −u nq

2Av

πε0c2r
= −uq µ0I

2πr
(5.10)

But this precisely agrees with the Lorentz force law, with the magnetic field given by

the expression (3.5) that we computed for a straight wire. Notice that if u > 0 then

the test particle – which has charge q – is moving in the same direction as the particles

in the wire which have charge q and the force is attractive. If u < 0 then it moves in

the opposite direction and the force is repulsive.

This analysis provides an explicit demonstration of how an electric force in one frame

of reference is interpreted as a magnetic force in another. There’s also something rather

surprising about the result. We’re used to thinking of length contraction as an exotic

result which is only important when we approach the speed of light. Yet the electrons

in a wire crawl along. They take around an hour to travel a meter! Nonetheless, we

can easily detect the magnetic force between two wires which, as we’ve seen above, can

be directly attributed to the length contraction in the electron density.
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The discussion above needs a minor alteration for actual wires. In the rest frame of

the wire the positive charges – which are ions, atoms stripped of some of their electrons

– are stationary while the electrons move. Following the explanation above, you might

think that there is an imbalance of charge density already in this frame. But that’s not

correct. The current is due to some battery feeding electrons into the wire and taking

them out the other end. And this is done in such a way that the wire is neutral in the

rest frame, with the electron density exactly compensating the ion density. In contrast,

if we moved to a frame in which the ions and electrons had equal and opposite speeds,

the wire would appear charged. Although the starting point is slightly different, the

end result remains.

5.3 Gauge Potentials and the Electromagnetic Tensor

Under Lorentz transformations, electric and magnetic fields will transform into each

other. In this section, we want to understand more precisely how this happens. At

first sight, it looks as if it’s going to be tricky. So far the objects which have nice

transformation properties under Lorentz transformations are 4-vectors. But here we’ve

got two 3-vectors, E and B. How do we make those transform into each other?

5.3.1 Gauge Invariance and Relativity

To get an idea for how this happens, we first turn to some objects that we met previ-

ously: the scalar and vector potentials φ and A. Recall that we introduced these to

solve some of the equations of electrostatics and magnetostatics,

∇× E = 0 ⇒ E = −∇φ
∇ ·B = 0 ⇒ B = ∇×A

However, in general these expressions can’t be correct. We know that when B and E

change with time, the two source-free Maxwell equations are

∇× E +
∂B

∂t
= 0 and ∇ ·B = 0

Nonetheless, it’s still possible to use the scalar and vector potentials to solve both of

these equations. The solutions are

E = −∇φ− ∂A

∂t
and B = ∇×A

where now φ = φ(x, t) and A = A(x, t).
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Just as we saw before, there is no unique choice of φ and A. We can always shift

A→ A +∇χ and B remains unchanged. However, now this requires a compensating

shift of φ.

φ→ φ− ∂χ

∂t
and A→ A +∇χ (5.11)

with χ = χ(x, t). These are gauge transformations. They reproduce our earlier gauge

transformation for A, while also encompassing constant shifts in φ.

How does this help with our attempt to reformulate electromagnetism in a way

compatible with special relativity? Well, now we have a scalar, and a 3-vector: these

are ripe to place in a 4-vector. We define

Aµ =

(
φ/c

A

)

Or, equivalently, Aµ = (φ/c,−A). In this language, the gauge transformations (5.11)

take a particularly nice form,

Aµ → Aµ − ∂µχ (5.12)

where χ is any function of space and time

5.3.2 The Electromagnetic Tensor

We now have all the ingredients necessary to determine how the electric and magnetic

fields transform. From the 4-derivative ∂µ = (∂/∂(ct),∇) and the 4-vector Aµ =

(φ/c,−A), we can form the anti-symmetric tensor

Fµν = ∂µAν − ∂νAµ

This is constructed to be invariant under gauge transformations (5.12). We have

Fµν → Fµν + ∂µ∂νχ− ∂ν∂µχ = Fµν

This already suggests that the components involve the E and B fields. To check that

this is indeed the case, we can do a few small computations,

F01 =
1

c

∂(−Ax)
∂t

− ∂(φ/c)

∂x
=
Ex
c

and

F12 =
∂(−Ay)
∂x

− ∂(−Ax)
∂y

= −Bz
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Similar computations for all other entries give us a matrix of electric and magnetic

fields,

Fµν =


0 Ex/c Ey/c Ez/c

−Ex/c 0 −Bz By

−Ey/c Bz 0 −Bx

−Ez/c −By Bx 0

 (5.13)

This, then, is the answer to our original question. You can make a Lorentz covariant

object consisting of two 3-vectors by arranging them in an anti-symmetric tensor. Fµν
is called the electromagnetic tensor. Equivalently, we can raise both indices using the

Minkowski metric to get

F µν = ηµρηνσFρσ =


0 −Ex/c −Ey/c −Ez/c

Ex/c 0 −Bz By

Ey/c Bz 0 −Bx

Ez/c −By Bx 0


Both Fµν and F µν are tensors. They are tensors because they’re constructed out of

objects, Aµ, ∂µ and ηµν , which themselves transform nicely under the Lorentz group.

This means that Fµν must transform as

F ′µν = Λµ
ρΛ

ν
σF

ρσ (5.14)

Alternatively, if you want to get rid of the indices, this reads F ′ = ΛFΛT . The observer

in a new frame sees electric and magnetic fields E′ and B′ that differ from the original

observer. The two are related by (5.14). Let’s look at what this means in a couple of

illustrative examples.

Rotations

To compute the transformation (5.14), it’s probably simplest to just do the sums that

are implicit in the repeated ρ and σ labels. Alternatively, if you want to revert to

matrix multiplication then this is the same as F ′ = ΛFΛT . Either way, we get the

same result. For a rotation, the 3 × 3 matrix R is embedded in the lower-right hand

block of Λ as shown in (5.3). A quick calculation shows that the transformation of the

electric and magnetic fields in (5.14) is as expected,

E′ = RE and B′ = RB
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Boosts

Things are more interesting for boosts. Let’s consider a boost v in the x-direction, with

Λ given by (5.4). Again, you need to do a few short calculations. For example, we have

−E
′
x

c
= F ′ 01 = Λ0

ρΛ
1
σF

ρσ

= Λ0
0Λ1

1F
01 + Λ0

1Λ1
0F

10

=
γ2v2

c2

Ex
c
− γ2Ex

c
= −Ex

c

and

−
E ′y
c

= F ′ 02 = Λ0
ρΛ

2
σF

ρσ

= Λ0
0Λ2

2F
02 + Λ0

1Λ2
2F

12

= −γEy
c

+
γv

c
Bz = −γ

c
(Ey − vBz)

and

−B′z = F ′ 12 = Λ1
ρΛ

2
σF

ρσ

= Λ1
0Λ2

2F
02 + Λ1

1Λ2
2F

12

=
γv

c2
Ey − γBz = −γ(Bz − vEy/c2)

The final result for the transformation of the electric field after a boost in the x-direction

is

E ′x = Ex

E ′y = γ(Ey − vBz) (5.15)

E ′z = γ(Ez + vBy)

and, for the magnetic field,

B′x = Bx

B′y = γ
(
By +

v

c2
Ez

)
(5.16)

B′z = γ
(
Bz −

v

c2
Ey

)
As we anticipated above, what appears to be a magnetic field to one observer looks like

an electric field to another, and vice versa.
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Note that in the limit v � c, we have E′ = E + v × B and B′ = B. This can be

thought of as the Galilean boost of electric and magnetic fields. We recognise E+v×B

as the combination that appears in the Lorentz force law. We’ll return to this force in

Section 5.5 where we’ll see how it’s compatible with special relativity.

5.3.3 An Example: A Boosted Line Charge

In Section 2.1.3, we computed the electric field due to a line with uniform charge density

η per unit length. If we take the line to lie along the x-axis, we have (2.6)

E =
η

2πε0(y2 + z2)

(
0
y
z

)
(5.17)

Meanwhile, the magnetic field vanishes for static electric charges: B = 0. Let’s see

what this looks like from the perspective of an observer moving with speed v in the

x-direction, parallel to the wire. In the moving frame the electric and magnetic fields

are given by (5.15) and (5.16). These read

E′ =
ηγ

2πε0(y2 + z2)

(
0
y
z

)
=

ηγ

2πε0(y′ 2 + z′ 2)

(
0
y′

z′

)

B′ =
ηγv

2πε0c2(y2 + z2)

(
0
z
−y

)
=

ηγv

2πε0c2(y′ 2 + z′ 2)

(
0
z′

−y′

)
(5.18)

In the second equality, we’ve rewritten the expression in terms of the coordinates of S ′
which, because the boost is in the x-direction, are trivial: y = y′ and z = z′.

From the perspective of an observer in frame S ′, the charge density in the wire is

η′ = γη, where the factor of γ comes from Lorentz contraction. This can be seen in

the expression above for the electric field. Since the charge density is now moving, the

observer in frame S ′ sees a current I ′ = −γηv. Then we can rewrite (5.18) as

B′ =
µ0I

′

2π
√
y′ 2 + z′ 2

ϕ̂′ (5.19)

But this is something that we’ve seen before. It’s the magnetic field due to a current

in a wire (3.5). We computed this in Section 3.1.1 using Ampére’s law. But here we’ve

re-derived the same result without ever mentioning Ampére’s law! Instead, our starting

point (5.17) needed Gauss’ law and we then used only the Lorentz transformation of

electric and magnetic fields. We can only conclude that, under a Lorentz transforma-

tion, Gauss’ law must be related to Ampére’s law. Indeed, we’ll shortly see explicitly

that this is the case. For now, it’s worth repeating the lesson that we learned in Section

5.2.1: the magnetic field can be viewed as a relativistic effect.
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5.3.4 Another Example: A Boosted Point Charge

Consider a point charge Q, stationary in an inertial frame S. We know that it’s electric

field is given by

E =
Q

4πε0r2
r̂ =

Q

4πε0[x2 + y2 + z2]3/2

(
x
y
z

)

while its magnetic field vanishes. Now let’s look at this same particle from the frame

S ′, moving with velocity v = (v, 0, 0) with respect to S. The Lorentz boost which

relates the two is given by (5.4) and so the new electric field are given by (5.15),

E′ =
Q

4πε0[x2 + y2 + z2]3/2

(
x
γy
γz

)

But this is still expressed in terms of the original coordinates. We should now rewrite

this in terms of the coordinates of S ′, which are x′ = γ(x− vt) and y′ = y and z′ = z.

Inverting these, we have

E′ =
Qγ

4πε0[γ2(x′ + vt′)2 + y′ 2 + z′ 2]3/2

(
x′ + vt′

y′

z′

)
(5.20)

In the frame S ′, the particle sits at x′ = (−vt′, 0, 0), so we see that the electric field

emanates from the position of the charge, as it should. For now, let’s look at the electric

field when t′ = 0 so that the particle sits at the origin in the new frame. The electric

field points outwards radially, along the direction

r′ =

(
x′

y′

z′

)

However, the electric field is not isotropic. This arises from the denominator of (5.20)

which is not proportional to r′ 3 because there’s an extra factor of γ2 in front of the x′

component. Instead, at t′ = 0, the denominator involves the combination

γ2x′ 2 + y′ 2 + z′ 2 = (γ2 − 1)x′ 2 + r′ 2

=
v2γ2

c2
x′ 2 + r′ 2

=

(
v2γ2

c2
cos2 θ + 1

)
r′ 2

= γ2

(
1− v2

c2
sin2 θ

)
r′ 2
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v

Figure 46: The isotropic field lines of a

static charge

Figure 47: The squeezed field lines of a

moving charge

where the θ is the angle between r′ and the x′-axis and, in the last line, we’ve just used

some simple trig and the definition of γ2 = 1/(1 − v2/c2). This means that we can

write the electric field in frame S ′ as

E′ =
1

γ2(1− v2 sin2 θ/c2)3/2

Q

4πε0r′ 2
r̂′

The pre-factor is responsible for the fact that the electric field is not isotropic. We see

that it reduces the electric field along the x′-axis (i.e when θ = 0) and increases the field

along the perpendicular y′ and z′ axes (i.e. when θ = π/2). This can be thought of as

a consequence of Lorentz contraction, squeezing the electric field lines in the direction

of travel.

The moving particle also gives rise to a magnetic field. This is easily computed using

the Lorentz transformations (5.16). It is

B =
µ0Qγv

4π[γ2(x′ + vt′)2 + y′ 2 + z′ 2]3/2

(
0
z′

−y′

)
5.3.5 Lorentz Scalars

We can now ask a familiar question: is there any combination of the electric and

magnetic fields that all observers agree upon? Now we have the power of index notation

at our disposal, this is easy to answer. We just need to write down an object that doesn’t

have any floating µ or ν indices. Unfortunately, we don’t get to use the obvious choice

of ηµνF
µν because this vanishes on account of the anti-symmetry of F µν . The simplest

thing we can write down is

1

2
FµνF

µν = −E2

c2
+ B2

Note the relative minus sign between E and B, mirroring a similar minus sign in the

spacetime interval.
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However, this isn’t the only Lorentz scalar that we can construct from E and B.

There is another, somewhat more subtle, object. To build this, we need to appreciate

that Minkowski spacetime comes equipped with another natural tensor object, beyond

the familiar metric ηµν . This is the fully anti-symmetric object known as the alternating

tensor,

εµνρσ =

{
+1 if µνρσ is an even permutation of 0123

−1 if µνρσ is an odd permutation of 0123

while εµνρσ = 0 if there are any repeated indices.

To see why this is a natural object in Minkowski space, let’s look at how it changes

under Lorentz transformations. The usual tensor transformation is

ε′µνρσ = Λµ
κΛ

ν
λΛ

ρ
αΛσ

βε
κλαβ

It’s simple to check that ε′µνρσ is also full anti-symmetric; it inherits this property from

εκλαβ on the right-hand side. But this means that ε′µνρσ must be proportional to εµνρσ.

We only need to determine the constant of proportionality. To do this, we can look at

ε′ 0123 = Λ0
κΛ

1
λΛ

2
αΛ3

βε
κλαβ = det(Λ)

Now any Lorentz transformations have det(Λ) = ±1. Those with det(Λ) = 1 make

up the “proper Lorentz group” SO(1, 3). (This was covered in the Dynamics and

Relativity notes). These proper Lorentz transformations do not include reflections or

time reversal. We learn that the alternating tensor εµνρσ is invariant under proper

Lorentz transformations. What it’s really telling us is that Minkowski space comes

with an oriented orthonormal basis. By lowering indices with the Minkowski metric,

we can also construct the tensor εµνρσ which has ε0123 = −1.

The alternating tensor allows us to construct a second tensor field, sometimes called

the dual electromagnetic tensor (although “dual” is perhaps the most overused word in

physics),

F̃ µν =
1

2
εµνρσFρσ =


0 −Bx −By −Bz

Bx 0 Ez/c −Ey/c
By −Ez/c 0 Ex/c

Bz Ey/c −Ex/c 0

 (5.21)

F̃ µν is sometimes also written as ?F µν . We see that this is looks just like F µν but with

the electric and magnetic fields swapped around. Actually, looking closely you’ll see

that there’s a minus sign difference as well: F̃ µν arises from F µν by the substitution

E→ cB and B→ −E/c.
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The statement that F̃ µν is a tensor means that it too has nice properties under

Lorentz transformations,

F̃ ′µν = Λµ
ρΛ

ν
σF̃

ρσ

and we can use this to build new Lorentz invariant quantities. Taking the obvious

square of F̃ doesn’t give us anything new, since

F̃ µνF̃µν = −F µνFµν

But by contracting F̃ with the original F we do find a new Lorentz invariant

1

4
F̃ µνFµν =

1

c
E ·B

This tells us that the inner-product of E and B is the same viewed in all frames.

5.4 Maxwell Equations

We now have the machinery to write the Maxwell equations in a way which is manifestly

compatible with special relativity. They take a particularly simple form:

∂µF
µν = µ0J

ν and ∂µF̃
µν = 0 (5.22)

Pretty aren’t they!

The Maxwell equations are not invariant under Lorentz transformations. This is

because there is the dangling ν index on both sides. However, because the equations

are built out of objects which transform nicely – F µν , F̃ µν , Jµ and ∂µ – the equations

themselves also transform nicely. For example, we will see shortly that Gauss’ law

transforms into Ampére’s law under a Lorentz boost, something we anticipated in

Section 5.3.3. We say that the equations are covariant under Lorentz transformations.

This means that an observer in a different frame will mix everything up: space

and time, charges and currents, and electric and magnetic fields. Although observers

disagree on what these things are, they all agree on how they fit together. This is what

it means for an equation to be covariant: the ingredients change, but the relationship

between them stays the same. All observers agree that, in their frame, the electric and

magnetic fields are governed by the same Maxwell equations.

Given the objects F µν , F̃ µν , Jµ and ∂µ, the Maxwell equations are not the only

thing you could write down compatible with Lorentz invariance. But they are by

far the simplest . Any other equation would be non-linear in F or F̃ or contain more

derivative terms or some such thing. Of course, simplicity is no guarantee that equations

are correct. For this we need experiment. But surprisingly often in physics we find

that the simplest equations are also the right ones.
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Unpacking the Maxwell Equations

Let’s now check that the Maxwell equations (5.22) in relativistic form do indeed coincide

with the vector calculus equations that we’ve been studying in this course. We just

need to expand the different parts of the equation. The components of the first Maxwell

equation give

∂iF
i0 = µ0J

0 ⇒ ∇ · E =
ρ

ε0

∂µF
µi = µ0J

i ⇒ − 1

c2

∂E

∂t
+∇×B = µ0J

In the first equation, which arises from ν = 0, we sum only over spatial indices i = 1, 2, 3

because F 00 = 0. Meanwhile the components of the second Maxwell equation give

∂iF̃
i0 = 0 ⇒ ∇ ·B = 0

∂µF̃
µi = 0 ⇒ ∂B

∂t
+∇× E = 0

These, of course, are the familiar equations that we’ve all grown to love over this course.

Here a few further, simple comments about the advantages of writing the Maxwell

equations in relativistic form. First, the Maxwell equations imply that current is con-

served. This follows because F µν is anti-symmetric, so ∂µ∂νF
µν = 0 automatically,

simply because ∂µ∂ν is symmetric. The first of the Maxwell equations (5.22) then

requires that the continuity equation holds

∂µJ
µ = 0

This is the same calculation that we did in vector notation in Section 4.2.1. Note that

it’s marginally easier in the relativistic framework.

The second Maxwell equation can be written in a number of different ways. It is

equivalent to:

∂µF̃
µν = 0 ⇔ εµνρσ∂νFρσ = 0 ⇔ ∂ρFµν + ∂νFρµ + ∂µFνρ = 0

where the last of these equalities follows because the equation is constructed so that it

is fully anti-symmetric with respect to exchanging any of the indices ρ, µ and ν. (Just

expand out for a few examples to see this).
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The gauge potential Aµ was originally introduced to solve the two Maxwell equations

which are contained in ∂µF̃
µν = 0. Again, this is marginally easier to see in relativistic

notation. If we write Fµν = ∂µAν − ∂νAµ then

∂µF̃
µν =

1

2
εµνρσ∂µFρσ =

1

2
εµνρσ∂µ(∂ρAσ − ∂σAρ) = 0

where the final equality holds because of the symmetry of the two derivatives, combined

with the anti-symmetry of the ε-tensor. This means that we could equally well write

the Maxwell equations as

∂µF
µν = µ0J

ν where Fµν = ∂µAν − ∂νAµ
In more advanced formulations of electromagnetism (for example, in the Lagrangian

formulation), this is the form in which the Maxwell equations arise.

5.5 The Lorentz Force Law

There’s one last aspect of electromagnetism that we need to show is compatible with

relativity: the Lorentz force law. In the Newtonian world, the equation of motion for

a particle moving with velocity u and momentum p = mu is

dp

dt
= q(E + u×B) (5.23)

We want to write this equation in 4-vector notation in a way that makes it clear how

all the objects change under Lorentz transformations.

By now it should be intuitively clear how this is going to work. A moving particle

experiences the magnetic force. But if we boost to its rest frame, there is no magnetic

force. Instead, the magnetic field transforms into an electric field and we find the same

force, now interpreted as an electric force.

The relativistic version of (5.23) involves the 4-momentum P µ, defined in (5.5), the

proper time τ , reviewed in Section 5.1.2, and our new friend the electromagnetic tensor

F µν . The electromagnetic force acting on a point particle of charge q can then be

written as

dP µ

dτ
= q F µνUν (5.24)

where the 4-velocity is

Uµ =
dXµ

dτ
= γ

(
c

u

)
(5.25)

and the 4-momentum is P = mU . Again, we see that the relativistic form of the

equation (5.24) is somewhat prettier than the original equation (5.23).
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Unpacking the Lorentz Force Law

Let’s check to see that the relativistic equation (5.24) is giving us the right physics.

It is, of course, four equations: one for each µ = 0, 1, 2, 3. It’s simple to multiply

out the right-hand side, remembering that Uµ comes with an extra minus sign in the

spatial components relative to (5.25). We find that the µ = 1, 2, 3 components of (5.24)

arrange themselves into a familiar vector equation,

dp

dτ
= qγ(E + u×B) ⇒ dp

dt
= q(E + u×B) (5.26)

where we’ve used the relationship dt/dτ = γ. We find that we recover the Lorentz

force law. Actually, there’s a slight difference from the usual Newtonian force law

(5.23), although the difference is buried in our notation. In the Newtonian setting, the

momentum is p = mu. However, in the relativistic setting above, the momentum is

p = mγu. Needless to say, the relativistic version is correct, although the difference

only shows up at high speeds.

The relativistic formulation of the Lorentz force (5.24) also contains an extra equation

coming from µ = 0. This reads

dP 0

dτ
=
q

c
γE · u (5.27)

Recall that the temporal component of the four-momentum is the energy P 0 = E/c.

Here the energy is E = mγc2 which includes both the rest-mass of the particle and its

kinetic energy. The extra equation in (5.24) is simply telling us that the kinetic energy

increases when work is done by an electric field

d(Energy)

dt
= qE · u

where I’ve written energy as a word rather than as E to avoid confusing it with the

electric field E.

5.5.1 Motion in Constant Fields

We already know how electric and magnetic fields act on particles in a Newtonian world.

Electric fields accelerate particles in straight lines; magnetic fields make particles go

in circles. Here we’re going to redo this analysis in the relativistic framework. The

Lorentz force law remains the same. The only difference is that momentum is now

p = mγu. We’ll see how this changes things.
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Constant Electric Field

Consider a vanishing magnetic field and constant electric field E = (E, 0, 0). (Note

that E here denotes electric field, not energy!). The equation of motion (5.26) for a

charged particle with velocity u = (u, 0, 0) is

m
d(γu)

dt
= qE ⇒ mγu = qEt

where we’ve implicitly assumed that the particle starts from rest at t = 0. Rearranging,

we get

u =
dx

dt
=

qEt√
m2 + q2E2t2/c2

Reassuringly, the speed never exceeds the speed of light. Instead, u → c as t → ∞ as

one would expect. It’s simple to integrate this once more. If the particle starts from

the origin, we have

x =
mc2

qE

(√
1 +

q2E2t2

m2c2
− 1

)

For early times, when the speeds are not too high, this reduces to

mx ≈ 1

2
qEt2 + . . .

which is the usual non-relativistic result for particles undergoing constant acceleration

in a straight line.

Constant Magnetic Field

Now let’s turn the electric field off and look at the case of constant magnetic field

B = (0, 0, B). In the non-relativistic world, we know that particles turn circles with

frequency ω = qB/m. Let’s see how relativity changes things.

We start by looking at the zeroth component of the force equation (5.27) which, in

the absence of an electric field, reads

dP 0

dτ
= 0

This tells us that magnetic fields do no work. We knew this from our course on

Newtonian physics, but it remains true in the relativistic context. So we know that

energy, E = mγc2, is constant. But this tells us that the speed (i.e. the magnitude of
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the velocity) remains constant. In other words, the velocity, and hence the position,

once again turn circles. The equation of motion is now

m
d(γu)

dt
= qu×B

Since γ is constant, the equation takes the same form as in the non-relativistic case

and the solutions are circles (or helices if the particle also moves in the z-direction).

The only difference is that the frequency with which the particle moves in a circle now

depends on how fast the particle is moving,

ω =
qB

mγ

If you wanted, you could interpret this as due to the relativistic increase in the mass

of a moving particle. Naturally, for small speeds γ ≈ 1 and we reproduce the more

familiar cyclotron frequency γ ≈ qB/m.

So far we have looked at situations in which E = 0 and in which B = 0. But we’ve

seen that E ·B = 0 and E2−B2 are both Lorentz invariant quantities. This means that

the solutions we’ve described above can be boosted to apply to any situation where

E ·B = 0 and E2 −B2 is either > 0 or < 0. In the general situation, both electric and

magnetic fields are turned on so E ·B 6= 0 and we have three possibilities to consider

depending on whether E2 −B2 is > 0 or < 0 or = 0.
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6. Electromagnetic Radiation

We’ve seen that Maxwell’s equations allow for wave solutions. This is light. Or, more

generally, electromagnetic radiation. But how do you generate these waves from a

collection of electric charges? In other words, how do you make light?

We know that a stationary electric charge produce a stationary electric field. If we

boost this charge so it moves at a constant speed, it produces a stationary magnetic

field. In this section, we will see that propagating electromagnetic waves are created

by accelerating charges.

6.1 Retarded Potentials

We start by simply solving the Maxwell equations for a given current distribution

Jµ = (ρc,J). We did this in Section 2 and Section 3 for situations where both charges

and currents are independent of time. Here we’re going to solve the Maxwell equations

in full generality where the charges and currents are time dependent.

We know that we can solve half of Maxwell’s equations by introducing the gauge

potential Aµ = (φ/c,−A) and writing Fµν = ∂µAν − ∂νAµ. Then the remaining

equations become

∂νF
νµ = µ0J

µ ⇒ �Aµ − ∂µ(∂νA
ν) = µ0J

µ (6.1)

where � is the wave operator: � = ∂µ∂
µ = (1/c2)∂2/∂t2 −∇2.

This equation is invariant under gauge transformations

Aµ → Aµ + ∂µχ (6.2)

Any two gauge potentials related by the transformation (6.2) are considered physically

equivalent. We will use this symmetry to help us solve (6.1). To do this we make a

gauge choice:

Claim: We can use the gauge symmetry (6.2) to choose Aµ to satisfy

∂µA
µ = 0 (6.3)

This is known as Lorentz Gauge. It was actually discovered by a guy named Lorenz who

had the misfortune to discover a gauge choice that is Lorentz invariant: all observers

will agree on the gauge condition (6.3).
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Proof: Suppose you are handed a gauge potential Aµ which doesn’t obey (6.3) but,

instead, satisfies ∂µA
µ = f for some function f . Then do a gauge transformation of the

form (6.2). Your new gauge potential will obey ∂µA
µ + �χ = f . This means that if

you can find a gauge transformation χ which satisfies �χ = −f then your new gauge

potential will be in Lorentz gauge. Such a χ can always be found. This follows from

general facts about differential equations. (Note that this proof is essentially the same

as we used in Section 3.2.2 when proving that we could always choose Coulomb gauge

∇ ·A = 0). �

If we are in Lorentz gauge then the Maxwell equations (6.1) become particularly

simple; they reduce to the sourced wave equation

�Aµ =

(
1

c2

∂2

∂t2
−∇2

)
Aµ = µ0J

µ (6.4)

Our goal is to solve this equation, subject to the condition (6.3). As an aside, notice

that this is the same kind of equation as �χ = −f which we needed to solve to go

Lorentz gauge in the first place. This means that the methods we develop below will

allow us to solve figure out both how to go to Lorentz gauge, and also how to solve for

Aµ once we’re there.

In the following, we’ll solve (6.4) in two (marginally) different ways. The first way is

quicker; the second way gives us a deeper understanding of what’s going on.

6.1.1 Green’s Function for the Helmholtz Equation

For our first method, we will Fourier transform Aµ and Jµ in time, but not in space.

We write

Aµ(x, t) =

∫ +∞

−∞

dω

2π
Ãµ(x, ω) e−iωt and Jµ(x, t) =

∫ +∞

−∞

dω

2π
J̃µ(x, ω) e−iωt

Now the Fourier components Ãµ(x, ω) obey the equation(
∇2 +

ω2

c2

)
Ãµ = −µ0J̃µ (6.5)

This is the Helmholtz equation with source given by the current J̃ .

When ω = 0, the Helmholtz equation reduces to the Poisson equation that we needed

in our discussion of electrostatics. We solved the Poisson equation using the method

of Green’s functions when discussing electrostatics in Section 2.2.3. Here we’ll do the
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same for the Helmholtz equation. The Green’s function for the Helmholtz equation

obeys (
∇2 +

ω2

c2

)
Gω(x; x′) = δ3(x− x′)

Translational and rotational invariance ensure that the solutions to this equation are of

the form Gω(x; x′) = Gω(r) with r = |x− x′|. We can then write this as the ordinary

differential equation,

1

r2

d

dr

(
r2dGω

dr

)
+
ω2

c2
Gω = δ3(r) (6.6)

We want solutions that vanish as r → ∞. However, even with this restriction, there

are still two such solutions. Away from the origin, they take the form

Gω ∼
e±iωr/c

r

We will see shortly that there is a nice physical interpretation of these two Green’s

functions. First, let’s figure out the coefficient that sits in front of the Green’s function.

This is determined by the delta-function. We integrate both sides of (6.6) over a ball

of radius R. We get

4π

∫ R

0

dr r2

[
1

r2

d

dr

(
r2dGω

dr

)
+
ω2

c2
Gω

]
= 1

Now, taking the limit R→ 0, only the first term on the left-hand side survives. More-

over, only the first term of dGω/dr ∼ (−1/r2 ± iω/cr)e±iωr/c survives. We find that

the two Green’s functions for the Helmholtz equation are

Gω(r) = − 1

4π

e±iωr/c

r

Note that this agrees with the Green’s function for the Poisson equation when ω = 0.

Retarded Potentials

So which ± sign should we take? The answer depends on what we want to do with the

Green’s function. For our purposes, we’ll nearly always need Gω ∼ e+iωr/c/r. Let’s see

why. The Green’s function Gω allows us to write the Fourier components Ãµ in (6.5)

as

Ãµ(x, ω) =
µ0

4π

∫
d3x′

e+iω|x−x′|/c

|x− x′|
J̃µ(x′, ω)
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which, in turn, means that the time-dependent gauge potential becomes

Aµ(x, t) =
µ0

4π

∫
dω

2π

∫
d3x′

e−iω(t−|x−x′|/c)

|x− x′|
J̃µ(x′)

But now the integral over ω is just the inverse Fourier transform. With one difference:

what was the time variable t has become the retarted time, tret, with

ctret = ct− |x− x′|

We have our final result,

Aµ(x, t) =
µ0

4π

∫
d3x′

Jµ(x′, tret)

|x− x′|
(6.7)

This is called the retarded potential. To determine the contribution at point x and time

t, we integrate the current over all of space, weighted with the Green’s function factor

1/|x− x′| which captures the fact that points further away contribute more weakly.

After all this work, we’ve arrived at something rather nice. The general form of the

answer is very similar to the result for electrostatic potential and magnetostatic vector

potential that we derived in Sections 2 and 3. Recall that when the charge density and

current were independent of time, we found

φ(x) =
1

4πε0

∫
d3x′

ρ(x′)

|x− x′|
and A(x) =

µ0

4π

∫
d3x′

J(x′)

|x− x′|

But when the charge density and current do depend on time, we see from (6.7) that

something new happens: the gauge field at point x and time t depends on the current

configuration at point x′ and the earlier time tret = t−|x−x′|/c. This, of course, is due

to causality. The difference t− tret is just the time it took the signal to propagate from

x′ to x, travelling at the speed of light. Of course, we know that Maxwell’s equations

are consistent with relativity so something like this had to happen; we couldn’t have

signals travelling instantaneously. Nonetheless, it’s pleasing to see how this drops out

of our Green’s functionology.

Finally, we can see what would happen were we to choose the other Green’s function,

Gω ∼ e−iωr/c/r. Following through the steps above, we see that the retarded time tret

is replaced by the advanced time tadv = t + |x − x′|/c. Such a solution would mean

that the gauge field depends on what the current is doing in the future, rather than in

the past. These solutions are typically thrown out as being unphysical. We’ll have (a

little) more to say about them at the end of the next section.
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6.1.2 Green’s Function for the Wave Equation

The expression for the retarded potential (6.7) is important. In this section, we provide

a slightly different derivation. This will give us more insight into the origin of the

retarded and advanced solutions. Moreover, the techniques below will also be useful in

later courses3.

We started our previous derivation by Fourier transforming only the time coordinate,

to change the wave equation into the Helmholtz equation. Here we’ll treat time and

space on more equal footing and solve the wave equation directly. We again make use

of Green’s functions. The Green’s function for the wave equation obeys(
∇2 − 1

c2

∂2

∂t2

)
G(x, t; x′, t′) = δ3(x− x′)δ(t− t′) (6.8)

Translational invariance in space and time means that the Green’s function takes the

form G(x, t; x′, t) = G(x−x′, t−t′). To determine this function G(r, t), with r = x−x′,

we Fourier transform both space and time coordinates,

G(x, t) =

∫
dw d3k

(2π)4
G̃(k, ω) ei(k·r−ωt) (6.9)

Choosing x′ = 0 and t′ = 0, the wave equation (6.8) then becomes(
∇2 − 1

c2

∂2

∂t2

)
G(r, t) =

∫
dw d3k

(2π)4
G̃(ω,k)

(
∇2 − 1

c2

∂2

∂t2

)
ei(k·r−ωt)

=

∫
dw d3k

(2π)4
G̃(k, ω)

(
−k2 +

ω2

c2

)
ei(k·r−ωt)

= δ3(r)δ(t) =

∫
dw d3k

(2π)4
ei(k·r−ωt)

Equating the terms inside the integral, we see that the Fourier transform of the Green’s

function takes the simple form

G̃(k, ω) = − 1

k2 − ω2/c2

But notice that this diverges when ω2 = c2k2. This pole results in an ambiguity in the

Green’s function in real space which, from (6.9), is given by

G(r, t) = −
∫
dw d3k

(2π)4

1

k2 − ω2/c2
ei(k·r−ωt)

3A very similar discussion can be found in the lecture notes on Quantum Field Theory.
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We need some way of dealing with that pole in the integral. To see what’s going on,

it’s useful to change to polar coordinates for the momentum integrals over k. This will

allow us to deal with that eik·r factor. The best way to do this is to think of fixing r

and then choosing the kz axis to point along x. We then write k · r = kr cos θ, and the

Green’s function becomes

G(r, t) = − 1

(2π)4

∫ 2π

0

dφ

∫ π

0

dθ sin θ

∫ ∞
0

dk k2

∫ +∞

−∞
dω

1

k2 − ω2/c2
ei(kr cos θ−ωt)

Now the dφ integral is trivial, while the dθ integral is∫ π

0

dθ sin θ eikr cos θ = − 1

ikr

∫ π

0

dθ

[
d

dθ
eikr cos θ

]
= − 1

ikr

[
e−ikr − e+ikr

]
= 2

sin kr

kr

After performing these angular integrals, the real space Green’s function becomes

G(r, t) =
1

4π3

∫ ∞
0

dk c2k2 sin kr

kr

∫ +∞

−∞
dω

e−iωt

(ω − ck)(ω + ck)

Now we have to face up to those poles. We’ll work by fixing k and doing the ω integral

first. (Afterwards, we’ll then have to do the k integral). It’s clear that we run into two

poles at ω = ±ck when we do the ω integral and we need a prescription for dealing

with these. To do this, we need to pick a contour C in the complex ω plane which

runs along the real axis but skips around the poles. There are different choices for C.

Each of them provides a Green’s function which obeys (6.8) but, as we will now see,

these Green’s functions are different. What’s more, this difference has a nice physical

interpretation.

Retarded Green’s Function

To proceed, let’s just pick a particular C and see what

Re(  )ω

Im(  )ω

C

−k +k

Figure 48:

happens. We choose a contour which skips above the

poles at ω = ±ck as shown in the diagram. This results

in what’s called the retarded Greens function; we denote

it as Gret(r, t). As we now show, it depends crucially on

whether t < 0 or t > 0.

Let’s first look at the case with t < 0. Here, e−iωt → 0

when ω → +i∞. This means that, for t < 0, we can close

the contour C in the upper-half plane as shown in the figure and the extra semi-circle

doesn’t give rise to any further contribution. But there are no poles in the upper-half

plane. This means that, by the Cauchy residue theorem, Gret(r, t) = 0 when t < 0.
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In contrast, when t > 0 we have e−iωt → 0 when ω → −i∞, which means that we

get to close the contour in the lower-half plane. Now we do pick up contributions to

the integral from the two poles at ω = ±ck. This time the Cauchy residue theorem

gives

∫
C

dω
e−iωt

(ω − ck)(ω + ck)
= −2πi

[
e−ickt

2ck
− e+ickt

2ck

]
= −2π

ck
sin ckt (t > 0)

So, for t > 0, the Green’s function becomes

Gret(r, t) = − 1

2π2

1

r

∫ ∞
0

dk c sin kr sin ckt

=
1

4π2

1

r

∫ ∞
−∞

dk
c

4
(eikr − e−ikr)(eickt − e−ickt)

=
1

4π2

1

r

∫ ∞
−∞

dk
c

4
(eik(r+ct) + e−ik(r+ct) − eik(r−ct) − e−ik(r−ct))

Each of these final integrals is a delta-function of the form δ(r ± ct). But, obviously,

r > 0 while this form of the Green’s function is only valid for t > 0. So the δ(r + ct)

terms don’t contribute and we’re left with

Gret(x, t) = − 1

4π

c

r
δ(r − ct) t > 0

We can absorb the factor of c into the delta-function. (Recall that δ(x/a) = |a|δ(x) for

any constant a). So we finally get the answer for the retarded Green’s function

Gret(r, t) =

 0 t < 0

− 1

4πr
δ(tret) t > 0

where tret is the retarded time that we met earlier,

tret = t− r

c

The delta-function ensures that the Green’s function is only non-vanishing on the light-

cone emanating from the origin.
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Finally, with the retarded Green’s function in hand, we can construct what we really

want: solutions to the wave equation (6.4). These solutions are given by

Aµ(x, t) = −µ0

∫
d3x′dt′ Gret(x, t; x

′, t′) Jµ(x′, t′) (6.10)

=
µ0

4π

∫
d3x′dt′

δ(tret)

|x− x′|
Jµ(x′, t′)

=
µ0

4π

∫
d3x′

Jµ(x′, tret)

|x− x′|

Happily, we find the same expression for the retarded potential that we derived previ-

ously in (6.7).

Advanced Green’s Function

Let us briefly look at other Green’s functions. We can
Re(  )ω

Im(  )ω

C

+k−k

Figure 49:

pick the contour C in the complex ω-plane to skip below

the two poles on the real axis. This results in what’s

called the advanced Green’s function. Now, when t >

0, we complete the contour in the lower-half plane, as

shown in the figure, where the lack of poles means that

the advanced Green’s function vanishes. Meanwhile, for

t < 0, we complete the contour in the upper-half plane

and get

Gadv(r, t) =

−
1

4πr
δ(tadv) t < 0

0 t > 0

where

tadv = t+
r

c

The resulting solution gives a solution known as the advanced potential,

Aµ(x, t) =
µ0

4π

∫
d3x′

Jµ(x′, tadv)

|x− x′|

It’s hard to think of this solution as anything other than unphysical. Taken at face

value, the effect of the current and charges now propagates backwards in time to de-

termine the gauge potential Aµ. The sensible thing is clearly to throw these solutions

away.
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However, it’s worth pointing out that the choice of the retarded propagator Gret

rather than the advanced propagator Gadv is an extra ingredient that we should add to

the theory of electromagnetism. The Maxwell equations themselves are time symmetric;

the choice of which solutions are physical is not.

There is some interesting history attached to this. A number of physicists have felt

uncomfortable at imposing this time asymmetry only at the level of solutions, and

attempted to rescue the advanced propagator in some way. The most well-known of

these is the Feynman-Wheeler absorber theory, which uses a time symmetric propaga-

tor, with the time asymmetry arising from boundary conditions. However, I think it’s

fair to say that these ideas have not resulted in any deeper understanding of how time

emerges in physics.

Finally, there is yet another propagator that we can
Re(  )ω

Im(  )ω

C −k

+k

Figure 50:

use. This comes from picking a contour C that skips

under the first pole and over the second. It is known as

the Feynman propagator and plays an important role in

quantum field theory.

6.1.3 Checking Lorentz Gauge

There is a loose end hanging over from our previous discussion. We have derived the

general solution to the wave equation (6.4) for Aµ.This is given by the retarded potential

Aµ(x, t) =
µ0

4π

∫
d3x′

Jµ(x′, tret)

|x− x′|
(6.11)

But the wave equation is only equivalent to the Maxwell equations if it obeys the

Lorentz gauge fixing condition, ∂µA
µ = 0. We still need to check that this holds. In

fact, this follows from the conservation of the current: ∂µJ
µ = 0. To show this, it’s

actually simplest to return to a slightly earlier form of this expression (6.10)

Aµ(x, t) = −µ0

∫
d3x′dt′ Gret(x, t; x

′, t′) Jµ(x′, t′)

The advantage of this is that both time and space remain on an equal footing. We have

∂µA
µ(x, t) = −µ0

∫
d3x′dt′ ∂µGret(x, t; x

′, t′) Jµ(x′, t′)

But now we use the fact that Gret(x, t; x
′, t′) depends on x−x′ and t− t′ to change the

derivative ∂µ acting on x into a derivative ∂′µ acting on x′. We pick up a minus sign for
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our troubles. We then integrate by parts to find,

∂µA
µ(x, t) = +µ0

∫
d3x′dt′ ∂′µGret(x, t; x

′, t′) Jµ(x′, t′)

= −µ0

∫
d3x′dt′ Gret(x, t; x

′, t′) ∂′µJ
µ(x′, t′)

= 0

as required. If you prefer, you can also run through the same basic steps with the form

of the solution (6.11). You have to be a little careful because tret now also depends on

x and x′ so you get extra terms at various stages when you differentiate. But it all

drops out in the wash and you again find that Lorentz gauge is satisfied courtesy of

current conservation.

6.2 Dipole Radiation

Let’s now use our retarded potential do understand something new. This is the set-

up: there’s some localised region V in which there is a time-dependent distribution of

charges and currents. But we’re a long way from this region. We want to know what

the resulting electromagnetic field looks like.

Our basic formula is the retarded potential,

Aµ(x, t) =
µ0

4π

∫
V

d3x′
Jµ(x′, tret)

|x− x′|
(6.12)

The current Jµ(x′, t) is non-zero only for x′ ∈ V . We denote the size of the region V

as d and we’re interested in what’s happening at a point x which is a distance r = |x|
away. (A word of warning: in this section we’re using r = |x| which differs from our

notation in Section 6.1 where we used r = |x− x′|). If |x− x′| � a for all x′ ∈ V then

we can approximate |x−x′| ≈ |x| = r. In fact, we will keep the leading order correction

to this which we get by Taylor expansion. (This is the same Taylor expansion that we

needed when deriving the multipole expansion for electrostatics in Section 2.2.3). We

have

|x− x′| = r − x · x′

r
+ . . .

⇒ 1

|x− x′|
=

1

r
+

x · x′

r3
+ . . . (6.13)

There is a new ingredient compared to the electrostatic case: we have a factor of |x−x′|
that sits inside tret = t− |x− x′|/c as well, so that

Jµ(x′, tret) = Jµ(x′, t− r/c+ x · x′/rc+ . . .)
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Now we’d like to further expand out this argument. But, to do that, we need to know

something about what the current is doing. We will assume hat the motion of the

charges and current are non-relativistic so that the current doesn’t change very much

over the time τ ∼ d/c that it takes light to cross the region V . For example, if the

current varies with characteristic frequency ω (so that J ∼ e−iωt), then this requirement

becomes d/c� 1/ω. Then we can further Taylor expand the current to write

Jµ(x′, tret) = Jµ(x′, t− r/c)− J̇µ(x′, t− r/c) x · x′

rc
+ . . . (6.14)

We start by looking at the leading order terms in both these Taylor expansions.

6.2.1 Electric Dipole Radiation

At leading order in d/r, the retarded potential becomes simply

Aµ(x, t) ≈ µ0

4πr

∫
V

d3x′ Jµ(x′, t− r/c)

This is known as the electric dipole approximation. (We’ll see why very shortly). We

want to use this to compute the electric and magnetic fields far from the localised source.

It turns out to be simplest to first compute the magnetic field using the 3-vector form

of the above equation,

A(x, t) ≈ µ0

4πr

∫
V

d3x′ J(x′, t− r/c)

We can manipulate the integral of the current using the conservation formula ρ̇ +∇ ·
J = 0. (The argument is basically a repeat of the kind of arguments we used in the

magnetostatics section 3.3.2). We do this by first noting the identity

∂j(Jjxi) = (∂jJj)xi + Ji = −ρ̇ xi + Ji

We integrate this over all of space and discard the total derivative to find∫
d3x′ J(x′) =

d

dt

∫
d3x′ ρ(x′) x′ = ṗ

where we recognise p as the electric dipole moment of the configuration. We learn that

the vector potential is determined by the change of the electric dipole moment,

A(x, t) ≈ µ0

4πr
ṗ(t− r/c)

This, of course, is where the electric dipole approximation gets its name.
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We now use this to compute the magnetic field B = ∇×A. There are two contri-

butions: one when ∇ acts on the 1/r term, and another when ∇ acts on the r in the

argument of ṗ. These give, respectively,

B ≈ − µ0

4πr2
x̂× ṗ(t− r/c)− µ0

4πrc
x̂× p̈(t− r/c)

where we’ve used the fact that ∇r = x̂. Which of these two terms is bigger? As we

get further from the source, we would expect that the second, 1/r, term dominates

over the first, 1/r2 term. We can make this more precise. Suppose that the source is

oscillating at some frequency ω, so that p̈ ∼ ωṗ. We expect that it will make waves

at the characteristic wavelength λ = c/ω. Then, as long we’re at distances r � λ, the

second term dominates and we have

B(t,x) ≈ − µ0

4πrc
x̂× p̈(t− r/c) (6.15)

The region r � λ is called the far-field zone or, sometimes, the radiation zone. We’ve

now made two successive approximations, valid if we have a hierarchy of scales in our

problem: r � λ� d.

To get the corresponding electric field, it’s actually simpler to use the Maxwell equa-

tion Ė = c2∇×B. Again, if we care only about large distances, r � λ, the curl of B

is dominated by ∇ acting on the argument of p̈. We get

∇×B ≈ µ0

4πrc2
x̂× (x̂×

...
p(t− r/c))

⇒ E ≈ µ0

4πr
x̂× (x̂× p̈(t− r/c)) (6.16)

Notice that the electric and magnetic field are related in the same way that we saw for

plane waves, namely

E = −c x̂×B

although, now, this only holds when we’re suitably far from the source, r � λ. What’s

happening here is that oscillating dipole is emitting spherical waves. At radius r � λ

these can be thought of as essentially planar.

Notice, also, that the electric field is dropping off slowly as 1/r. This, of course, is

even slower than the usual Coulomb force fall-off.
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6.2.2 Power Radiated: Larmor Formula

We can look at the power radiated away by the source. This is computed by the

Poynting vector which we first met in Section 4.4. It is given by

S =
1

µ0

E×B =
c

µ0

|B|2x̂ =
µ0

16π2r2c
|x̂× p̈|2 x̂

The fact that S lies in the direction x̂ means that the power is emitted radially. The fact

that it drops off as 1/r2 follows from the conservation of energy. It means that the total

energy flux, computed by integrating S over a large surface, is constant, independent

of r.

Although the radiation is radial, it is not uniform. Suppose that the dipole oscillates

in the ẑ direction. Then we have

S =
µ0

16π2r2c
|p̈|2 sin2 θ ẑ (6.17)

where θ is the angle between x̂ and the z-axis. The emitted power is largest in the

plane perpendicular to the dipole. A sketch of this is shown in the figure.

A device which converts currents into electro-

Figure 51:

magnetic waves (typically in the radio spectrum) is

called an antenna. We see that it’s not possible to cre-

ate a dipole antenna which emits radiation uniformly.

There’s actually some nice topology underlying this

observation. Look at a sphere which surrounds the

antenna at large distance. The radiation is emitted

radially, which means that the magnetic field B lies

tangent to the sphere. But there’s an intuitive result

in topology called the hairy ball theorem which says

that you can’t smoothly comb the hair on a sphere. Or, more precisely, there does not

exist a nowhere vanishing vector field on a sphere. Instead, any vector field like B must

vanish at two or more points. In this present context, that ensures that S too vanishes

at two points.

The total radiated power, P , is computed by integrating over a sphere,

P =

∫
S2

d2r · S =
µ0

16π2c
|p̈|2

∫ 2π

0

dφ

∫ π

0

dθ sin3 θ

where one of the factors of sin θ comes from the Jacobian. The integral is easily per-

formed, to get

P =
µ0

6πc
|p̈|2 (6.18)
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Finally, the dipole term p̈ is still time dependent. It’s common practice to compute the

time averaged power. The most common example is when the dipole oscillates with

frequency ω, so that |p̈|2 ∼ cos2(ωt). (Recall that we’re only allowed to work with

complex expressions when we have linear equations). Then, integrating over a period,

T = 2π/ω, just gives an extra factor of 1/2.

Let’s look at a simple example. Take a particle of charge Q, oscillating in the ẑ

direction with frequency ω and amplitude d. Then we have p = pẑeiωt with the dipole

moment p = Qd. Similarly, p̈ = −ω2pẑeiωt. The end result for the time averaged power

P̄ is

P̄ =
µ0p

2ω4

12πc
(6.19)

This is the Larmor formula for the time-averaged power radiated by an oscillating

charge. The formula is often described in terms of the acceleration, a = dω2. Then it

reads

P̄ =
Q2a2

12πε0c3
(6.20)

where we’ve also swapped the µ0 in the numerator for ε0c
2 in the denominator.

6.2.3 An Application: Instability of Classical Matter

The popular picture of an atom consists of a bunch of electrons

Figure 52: This is

not what an atom

looks like.

orbiting a nucleus, like planets around a star. But this isn’t what

an atom looks like. Let’s see why.

We’ll consider a Hydrogen atom, with an electron orbiting around

a proton, fixed at the origin. (The two really orbit each other

around their common centre of mass, but the mass of the electron

is me ≈ 9× 10−31 Kg, while the mass of the proton is about 1800

bigger, so this is a good approximation). The equation of motion

for the electron is

mer̈ = − e2

4πε0

r̂

r2

The dipole moment of the atom is p = er so the equation of motion tells us p̈. Plugging

this into (6.18), we can get an expression for the amount of energy emitted by the

electron,

P =
µ0

6πc

(
e2

4πε0mer2

)2
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As the electron emits radiation, it loses energy and must, therefore, spiral towards the

nucleus. We know from classical mechanics that the energy of the orbit depends on its

eccentricity. For simplicity, let’s assume that the orbit is circular with energy

E = − e2

4πε0

1

2r

Then we can equate the change in energy with the emitted power to get

Ė =
e2

8πε0r2
ṙ = −P = − µ0

6πc

(
e2

4πε0mer2

)2

which gives us an equation that tells us how the radius of the orbit changes,

ṙ = − µ0e
2

12π2cε0m2
er

2

Suppose that we start at some time, t = 0, with a classical orbit with radius r0. Then

we can calculate how long it takes for the electron to spiral down to the origin at r = 0.

It is

T =

∫ T

0

dt =

∫ 0

r0

1

ṙ
dr =

4π2cε0m
2
er

3
0

µ0e2

Now let’s plug in some small numbers. We can take the size of the atom to be r0 ≈
5 × 10−11m. (This is roughly the Bohr radius that can be derived theoretically using

quantum mechanics). Then we find that the lifetime of the hydrogen atom is

T ≈ 10−11 s

That’s a little on the small size. The Universe is 14 billion years old and hydrogen

atoms seem in no danger of decaying.

Of course, what we’re learning here is something dramatic: the whole framework of

classical physics breaks down when we look at the atomic scale and has to be replaced

with quantum mechanics. And, although we talk about electron orbits in quantum

mechanics, they are very different objects than the classical orbits drawn in the picture.

In particular, an electron in the ground state of the hydrogen atom emits no radiation.

(Electrons in higher states do emit radiation with some probability, ultimately decaying

down to the ground state).

6.2.4 Magnetic Dipole and Electric Quadrupole Radiation

The electric dipole approximation to radiation is sufficient for most applications. Ob-

vious exceptions are when the dipole p vanishes or, for some reason, doesn’t change in

time. For completeness, we describe here the leading order corrections to the electric

dipole approximations.
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The Taylor expansion of the retarded potential was given in (6.13) and (6.14).

Putting them together, we get

Aµ(x, t) =
µ0

4π

∫
A

d3x′
Jµ(x′, tret)

|x− x′|

=
µ0

4πr

∫
A

d3x′
(
Jµ(x′, t− r/c)− J̇µ(x′, t− r/c) x · x′

rc

)(
1 +

x · x′

r2

)
+ . . .

The first term is the electric dipole approximation that we discussed in above. We will

refer to this as AED
µ . Corrections to this arise as two Taylor series. Ultimately we will

only be interested in the far-field region. At far enough distance, the terms in the first

bracket will always dominate the terms in the second bracket, which are suppressed by

1/r. We therefore have

Aµ(x, t) ≈ AED
µ (x, t)− µ0

4πr2c

∫
A

d3x′ (x · x′)J̇µ(x′, t− r/c)

As in the electric dipole case, it’s simplest if we focus on the vector potential

A(x, t) ≈ AED(x, t)− µ0

4πr2c

∫
d3x′ (x · x′) J̇(x′, t− r/c) (6.21)

The integral involves the kind of expression that we met first when we discussed mag-

netic dipoles in Section 3.3.2. We use the slightly odd expression,

∂j(Jjxixk) = (∂jJj)xixk + Jixk + Jkxi = −ρ̇xixk + Jixk + Jkxi

Because J in (6.21) is a function of x′, we apply this identity to the Jix
′
j terms in the

expression. We drop the boundary term at infinity, remembering that we’re actually

dealing with J̇ rather than J , write the integral above as∫
d3x′ xjx

′
jJ̇i =

xj
2

∫
d3x′ (x′jJ̇i − x′iJ̇j + ρ̈x′ix

′
j)

Then, using the appropriate vector product identity, we have∫
d3x′ (x · x′)J̇ = −1

2
x×

∫
d3x′ J̇× x′ +

1

2

∫
d3x′ (x · x′)x′ ρ̈

Using this, we may write (6.21) as

A(x, t) ≈ AED(x, t) + AMD(x, t) + AEQ(x, t)

where AMD is the magnetic dipole contribution and is given by

AMD(x, t) = − µ0

8πr2c
x×

∫
d3x′ x′ × J̇(x′, t− r/c) (6.22)
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and AEQ is the electric quadrupole contribution and is given by

AEQ(x, t) = − µ0

8πr2c

∫
d3x′ (x · x′)x′ ρ̈(x′, t− r/c) (6.23)

The names we have given to each of these contributions will become clearer as we look

at their properties in more detail.

Magnetic Dipole Radiation

Recall that, for a general current distribution, the magnetic dipole m is defined by

m =
1

2

∫
d3x′ x′ × J(x′)

The magnetic dipole contribution to radiation (6.22) can then be written as

AMD(x, t) = − µ0

4πrc
x̂× ṁ(t− r/c)

This means that varying loops of current will also emit radiation. Once again, the

leading order contribution to the magnetic field, B = ∇×A, arises when the curl hits

the argument of m. We have

BMD(x, t) ≈ µ0

4πrc2
x̂× (x̂× m̈(t− r/c))

Using the Maxwell equation ĖMD = c2∇×BMD to compute the electric field, we have

EMD(x, t) ≈ − µ0

4πrc
x̂× m̈(t− r/c)

The end result is very similar to the expression for B and E that we saw in (6.15) and

(6.16) for the electric dipole radiation. This means that the radiated power has the

same angular form, with the Poynting vector now given by

SMD =
µ0

16π2r2c4
|m̈|2 sin2 θ ẑ (6.24)

Integrating over all space gives us the power emitted,

PMD =
µ0

6πc
|m̈|2 (6.25)

This takes the same form as the electric dipole result (6.18), but with the electric dipole

replaced by the magnetic dipole. Notice, however, that for non-relativistic particles, the

magnetic dipole radiation is substantially smaller than the electric dipole contribution.

For a particle of charge Q, oscillating a distance d with frequency ω, we have p ∼ Qd

and m ∼ Qd2ω2. This means that the ratio of radiated powers is

PMD

PED
∼ dω2

c2
∼ v2

c2

where v is the speed of the particle.
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Electric Quadrupole Radiation

The electric quadrupole tensor Qij arises as the 1/r4 term in the expansion of the

electric field for a general, static charge distribution. It is defined by

Qij =

∫
d3x′ ρ(x′)

(
3x′ix

′
j − δijx′ 2

)
This is not quite of the right form to account for the contribution to the potential

(6.23). Instead, we have

AEQ
i (x, t) = − µ0

24πr2c

(
xjQ̈ij(t− r/c) + xi

∫
d3x′ x′2ρ̈(x′, t− r/c)

)
The second term looks like a mess, but it doesn’t do anything. This is because it’s

radial and so vanishes when we take the curl to compute the magnetic field. Neither

does it contribute to the electric field which, in our case, we will again determine from

the Maxwell equation. This means we are entitled to write

AEQ(x, t) = − µ0

24πr2c
x · Q̈(t− r/c)

where (x · Q)i = xjQij. Correspondingly, the magnetic and electric fields at large

distance are

BEQ(x, t) ≈ µ0

24πrc2
x̂× (x̂ · Q̈)

EEQ(x, t) ≈ µ0

24πrc
((x̂ ·Q · x̂)x̂− (x̂ ·Q))

We may again compute the Poynting vector and radiated power. The details depend on

the exact structure of Q, but the angular dependence of the radiation is now different

from that seen in the dipole cases.

Finally, you may wonder about the cross terms between the ED, MD and EQ com-

ponents of the field strengths when computing the quadratic Poynting vector. It turns

out that, courtesy of their different spatial structures, these cross-term vanish when

computing the total integrated power.

6.2.5 An Application: Pulsars

Pulsars are lighthouses in the sky, spinning neutron stars continuously beaming out

radiation which sweeps past our line of sight once every rotation. They have been

observed with periods between 10−3 seconds and 8 seconds.
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Neutron stars typically carry a very large magnetic field. This arises from the parent

star which, as it collapses, reduces in size by a factor of about 105. This squeezes the

magnetic flux lines, which gets multiplied by a factor of 1010. The resulting magnetic

field is typically around 108 Tesla, but can be as high as 1011 Tesla. For comparison,

the highest magnetic field that we have succeeded in creating in a laboratory is a paltry

100 Tesla or so.

The simplest model of a pulsar has the resulting magnetic Ω

m

α

Figure 53:

dipole moment m of the neutron star misaligned with the angular

velocity. This resulting magnetic dipole radiation creates the desired

lighthouse effect. Consider the set-up shown in the picture. We take

the pulsar to rotate about the z-axis with frequency Ω. The magnetic

moment sits at an angle α relative to the z-axis, so rotates as

m = m0 (sin(α) cos(Ωt)x̂ + sin(α) cos(Ωt)ŷ + cosαẑ)

The power emitted (6.25) is then

P =
µ0

6πc
m2

0Ω2 sin2 α

At the surface of the neutron star, it’s reasonable to assume that the magnetic field is

given by the dipole moment. In Section 3.3, we computed the magnetic field due to a

dipole moment: it is

B(r) =
µ0

4π

(
3(m · r̂)r̂−m

R3

)
where R is the radius of the star. This means that Bmax = µ0m0/2πR

3 and the power

emitted is

P =
2πR6B2

max

3cµ0

Ω2 sin2 α (6.26)

Because the pulsar is emitting radiation, it must lose energy. And this means it slows

down. The rotational energy of a the pulsar is given by

E =
1

2
IΩ2

where I = 2
5
MR2 is the moment of inertia of a sphere of mass M and radius R.

Equating the power emitted with the loss of rotational kinetic energy gives

P = −Ė = −IΩΩ̇ (6.27)
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Figure 54: A composite image of the Crab Nebula, taken by the Hubble, Chandra and

Spitzer space telescopes.

Let’s put some big numbers into these equations. In 1054, Chinese astronomers saw a

new star appear in the sky. 6500 light years away, a star had gone supernova. It left

behind a pulsar which, today, emits large quantities of radiation, illuminating the part

of the sky we call the Crab nebula. This is shown in the picture.

The Crab pulsar has mass M ≈ 1.4MSun ≈ 3 × 1030 Kg and radius R ≈ 15 km. It

spins about 30 times a second, so Ω ≈ 60π s−1. It’s also seen to be slowing down with

Ω̇ = −2× 10−9 s−2. From this information alone, we can calculate that it loses energy

at a rate of Ė = IΩΩ̇ ≈ −1032 Js−1. That’s a whopping amount of energy to be losing

every second. In fact, it’s enough energy to light up the entire Crab nebula. Which, of

course, it has to be! Moreover, we can use (6.26) and (6.27) to estimate the magnetic

field on the surface of the pulsar. Plugging in the numbers give Bmax sinα ≈ 108 Tesla.

6.3 Scattering

In this short section, we describe the application of our radiation formulae to the

phenomenon of scattering. Here’s the set-up: an electromagnetic wave comes in and

hits a particle. In response, the particle oscillates and, in doing so, radiates. This new

radiation moves out in different directions from the incoming wave. This is the way

that light is scattered.

6.3.1 Thomson Scattering

We start by considering free, charged particles where the process is known as Thomson
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scattering. The particles respond to an electric field by accelerating, as dictated by

Newton’s law

mẍ = qE

The incoming radiation takes the form E = E0e
i(k·r−ωt). To solve for the motion of the

particle, we’re going to assume that it doesn’t move very far from its central position,

which we can take to be the origin r = 0. Here, “not very far” means small compared

to the wavelength of the electric field. In this case, we can replace the electric field by

E ≈ E0e
−iωt, and the particle undergoes simple harmonic motion

x(t) = − qE0

mω2
sin(ωt)

We should now check that the motion of the particle is indeed small compared to the

wavelength of light. The maximum distance that the particle gets is xmax = qE0/mω
2,

so our analysis will only be valid if we satisfy

qE0

mω2
� c

ω
⇒ qE0

mωc
� 1 (6.28)

This requirement has a happy corollary, since it also ensures that the maximum speed

of the particle vmax = qE0/mω � c, so the particle motion is non-relativistic. This

means that we can use the dipole approximation to radiation that we developed in the

previous section. We computed the time-averaged radiated power in (6.20): it is given

by

P̄radiated =
µ0q

4E2
0

12πm2c

It’s often useful to compare the strength of the emitted radiation to that of the incoming

radiation. The relevant quantity to describe the incoming radiation is the time-averaged

magnitude of the Poynting vector. Recall from Section 4.4 that the Poynting vector

for a wave with wavevector k is

S =
1

µ0

E×B =
cE2

0

µ0

k̂ sin2(k · x− ωt)

Taking the time average over a single period, T = 2π/ω, gives us the average energy

flux of the incoming radiation,

S̄incident =
cE2

0

2µ0
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with the factor of two coming from the averaging. The ratio of the outgoing to incoming

powers is called the cross-section for scattering. It is given by

σ =
P̄radiated

S̄incident

=
µ2

0q
4

6πm2c2

The cross-section has the dimensions of area. To highlight this, it’s useful to write it

as

σ =
8π

3
r2
q (6.29)

where the length scale rq is known as the classical radius of the particle and is given by

q2

4πε0rq
= mc2

This equation tells us how to think of rq. Up to some numerical factors, it equates

the Coulomb energy of a particle in a ball of size rq with its relativistic rest mass.

Ultimately, this is not the right way to think of the size of point particles. (The right

way involves quantum mechanics). But it is a useful concept in the classical world. For

the electron, re ≈ 2.8× 10−15 m.

The Thompson cross-section (6.29) is slightly smaller than the (classical) geometric

cross-section of the particle (which would be the area of the disc, 4πr2
q). For us, the

most important point is that the cross-section does not depend on the frequency of

the incident light. It means that all wavelengths of light are scattered equally by

free, charged particles, at least within the regime of validity (6.28). For electrons, the

Thomson cross-section is σ ≈ 6× 10−30 m2.

6.3.2 Rayleigh Scattering

Rayleigh scattering describes the scattering of light off a neutral atom or molecule.

Unlike in the case of Thomson scattering, the centre of mass of the atom does not

accelerate. Instead, as we saw in Section 7.1.1, the atom undergoes polarisation

p = αE

We presented a simple atomic model to compute the proportionality constant in Section

7.5.1, where we showed that it takes the form (7.29),

α =
q2/m

−ω2 + ω2
0 − iγω
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Figure 55: Now you know why.

Here ω0 is the natural oscillation frequency of the atom while ω is the frequency of

incoming light. For many cases of interest (such as visible light scattering off molecules

in the atmosphere), we have ω0 � ω, and we can approximate α as a constant,

α ≈ q2

ω2
0m

We can now compute the time-average power radiated in this case. It’s best to use

the version of Larmor’s fomula involving the electric dipole (6.19), since we can just

substitute in the results above. We have

P̄radiated =
µ0α

2E2
0ω

4

12πc

In this case, the cross-section for Rayleigh scattering is given by

σ =
P̄radiated

S̄incident

=
µ2

0q
4

6πm2c2

(
ω

ω0

)4

=
8πr2

q

3

(
ω

ω0

)4

We see that the cross-section now has more structure. It increases for high frequencies,

σ ∼ ω4 or, equivalently, for short wavelengths σ ∼ 1/λ4. This is important. The most

famous example is the colour of the sky. Nitrogen and oxygen in the atmosphere scatter

short-wavelength blue light more than the long-wavelength red light. This means that

the blue light from the Sun gets scattered many times and so appears to come from all

regions of the sky. In contrast, the longer wavelength red and yellow light gets scattered

less, which is why the Sun appears to be yellow. (In the absence of an atmosphere, the

light from the Sun would be more or less white). This effect is particularly apparent at
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sunset, when the light from the Sun passes through a much larger slice of atmosphere

and, correspondingly, much more of the blue light is scattered, leaving behind only red.

6.4 Radiation From a Single Particle

In the previous section, we have developed the multipole expansion for radiation emitted

from a source. We needed to invoke a couple of approximations. First, we assumed

that we were far from the source. Second, we assumed that the motion of charges and

currents within the source was non-relativistic.

In this section, we’re going to develop a formalism which does not rely on these

approximations. We will determine the field generated by a particle with charge q,

moving on an arbitrary trajectory r(r), with velocity v(t) and acceleration a(t). It

won’t matter how far we are from the particle; it won’t matter how fast the particle is

moving. The particle has charge density

ρ(x, t) = qδ3(x− r(t)) (6.30)

and current

J(x, t) = q v(t)δ3(x− r(t)) (6.31)

Our goal is find the general solution to the Maxwell equations by substituting these

expressions into the solution (6.7) for the retarded potential,

Aµ(x, t) =
µ0

4π

∫
d3x′

Jµ(x′, tret)

|x− x′|
(6.32)

The result is known as Liénard-Wierchert potentials.

6.4.1 Liénard-Wierchert Potentials

If we simply plug (6.30) into the expression for the retarded electric potential (6.32),

we get

φ(x, t) =
q

4πε0

∫
d3x′

1

|x− x′|
δ3(x′ − r(tret))

Here we’re denoting the position of the particle as r(t), while we’re interested in the

value of the electric potential at some different point x which tdoes not lie on the

trajectory r(t). We can use the delta-function to do the spatial integral, but it’s a little

cumbersome because the x′ appears in the argument of the delta-function both in the
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obvious place, and also in tret = t − |x − x′|/c. It turns out to be useful to shift this

awkwardness into a slightly different delta-function over time. We write,

φ(x, t) =
q

4πε0

∫
dt′
∫
d3x′

1

|x− x′|
δ3(x′ − r(t′))δ(t′ − tret)

=
q

4πε0

∫
dt′

1

|x− r(t′)|
δ(t− t′ − |x− r(t′)|/c) (6.33)

We still have the same issue in doing the
∫
dt′ integral, with t′ appearing in two places

in the argument. But it’s more straightforward to see how to deal with it. We introduce

the separation vector

R(t) = x− r(t)

Then, if we define f(t′) = t′ +R(t′)/c, we can write

φ(x, t) =
q

4πε0

∫
dt′

1

R(t′)
δ(t− f(t′))

=
q

4πε0

∫
df

dt′

df

1

R(t′)
δ(t− f(t′))

=
q

4πε0

[
dt′

df

1

R(t′)

]
f(t′)=t

A quick calculation gives

df

dt′
= 1− R̂(t′) · v(t′)

c

with v(t) = ṙ(t) = −Ṙ(t). This leaves us with our final expression for the scalar

potential

φ(x, t) =
q

4πε0

[
c

c− R̂(t′) · v(t′)

1

R(t′)

]
ret

(6.34)

Exactly the same set of manipulations will give us a similar expression for the vector

potential,

A(x, t) =
qµ0

4π

[
c

c− R̂(t′) · v(t′)

v(t′)

R(t′)

]
ret

(6.35)

Equations (6.34) and (6.35) are the Liénard-Wierchert potentials. In both expressions

“ret” stands for “retarded” and means that they should be evaluated at time t′ deter-

mined by the requirement that

t′ +R(t′)/c = t (6.36)
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This equation has an intuitive explanation. If you trace back
r(t) x

t
/

Figure 56:

light-sheets from the point x, they intersect the trajectory of

the particle at time t′, as shown in the figure. The Liénard-

Wierchert potentials are telling us that the field at point x

is determined by what the particle was doing at this time t′.

6.4.2 A Simple Example: A Particle Moving with

Constant Velocity

The Liénard-Wierchert potentials (6.34) and (6.35) have

the same basic structure that we for the Coulomb law in electrostatics and the Biot-

Savart law in magnetostatics. The difference lies in the need to evaluate the potentials

at time t′. But there is also the extra factor 1/(1− R̂ ·v/c). To get a feel for this, let’s

look at a simple example. We’ll take a particle which moves at constant speed in the

ẑ direction, so that

r(t) = vtẑ ⇒ v(t) = vẑ

To simplify life even further, we’ll compute the potentials at a point in the z = 0 plane,

so that x = (x, y, 0). We’ll ask how the fields change as the particle passes through.

The equation (6.36) to determine the retarded time becomes

t′ +
√
x2 + y2 + v2t′ 2/c = t

Squaring this equation (after first making the right-hand side t−t′) gives us a quadratic

in t′,

t′ 2 − 2γ2tt′ + γ2(t2 − r2/c2) = 0

where we see the factor γ = (1 − v2/c2)−1/2, familiar from special relativity naturally

emerging. The quadratic has two roots. We’re interested in the one with the minus

sign, corresponding to the retarded time. This is

t′ = γ2t− γ

c

√
v2t2 + r2/γ2 (6.37)

We now need to deal with the various factors in the numerator of the Liénard-Wierchert

potential (6.34). Pleasingly, they combine together nicely. We have R(t′) = c(t − t′).
Meanwhile, R(t′) · v(t′) = (x− r(t′)) · v = −r(t′) · v = −v2t′ since we’ve taken x to lie
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perpendicular to v. Put together, this gives us

φ(x, t) =
q

4πε0

1

[1 + v2t′/c(t− t′)]
1

c(t− t′)

=
q

4πε0

1

c(t− t′) + v2t′

=
1

4πε0

1

c(t− t′/γ2)

But, using our solution (6.37), this becomes

φ(x, t) =
q

4πε0

1

[v2t2 + (x2 + y2)/γ2]

Similarly, the vector potential is

A(x, t) =
qµ0

4π

v

[v2t2 + (x2 + y2)/γ2]

How should we interpret these results? The distance from the particle to the point x is

r2 = x2 + y2 + v2t2. The potentials look very close to those due to a particle a distance

r away, but with one difference: there is a contraction in the x and y directions. Of

course, we know very well what this means: it is the usual Lorentz contraction in special

relativity.

In fact, we previously derived the expression for the electric and magnetic field of a

moving particle in Section 5.3.4, simply by acting with a Lorentz boost on the static

fields. The calculation here was somewhat more involved, but it didn’t assume any rel-

ativity. Instead, the Lorentz contraction follows only by solving the Maxwell equations.

Historically, this kind of calculation is how Lorentz first encountered his contractions.

6.4.3 Computing the Electric and Magnetic Fields

We now compute the electric and magnetic fields due to a particle undergoing arbitrary

motion. In principle this is straightforward: we just need to take our equations (6.34)

and (6.35)

φ(x, t) =
q

4πε0

[
c

c− R̂(t′) · v(t′)

1

R(t′)

]
ret

A(x, t) =
qµ0

4π

[
c

c− R̂(t′) · v(t′)

v(t′)

R(t′)

]
ret

where R(t′) = x − r(t′). We then plug these into the standard expressions for the

electric field E = −∇φ − ∂A/∂t and the magnetic field B = ∇ × A. However, in
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practice, this is a little fiddly. It’s because the terms in these equations are evaluated

at the retarded time t′ determined by the equation t′ + R(t′)/c = t. This means that

when we differentiate (either by ∂/∂t or by ∇), the retarded time also changes and

so gives a contribution. It turns out that it’s actually simpler to return to our earlier

expression (6.33),

φ(x, t) =
q

4πε0

∫
dt′

1

R(t′)
δ(t− t′ −R(t′)/c)

and a similar expression for the vector potential,

A(x, t) =
qµ0

4π

∫
dt′

v(t′)

R(t′)
δ(t− t′ −R(t′)/c) (6.38)

This will turn out to be marginally easier to deal with.

The Electric Field

We start with the electric field E = −∇φ − ∂A/∂t. We call the argument of the

delta-function

s = t− t′ −R(t′)

We then have

∇φ =
q

4πε0

∫
dt′

[
−∇R
R2

δ(s)− 1

R
δ′(s)

∇R
c

]
=

q

4πε0

∫
ds

∣∣∣∣∂t′∂s
∣∣∣∣ [−∇RR2

δ(s)− ∇R
Rc

δ′(s)

]
(6.39)

The Jacobian factor from changing the integral variable is the given by

∂s

∂t′
= −1 + R̂(t′) · v(t′)/c

This quantity will appear a lot in what follows, so we give it a new name. We define

κ = 1− R̂(t′) · v(t′)/c

so that ∂t′/∂s = −1/κ. Integrating the second term in (6.39) by parts, we can then

write

∇φ =
q

4πε0

∫
ds

[
−∇R
κR2

+
d

ds

(
∇R
κRc

)]
δ(s)

=
q

4πε0

∫
ds

[
−∇R
κR2

− 1

κ

d

dt′

(
∇R
κRc

)]
δ(s)
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Meanwhile, the vector potential term gives

∂A

∂t
=
qµ0

4π

∫
dt′

v

R
δ′(s)

∂s

∂t

But ∂s/∂t = 1. Moving forward, we have

∂A

∂t
=
qµ0

4π

∫
ds

∣∣∣∣∂t′∂s
∣∣∣∣ v

R
δ′(s)

= −qµ0

4π

∫
ds

[
d

ds

( v

κR

)]
δ(s)

=
qµ0

4π

∫
ds

1

κ

[
d

dt′

( v

κR

)]
δ(s)

Putting this together, we get

E =
q

4πε0

∫
ds

[
∇R
κR2

+
1

κc

d

dt′

(
∇R− v/c

κR

)]
δ(s)

=
q

4πε0

[
R̂

κR2
+

1

κc

d

dt′

(
R̂− v/c

κR

)]
ret

(6.40)

We’re still left with some calculations to do. Specifically, we need to take the derivative

d/dt′. This involves a couple of small steps. First,

dR̂

dt′
=

d

dt′

(
R

R

)
= −v

R
+

R

R2
(R̂ · v) = − 1

R

(
v − (v · R̂)R̂

)
Also,

d

dt′
(κR) =

d

dt′
(R−R · v/c) = −v · R̂ + v2/c−R · a/c

Putting these together, we get

d

dt′

(
R̂− v/c

κR

)
= − 1

κR2

(
v − v · R̂

)
− a

κRc
+

R̂− v/c

κ2R2

(
v · R̂− v2/c+ R · a/c

)
We write the v · R̂ terms as v · R̂ = c(1− κ). Then, expanding this out, we find that

a bunch of terms cancel, until we’re left with

d

dt′

(
R̂− v/c

κR

)
= −cR̂

R2
+
c(R̂− v/c)

κ2R2
(1− v2/c2) +

1

κ2Rc

[
(R̂− v/c) R̂ · a− κa

]
= −cR̂

R2
+
c(R̂− v/c)

γ2κ2R2
+

R̂× [(R̂− v/c)× a]

κ2Rc
(6.41)
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where we’ve introduced the usual γ factor from special relativity: γ2 = 1/(1− v2/c2).

Now we can plug this into (6.40) to find our ultimate expression for the electric field,

E(x, t) =
q

4πε0

[
R̂− v/c

γ2κ3R2
+

R̂× [(R̂− v/c)× a]

κ3Rc2

]
ret

(6.42)

Since it’s been a long journey, let’s recall what everything in this expression means.

The particle traces out a trajectory r(t), while we sit at some position x which is

where the electric field is evaluated. The vector R(t) is the difference: R = x − r.

The ret subscript means that we evaluate everything in the square brackets at time t′,

determined by the condition t′ +R(t′)/c = t. Finally,

κ = 1− R̂ · v
c

and γ2 =
1

1− v2/c2

The electric field (6.42) has two terms.

• The first term drops off as 1/R2. This is what becomes of the usual Coulomb

field. It can be thought of as the part of the electric field that remains bound to

the particle. The fact that it is proportional to R̂, with a slight off-set from the

velocity, means that it is roughly isotropic.

• The second term drops off as 1/R and is proportional to the acceleration. This

describes the radiation emitted by the particle. Its dependence on the acceleration

means that it’s highly directional.

The Magnetic Field

To compute the magnetic field, we start with the expression (6.38),

A(x, t) =
qµ0

4π

∫
dt′

v(t′)

R(t′)
δ(s)

with s = t− t′ −R(t′)/c. Then, using similar manipulations to those above, we have

B = ∇×A =
qµ0

4π

∫
dt′

[
−∇R
R2
× v δ(s) +

∇s× v

R
δ′(s)

]
=
qµ0

4π

∫
ds

[
−∇R
κR2

× v − 1

κ

d

dt′

(
∇R× v

κRc

)]
δ(s) (6.43)
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We’ve already done the hard work necessary to compute this time derivative. We can

write,

d

dt′

(
∇R× v

κR

)
=

d

dt′

(
(R̂− v/c)× v

κR

)

=
d

dt′

(
R̂− v/c

κR

)
× v +

R̂− v/c

κR
× a

Now we can use (6.41). A little algebra shows that terms of the form v×a cancel, and

we’re left with

d

dt′

(
R̂× v

κR

)
= −cR̂× v

R2
+
cR̂× v

γ2κ2R2
+

(R · a) R̂× v

cκ2R2
+

R̂× a

κR

Substituting this into (6.43), a little re-arranging of the terms gives us our final expres-

sion for the magnetic field,

B = −qµ0

4π

[
R̂× v

γ2κ3R2
+

(R̂ · a)(R̂× v/c) + κR̂× a

cκ3R

]
ret

(6.44)

We see that this has a similar form to the electric field (6.42). The first term falls off as

1/R2 and is bound to the particle. It vanishes when v = 0 which tells us that a charged

particle only gives rise to a magnetic field when it moves. The second term falls off as

1/R. This is generated by the acceleration and describes the radiation emitted by the

particle. You can check that E in (6.42) and B in (6.44) are related through

B =
1

c
[R̂]ret × E (6.45)

as you might expect.

6.4.4 A Covariant Formalism for Radiation

Before we make use of the Liénard-Wierchert potentials, we’re going to do something

a little odd: we’re going to derive them again. This time, however, we’ll make use of

the Lorentz invariant notation of electromagnetism. This won’t teach us anything new

about physics and the results of this section aren’t needed for what follows. But it will

give us some practice on manipulating these covariant quantities. Moreover, the final

result will be pleasingly concise.
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A Covariant Retarded Potential

We start with our expression for the retarded potential (6.32) in terms of the current,

Aµ(x, t) =
µ0

4π

∫
d3x′

Jµ(x′, tret)

|x− x′|
(6.46)

with tret = t−|x−x′|/c. This has been the key formula that we’ve used throughout this

section. Because it was derived from the Maxwell equations, this formula should be

Lorentz covariant, meaning that someone in a different inertial frame will write down

the same equation. Although this should be true, it’s not at all obvious from the way

that (6.46) is written that it actually is true. The equation involves only integration

over space, and the denominator depends only on the spatial distance between two

points. Neither of these are concepts that different observers agree upon.

So our first task is to rewrite (6.46) in a way which is manifestly Lorentz covariant.

To do this, we work with four-vectors Xµ = (ct,x) and take a quantity which everyone

agrees upon: the spacetime distance between two points

(X −X ′)2 = ηµν(X
µ −X ′ ν)(Xµ −X ′ ν) = c2(t− t′)2 − |x− x′|2

Consider the delta-function δ((X − X ′)2), which is non-vanishing only when X and

X ′ are null-separated. This is a Lorentz-invariant object. Let’s see what it looks like

when written in terms of the time coordinate t. We will need the general result for

delta-functions

δ(f(x)) =
∑
xi

δ(x− xi)
|f ′(xi)|

(6.47)

where the sum is over all roots f(xi) = 0. Using this, we can write

δ
(
(X −X ′)2

)
= δ ([c(t′ − t) + |x− x′|][c(t′ − t)− |x− x′|])

=
δ(ct′ − ct+ |x− x′|)

2c|t− t′|
+
δ(ct′ − ct− |x− x′|)

2c|t− t′|

=
δ(ct′ − ct+ |x− x′|)

2|x− x′|
+
δ(ct′ − ct− |x− x′|)

2|x− x′|

The argument of the first delta-function is ct′ − ctret and so this term contributes only

if t′ < t. The argument of the second delta-function is ct′ − ctadv and so this term can

contribute only contribute if t′ > t. But the temporal ordering of two spacetime points

is also something all observers agree upon, as long as those points are either timelike

or null separated. And here the delta-function requires the points to be null separated.
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This means that if we picked just one of these terms, that choice would be Lorentz

invariant. Mathematically, we do this using the Heaviside step-function

Θ(t− t′) =

{
1 t > t′

0 t < t′

We have

δ
(
(X −X ′)2

)
Θ (t− t′) =

δ(ct′ − ctret)

2|x− x′|
(6.48)

The left-hand side is manifestly Lorentz invariant. The right-hand side doesn’t look

Lorentz invariant, but this formula tells us that it must be! Now we can make use of

this to rewrite (6.46) in a way that the Lorentz covariance is obvious. It is

Aµ(X) =
µ0

2π

∫
d4X ′ Jµ(X ′) δ

(
(X −X ′)2

)
Θ (t− t′) (6.49)

where the integration is now over spacetime, d4X ′ = c dt′ d3x′. The combination of

the delta-function and step-functions ensure that this integration is limited to the past

light-cone of a point.

A Covariant Current

Next, we want a covariant expression for the current formed by a moving charged

particle. We saw earlier that a particle tracing out a trajectory y(t) gives rise to a

charge density (6.30) and current (6.31) given by

ρ(x, t) = q δ3(x− y(t)) and J(x, t) = q v(t) δ3(x− y(t)) (6.50)

(We’ve changed notation from r(t) to y(t) to denote the trajectory of the particle).

How can we write this in a manifestly covariant form?

We know from our course on Special Relativity that the best way to parametrise the

worldline of a particle is by using its proper time τ . We’ll take the particle to have

trajectory Y µ(τ) = (ct(τ),y(τ)). Then the covariant form of the current is

Jµ(X) = qc

∫
dτ Ẏ µ(τ) δ4(Xν − Y ν(τ)) (6.51)

It’s not obvious that (6.51) is the same as (6.50). To see that it is, we can decompose

the delta-function as

δ4(Xν − Y ν(τ)) = δ(ct− Y 0(τ)) δ3(x− y(τ))
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The first factor allows us to do the integral over dτ , but at the expense of picking up

a Jacobian-like factor 1/Ẏ 0 from (6.47). We have

Jµ =
qcẎ µ

Ẏ 0
δ3(x− y(τ))

which does give us back the same expressions (6.50).

Covariant Liènard-Wierchert Potentials

We can now combine (6.49) and (6.51) to get the retarded potential,

Aµ(X) =
µ0qc

4π

∫
d4X ′

∫
dτ Ẏ µ(τ) δ4(X ′ ν − Y ν(τ))

δ(ct′ − ctret)

|x− x′|

=
µ0qc

4π

∫
dτ Ẏ µ(τ)

δ(ct− Y 0(τ)− |x− y(τ)|
|x− y(τ)|

This remaining delta-function implicitly allows us to do the integral over proper time.

Using (6.48) we can rewrite it as

δ(ct− Y 0(τ)− |x− y(τ)|)
2|x− y(τ)|

= δ(R(τ) ·R(τ)) Θ(R0(τ)) (6.52)

where we’re introduced the separation 4-vector

Rµ = Xµ − Y µ(τ)

The delta-function and step-function in (6.52) pick out a unique value of the proper

time that contributes to the gauge potential at point X. We call this proper time τ?.

It is the retarded time lying along a null direction, R(τ?) · R(τ?) = 0. This should be

thought of as the proper time version of our previous formula (6.36).

The form (6.52) allows us to do the integral over τ . But we still pick up a Jacobian-

like factor from (6.47). This gives

δ(R(τ) ·R(τ)) Θ(R0(τ)) =
δ(τ − τ?)

2|Rµ(τ?)Ẏ µ(τ?)|

Putting all of this together gives our covariant form for the Liènard-Wierchert potential,

Aµ(X) =
µ0qc

4π

Ẏ µ(τ?)

|Rν(τ?)Ẏν(τ?)|

This is our promised, compact expression. Expanding it out will give the previous

results for the scalar (6.34) and vector (6.35) potentials. (To see this, you’ll need to

first show that |Rν(τ?)Ẏ
ν(τ?)| = cγ(τ?)R(τ?)(1− R̂(τ?) · v(τ?)/c).)
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The next step is to compute the field strength Fµν = ∂µAν − ∂νAµ. This is what

took us some time in Section 6.4.3. It turns out to be somewhat easier in the covariant

approach. We need to remember that τ? is a function of Xµ. Then, we get

Fµν =
µ0qc

4π

(
Ÿν(τ?)

|Rρ(τ?)Ẏρ(τ?)|
∂τ?
∂Xµ

− Ẏν(τ?)

|Rρ(τ?)Ẏρ(τ?)|2
∂|Rσ(τ?)Ẏσ(τ?)|

∂Xµ

)
− (µ↔ ν) (6.53)

The simplest way to compute ∂τ?/∂X
µ is to start with ηρσR

ρ(τ?)R
σ(τ?) = 0. Differen-

tiating gives

ηρσR
ρ(τ?)∂µR

σ(τ?) = ηρσR
ρ(τ?)

(
δσµ − Ẏ σ(τ?) ∂µτ?

)
= 0

Rearranging gives

∂τ?
∂Xµ

=
Rµ(τ?)

Rν(τ?)Ẏν(τ?)

For the other term, we have

∂|Rσ(τ?)Ẏσ(τ?)|
∂Xµ

=
(
δσµ − Ẏ σ(τ?)∂µτ?

)
Ẏσ(τ?) +Rσ(τ?)Ÿσ(τ?)∂µτ?

=
(
Rσ(τ?)Ÿσ(τ?) + c2

)
∂µτ? + Ẏµ(τ?)

where we’ve used Ẏ µẎµ = −c2. Using these in (6.53), we get our final expression for

the field strength,

Fµν(X) =
µ0qc

4π

1

RρẎρ

[
(c2 +RλŸλ)

RµẎν −Rν Ẏµ

(RσẎσ)2
+
ŸµRν − ŸνRµ

RσẎσ

]
(6.54)

This is the covariant field strength. It takes a little work to write this in terms of the

component E and B fields but the final answer is, of course, given by (6.42) and (6.44)

that we derived previously. Indeed, you can see the general structure in (6.54). The

first term is proportional to velocity and goes as 1/R2; the second term is proportional

to acceleration and goes as 1/R.

6.4.5 Bremsstrahlung, Cyclotron and Synchrotron Radiation

To end our discussion, we derive the radiation due to some simple relativistic motion.

Power Radiated Again: Relativistic Larmor Formula

In Section 6.2.2, we derived the Larmor formula for the emitted power in the electric

dipole approximation to radiation. In this section, we present the full, relativistic

version of this formula.
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We’ll work with the expressions for the radiation fields E (6.42) and B (6.44). As

previously, we consider only the radiative part of the electric and magnetic fields which

drops off as 1/R. The Poynting vector is

S =
1

µ0

E×B =
1

µ0c
E× (R̂× E) =

1

µ0c
|E|2R̂

where all of these expressions are to be computed at the retarded time. The second

equality follows from the relation (6.45), while the final equality follows because the

radiative part of the electric field (6.42) is perpendicular to R̂. Using the expression

(6.42), we have

S =
q2

16π2ε0c3

|R̂× [(R̂− v/c)× a]|2

κ6R2
R̂

with κ = 1− R̂ · v/c.

Recall that everything in the formula above is evaluated at the retarded time t′,

defined by t′+R(t′)/c = t. This means, that the coordinates are set up so that we can

integrate S over a sphere of radius R that surrounds the particle at its retarded time.

However, there is a subtlety in computing the emitted power, associated to the Doppler

effect. The energy emitted per unit time t is not the same as the energy emitted per

unit time t′. They differ by the factor dt/dt′ = κ. The power emitted per unit time t′,

per solid angle dΩ, is

dP
dΩ

= κR2 S · R̂ =
q2

16π2ε0c3

|R̂× [(R̂− v/c)× a]|2

κ5
(6.55)

To compute the emitted power, we must integrate this expression over the sphere. This

is somewhat tedious. The result is given by

P =
q2

6πε0c3
γ4

(
a2 +

γ2

c2
(v · a)2

)
(6.56)

This is the relativistic version of the Larmor formula (6.18). (There is a factor of 2

difference when compared to (6.20) because the former equation was time averaged).

We now apply this to some simple examples.

Bremsstrahlung

Suppose a particle is travelling in a straight line, with velocity v parallel to acceleration

a. The most common situation of this type occurs when a particle decelerates. In this

case, the emitted radiation is called bremsstrahlung, German for “braking radiation”.
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We’ll sit at some point x, at which the radiation reaches us from the retarded point

on the particle’s trajectory r(t′). As before, we define R(t′) = x− r(t′). We introduce

the angle θ, defined by

R̂ · v = v cos θ

Because the v × a term in (6.55) vanishes, the angular dependence of the radiation is

rather simple in this case. It is given by

dP
dΩ

=
q2a2

16πε0c3

sin2 θ

(1− (v/c) cos θ)5

For v � c, the radiation is largest in the direction θ ≈ π/2, perpendicular to the

direction of travel. But, at relativistic speeds, v → c, the radiation is beamed in the

forward direction in two lobes, one on either side of the particle’s trajectory. The total

power emitted is (6.56) which, in this case, simplifies to

P =
q2γ6a2

6πε0c3

Cyclotron and Synchrotron Radiation

Suppose that the particle travels in a circle, with v · a = 0. We’ll pick axes so that a

is aligned with the x-axis and v is aligned with the z-axis. Then we write

R̂ = sin θ cosφx̂ + sin θ sinφŷ + cos θẑ

After a little algebra, we find that the angular dependence of the emitted radiation is

dP
dΩ

=
q2a2

16πε0c3

1

(1− (v/c) cos θ)3

(
1− sin2 θ cos2 φ

γ2(1− (v/c) cos θ)2

)
At non-relativistic speeds, v � c, the angular dependence takes the somewhat simpler

form (1− sin2 θ cos2 φ). In this limit, the radiation is referred to as cyclotron radiation.

In contrast, in the relativistic limit v → c, the radiation is again beamed mostly in the

forwards direction. This limit is referred to as synchrotron radiation. The total emitted

power (6.56) is this time given by

P =
q2γ4a2

6πε0c3

Note that the factors of γ differ from the case of linear acceleration.
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7. Electromagnetism in Matter

Until now, we’ve focussed exclusively on electric and magnetic fields in vacuum. We end

this course by describing the behaviour of electric and magnetic fields inside materials,

whether solids, liquids or gases.

The materials that we would like to discuss are insulators which, in this context, are

usually called dielectrics. These materials are the opposite of conductors: they don’t

have any charges that are free to move around. Moreover, they are typically neutral so

that – at least when averaged – the charge density vanishes: ρ = 0. You might think

that such neutral materials can’t have too much effect on electric and magnetic fields.

But, as we will see, things are more subtle and interesting.

7.1 Electric Fields in Matter

The fate of electric fields inside a dielectric depends
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+ +

+
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+ +

+

+

+

Figure 57: A simple model

of a neutral material

on the microscopic make-up of the material. We going to

work only with the simplest models. We’ll consider our

material to be constructed from a lattice of neutral atoms.

Each of these atoms consists of a positively charged nuclei,

surrounded by a negatively charged cloud of electrons. A

cartoon of this is shown in the figure; the nucleus is drawn

in red, the cloud of electrons in yellow.

Suppose that electric field E is applied to this material. What happens? Although

each atom is neutral, its individual parts are not. This results in an effect called

polarisation: the positively charged nucleus gets pushed a little in the direction of E;

the negatively charged cloud gets pushed a little in the opposite direction. (This is

not to be confused with the orientation of the electromagnetic wave which also has the

name “polarisation”).

The net effect is that the neutral atom gains an electric dipole moment. Recall from

Section 2 that two equal and opposite charges, +q and −q, separated by a distance d,

have an electric dipole p = qd. By convention, p points from the negative charge to

the positive charge.

It turns out that in most materials, the induced electric dipole is proportional to the

electric field,

p = αE (7.1)
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+ +

E=0 E

Figure 58: The polarisation of an atom

The proportionality factor α is called the atomic polarisability. Because p points from

negative to positive charge, it points in the same direction as E. The electric field

will also result in higher multipole moments of the atoms. (For example, the cloud of

electrons will be distorted). We will ignore these effects.

A Simple Model for Atomic Polarisability

Here’s a simple model which illustrates how the relationship (7.1) arises. It also gives

a ball-park figure for the value of the atomic polarisability α. Consider a nucleus of

charge +q, surrounded by a spherical cloud of electrons of radius a. We’ll take this

cloud to have uniform charge density. If we just focus on the electron cloud for now, the

electric field it produces was computed in Section 2: it rises linearly inside the cloud,

before dropping off as 1/r2 outside the cloud. Here we’re interested in the linearly

increasing behaviour inside

Ecloud =
1

4πε0

qr

a3
r̂ (r < a) (7.2)

In the absence of an external field, the nucleus feels the field due to the cloud and sits

at r = 0. Now apply an external electric field E. The nucleus will be displaced to sit

at a point where E + Ecloud = 0. In other words, it will be displaced by

r =
4πε0a

3

q
E ⇒ p = qr = 4πε0a

3 E

This gives the simple expression α = 4πε0a
3. This isn’t too far off the experimentally

measured values. For example, for hydrogen α/4πε0 ≈ 0.7× 10−30 m3 which, from the

above formula, suggests that the size of the cloud is around a ∼ 10−10 m.

7.1.1 Polarisation

We’ve learnt that applying an electric field to a material causes each atom to pick up

a dipole moment. We say that the material is polarised. The polarisation P is defined
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to be the average dipole moment per unit volume. If n is the density of atoms, each

with dipole moment p, then we can write

P = np (7.3)

We’ve actually dodged a bullet in writing this simple equation and evaded a subtle, but

important, point. Let me try to explain. Viewed as a function of spatial position, the

dipole moment p(r) is ridiculously complicated, varying wildly on distances comparable

to the atomic scale. We really couldn’t care less about any of this. We just want the

average dipole moment, and that’s what the equation above captures. But we do care

if the average dipole moment varies over large, macroscopic distances. For example, the

density n may be larger in some parts of the solid than others. And, as we’ll see, this

is going to give important, physical effects. This means that we don’t want to take the

average of p(r) over the whole solid since this would wash out all variations. Instead,

we just want to average over small distances, blurring out any atomic messiness, but

still allowing P to depend on r over large scales. The equation P = np is supposed to

be shorthand for all of this. Needless to say, we could do a better job of defining P if

forced to, but it won’t be necessary in what follows.

The polarisation of neutral atoms is not the only way that materials can become

polarised. One simple example is water. Each H2O molecule already carries a dipole

moment. (The oxygen atom carries a net negative charge, with each hydrogen carrying

a positive charge). However, usually these molecules are jumbled up in water, each

pointing in a different direction so that the dipole moments cancel out and the polari-

sation is P = 0. This changes if we apply an electric field. Now the dipoles all want to

align with the electric field, again leading to a polarisation.

In general, the polarisation P can be a complicated function of the electric field E.

However, most materials it turns out that P is proportional to E. Such materials are

called linear dielectrics. They have

P = ε0χeE (7.4)

where χe is called the electric susceptibility. It is always positive: χe > 0. Our simple

minded computation of atomic polarisability above gave such a linear relationship, with

ε0χe = nα.

The reason why most materials are linear dielectrics follows from some simple di-

mensional analysis. Any function that has P(E = 0) = 0 can be Taylor expanded as a

linear term + quadratic + cubic and so on. For suitably small electric fields, the linear
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term always dominates. But how small is small? To determine when the quadratic

and higher order terms become important, we need to know the relevant scale in the

problem. For us, this is the scale of electric fields inside the atom. But these are huge.

In most situations, the applied electric field leading to the polarisation is a tiny per-

turbation and the linear term dominates. Nonetheless, from this discussion it should

be clear that we do expect the linearity to fail for suitably high electric fields.

There are other exceptions to linear dielectrics. Perhaps the most striking exception

are materials for which P 6= 0 even in the absence of an electric field. Such materials

– which are not particularly common – are called ferroelectric. For what it’s worth, an

example is BaTiO3.

Bound Charge

Whatever the cause, when a material is po-
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Figure 59: A polarised material

larised there will be regions in which there is a

build up of electric charge. This is called bound

charge to emphasise the fact that it’s not allowed

to move and is arising from polarisation effects.

Let’s illustrate this with a simple example before

we describe the general case. Let’s go back to our

lattice of neutral atoms. As we’ve seen, in the pres-

ence of an electric field they become polarised, as

shown in the figure. However, as long as the polarisation is uniform, so P is constant,

there is no net charge in the middle of the material: averaged over many atoms, the

total charge remains the same. The only place that there is a net build up of charge

is on the surface. In contrast, if P(r) is not constant, there will also be regions in the

middle that have excess electric charge.

To describe this, recall that the electric potential due to each dipole p is

φ(r) =
1

4πε0

p · r
r3

(We computed this in Section 2). Integrating over all these dipoles, we can write the

potential in terms of the polarisation,

φ(r) =
1

4πε0

∫
V

d3r′
P(r′) · (r− r′)

|r− r′|3
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We then have the following manipulations.,

φ(r) =
1

4πε0

∫
V

d3r′ P(r′) · ∇′
(

1

|r− r′|

)
=

1

4πε0

∫
S

dS · P(r′)

|r− r′|
− 1

4πε0

∫
V

d3r′
∇′ ·P(r′)

|r− r′|

where S is the boundary of V . But both of these terms have a very natural interpre-

tation. The first is the kind of potential that we would get from a surface charge,

σbound = P · n̂

where n̂ is the normal to the surface S. The second term is the kind of potential that

we would get from a charge density of the form,

ρbound(r) = −∇ ·P(r) (7.5)

This matches our intuition above. If the polarisation P is constant then we only find

a surface charge. But if P varies throughout the material then this can lead to non-

vanishing charge density sitting inside the material.

7.1.2 Electric Displacement

We learned in our first course that the electric field obeys Gauss’ law

∇ · E =
ρ

ε0

This is a fundamental law of Nature. It doesn’t change just because we’re inside a

material. But, from our discussion above, we see that there’s a natural way to separate

the electric charge into two different types. There is the bound charge ρbound that

arises due to polarisation. And then there is anything else. This could be some electric

impurities that are stuck in the dielectric, or it could be charge that is free to move

because our insulator wasn’t quite as good an insulator as we originally assumed. The

only important thing is that this other charge does not arise due to polarisation. We

call this extra charge free charge, ρfree. Gauss’ law reads

∇ · E =
1

ε0
(ρfree + ρbound)

=
1

ε0
(ρfree −∇ ·P)

We define the electric displacement,

D = ε0E + P (7.6)
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This obeys

∇ ·D = ρfree (7.7)

That’s quite nice. Gauss’ law for the displacement involves only the free charge; any

bound charge arising from polarisation has been absorbed into the definition of D.

For linear dielectrics, the polarisation is given by (7.4) and the displacement is pro-

portional to the electric field. We write

D = εE

where ε = ε0(1+χe) is the called the permittivity of the material. We see that, for linear

dielectrics, things are rather simple: all we have to do is replace ε0 with ε everywhere.

Because ε > ε0, it means that the electric field will be decreased. We say that it is

screened by the bound charge. The amount by which the electric field is reduced is

given by the dimensionless relative permittivity or dielectric constant,

εr =
ε

ε0
= 1 + χe

For gases, εr is very close to 1. (It differs at one part in 10−3 or less). For water,

εr ≈ 80.

An Example: A Dielectric Sphere

As a simple example, consider a sphere of dielectric material of radius R. We’ll place

a charge Q at the centre. This gives rise to an electric field which polarises the sphere

and creates bound charge. We want to understand the resulting electric field E and

electric displacement D.

The modified Gauss’ law (7.7) allows us to easily compute D using the same kind of

methods that we used in Section 2. We have

D =
Q

4πr2
r̂ (r < R)

where the condition r < R means that this holds inside the dielectric. The electric field

is then given by

E =
Q

4πεr2
r̂ =

Q/εr
4πε0r2

r̂ (r < R) (7.8)
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This is what we’d expect from a charge Q/εr placed at the

Figure 60: A polarised ma-

terial

origin. The interpretation of this is that there is the bound

charge gathers at the origin, screening the original charge

Q. This bound charge is shown as the yellow ring in the

figure surrounding the original charge in red. The amount

of bound charge is simply the difference

Qbound =
Q

εr
−Q =

1− εr
εr

Q = −χe
εr
Q

This bound charge came from the polarisation of the sphere.

But the sphere is a neutral object which means that total

charge on it has to be zero. To accomplish this, there must

be an equal, but opposite, charge on the surface of the sphere. This is shown as the

red rim in the figure. This surface charge is given by

4πR2σbound = −Qbound =
εr − 1

εr
Q

We know from our first course that such a surface charge will lead to a discontinuity

in the electric field. And that’s exactly what happens. Inside the sphere, the electric

field is given by (7.8). Meanwhile outside the sphere, Gauss’ law knows nothing about

the intricacies of polarisation and we get the usual electric field due to a charge Q,

E =
Q

4πε0r2
r̂ (r > R)

At the surface r = R there is a discontinuity,

E · r̂|+ − E · r̂|− =
Q

4πε0R2
− Q

4πεR2
=
σbound

ε0

which is precisely the expected discontinuity due to surface charge.

7.2 Magnetic Fields in Matter

Electric fields are created by charges; magnetic fields are created by currents. We

learned in our first course that the simplest way to characterise any localised current

distribution is through a magnetic dipole moment m. For example, a current I moving

in a planar loop of area A with normal n̂ has magnetic dipole moment,

m = IAn̂

The resulting long-distance gauge field and magnetic field are

A(r) =
µ0

4π

m× r

r3
⇒ B(r) =

µ0

4π

(
3(m · r̂)r̂−m

r3

)
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The basic idea of this section is that current loops, and their associated dipole moments,

already exist inside materials. They arise through two mechanisms:

• Electrons orbiting the nucleus carry angular momentum and act as magnetic

dipole moments.

• Electrons carry an intrinsic spin. This is purely a quantum mechanical effect.

This too contributes to the magnetic dipole moment.

In the last section, we defined the polarisation P to be the average dipole moment per

unit volume. In analogy, we define the magnetisation M to be the average magnetic

dipole moment per unit volume. Just as in the polarisation case, here “average” means

averaging over atomic distances, but keeping any macroscopic variations of the polari-

sation M(r). It’s annoyingly difficult to come up with simple yet concise notation for

this. I’ll choose to write,

M(r) = n〈m(r)〉

where n is the density of magnetic dipoles (which can, in principle, also depend on

position) and the notation 〈·〉 means averaging over atomic distance scales. In most

(but not all) materials, if there is no applied magnetic field then the different atomic

dipoles all point in random directions. This means that, after averaging, 〈m〉 = 0

when B = 0. However, when a magnetic field is applied, the dipoles line up. The

magnetisation typically takes the form M ∝ B. We’re going to use a slightly strange

notation for the proportionality constant. (It’s historical but, as we’ll see, it turns out

to simplify a later equation)

M =
1

µ0

χm
1 + χm

B (7.9)

where χm is the magnetic susceptibility. The magnetic properties of materials fall into

three different categories. The first two are dictated by the sign of χm:

• Diamagnetism: −1 < χm < 0. The magnetisation of diamagnetic materials

points in the opposite direction to the applied magnetic field. Most metals are

diamagnetic, including copper and gold. Most non-metallic materials are also

diamagnetic including, importantly, water with χm ≈ −10−5. This means, fa-

mously, that frogs are also diamagnetic. Superconductors can be thought of as

“perfect” diamagnets with χm = −1.

• Paramagnetism: χm > 0. In paramagnets, the magnetisation points in the same

direction as the field. There are a number of paramagnetic metals, including

Tungsten, Cesium and Aluminium.
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We see that the situation is already richer than what we saw in the previous section.

There, the polarisation takes the form P = ε0χeE with χe > 0. In contrast, χm can

have either sign. On top of this, there is another important class of material that don’t

obey (7.9). These are ferromagnets:

• Ferromagnetism: M 6= 0 when B = 0. Materials with this property are what you

usually call “magnets”. They’re the things stuck to your fridge. The direction of

B is from the south pole to the north. Only a few elements are ferromagnetic.

The most familiar is Iron. Nickel and Cobalt are other examples.

In this course, we won’t describe the microscopic effects that cause these different mag-

netic properties. They all involve quantum mechanics. (Indeed, the Bohr-van Leeuwen

theorem says magnetism can’t happen in a classical world — see the lecture notes on

Classical Dynamics). A number of mechanisms for paramagetism and diamagnetism

in metals are described in the lecture notes on Statistical Physics.

7.2.1 Bound Currents

In the previous section, we saw that when a material is polarised, it results in bound

charge. There is a similar story here. When a material becomes magnetised (at least in

an anisotropic way), there will necessarily be regions in which there is a current. This

is called the bound current.

Let’s first give an intuitive picture for where these bound currents appear from.

Consider a bunch of equal magnetic dipoles arranged uniformly on a plane like this:

M

bound
K

The currents in the interior region cancel out and we’re left only with a surface current

around the edge. In Section 3, we denoted a surface current as K. We’ll follow this

notation and call the surface current arising from a constant, internal magnetisation

Kbound.

Now consider instead a situation where the dipoles are arranged on a plane, but have

different sizes. We’ll put the big ones to the left and the small ones to the right, like
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this:

Jbound

M

bound
K

In this case, the currents in the interior no longer cancel. As we can see from the

picture, they go into the page. Since M is out of the page, and we’ve arranged things

so that M varies from left to right, this suggests that Jbound ∼ ∇×M.

Let’s now put some equations on this intuition. We know that the gauge potential

due to a magnetic dipole is

A(r) =
µ0

4π

m× r

r3

Integrating over all dipoles, and doing the same kinds of manipulations that we saw for

the polarisations, we have

A(r) =
µ0

4π

∫
V

d3r′
M(r′)× (r− r′)

|r− r′|3

=
µ0

4π

∫
V

d3r′ M(r′)×∇′
(

1

|r− r′|

)
= −µ0

4π

∫
S

dS′ × M(r′)

|r− r′|
+

µ0

4π

∫
V

d3r′
∇×M(r′)

|r− r′|
Again, both of these terms have natural interpretation. The first can be thought of as

due to a surface current

Kbound = M× n̂

where n̂ is normal to the surface. The second term is the bound current in the bulk

of the material. We can compare its form to the general expression for the Biot-Savart

law that we derived in Section 3,

A(r) =
µ0

4π

∫
d3r′

J(r′)

|r− r′|
We see that the bound current is given by

Jbound = ∇×M (7.10)

as expected from our intuitive description above. Note that the bound current is a

steady current, in the sense that it obeys ∇ · Jbound = 0.
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7.2.2 Ampère’s Law Revisited

Recall that Ampère’s law describes the magnetic field generated by static currents.

We’ve now learned that, in a material, there can be two contributions to a current:

the bound current Jbound that we’ve discussed above, and the current Jfree from freely

flowing electrons that we were implicitly talking. In Section 3, we were implicitly

talking about Jfree when we discussed currents. Ampère’s law does not distinguish

between these two currents; the magnetic field receives contributions from both.

∇×B = µ0(Jfree + Jbound)

= µ0Jfree + µ0∇×M

We define the magnetising field, H as

H =
1

µ0

B−M (7.11)

This obeys

∇×H = Jfree (7.12)

We see that the field H plays a similar role to the electric displacement D; the effect of

the bound currents have been absorbed into H, so that only the free currents contribute.

Note, however, that we can’t quite forget about B entirely, since it obeys ∇ · B = 0.

In contrast, we don’t necessarily have “∇ ·H = 0”. Rather annoyingly, in a number of

books H is called the magnetic field and B is called the magnetic induction. But this

is stupid terminology so we won’t use it.

For diamagnets or paramagnets, the magnetisation is linear in the applied magnetic

field B and we can write

B = µH

A little algebra shows that µ = µ0(1 + χm). It is called the permeability. For most

materials, µ differs from µ0 only by 1 part in 105 or so. Finally, note that the somewhat

strange definition (7.9) leaves us with the more sensible relationship between M and

H,

M = χmH

– 165 –



7.3 Macroscopic Maxwell Equations

We’ve seen that the presence of bound charge and bound currents in matter can be

absorbed into the definitions of D and H. This allowed us to present versions of Gauss’

law (7.7) and Ampère’s law (7.12) which feature only the free charges and free currents.

These equations hold for electrostatic and magnetostatic situations respectively. In this

section we explain how to reformulate Maxwell’s equations in matter in more general,

time dependent, situations.

Famously, when fields depend on time there is an extra term required in Ampère’s

law. However, there is also an extra term in the expression (7.10) for the bound

current. This arises because the bound charge, ρbound, no longer sits still. It moves.

But although it moves, it must still be locally conserved which means that it should

satisfy a continuity equation

∇ · Jbound = −∂ρbound

∂t

From our earlier analysis (7.5), we can express the bound charge in terms of the polar-

isation: ρbound = −∇ ·P. Including both this contribution and the contribution (7.10)

from the magnetisation, we have the more general expression for the bound current

Jbound = ∇×M +
∂P

∂t

Let’s see how we can package the Maxwell equation using this notation. We’re inter-

ested in the extension to Ampère’s law which reads

∇×B− 1

c2

∂E

∂t
= µ0Jfree + µ0Jbound

= µ0Jfree + µ0∇×M + µ0
∂P

∂t

As before, we can use the definition of H in (7.11) to absorb the magnetisation term.

But we can also use the definition of D to absorb the polarisation term. We’re left

with the Maxwell equation

∇×H− ∂D

∂t
= Jfree

The Macroscopic Maxwell Equations

Let’s gather together everything we’ve learned. Inside matter, the four Maxwell equa-

tions become

∇ ·D = ρfree and ∇×H− ∂D

∂t
= Jfree

∇ ·B = 0 and ∇× E = −∂B

∂t
(7.13)
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There are the macroscopic Maxwell equations. Note that half of them are written in

terms of the original E and B while the other half are written in terms of D and H.

Before we solve them, we need to know the relationships between these quantities. In

the simplest, linear materials, this can be written as

D = εE and B = µH

Doesn’t all this look simple! The atomic mess that accompanies most materials can

simply be absorbed into two constants, the permittivity ε and the permeability µ. Be

warned, however: things are not always as simple as they seem. In particular, we’ll see

in Section 7.5 that the permittivity ε is not as constant as we’re pretending.

7.3.1 A First Look at Waves in Matter

We saw earlier how the Maxwell equations give rise to propagating waves, travelling

with speed c. We call these waves “light”. Much of our interest in this section will be on

what becomes of these waves when we work with the macroscopic Maxwell equations.

What happens when they bounce off different materials? What really happens when

they propagate through materials?

Let’s start by looking at the basics. In the absence of any free charge or currents,

the macroscopic Maxwell equations (7.13) become

∇ ·D = 0 and ∇×H =
∂D

∂t

∇ ·B = 0 and ∇× E = −∂B

∂t
(7.14)

which should be viewed together with the relationships D = εE and B = µH. But

these are of exactly the same form as the Maxwell equations in vacuum. Which means

that, at first glance, the propagation of waves through a medium works just like in

vacuum. All we have to do is replace ε0 → ε and µ0 → µ. By the same sort of

manipulations that we used in Section 4.3, we can derive the wave equations

1

v2

∂2E

∂t2
−∇2E = 0 and

1

v2

∂2H

∂t2
−∇2H = 0

The only difference from what we saw before is that the speed of propagation is now

given by

v2 =
1

εµ
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This is less than the speed in vacuum: v2 ≤ c2. It’s common to define the index of

refraction, n, as

n =
c

v
≥ 1 (7.15)

In most materials, µ ≈ µ0. In this case, the index of refraction is given in terms of the

dielectric constant as

n ≈
√
εr

The monochromatic, plane wave solutions to the macroscopic wave equations take the

familiar form

E = E0 e
i(k·x+ωt) and B = B0 e

i(k·x+ωt)

where the dispersion relation is now given by

ω2 = v2k2

The polarisation vectors must obey E0 · k = B0 · k = 0 and

B0 =
k̂× E0

v

Boundary Conditions

In what follows, we’re going to spend a lot of time bouncing waves off various surfaces.

We’ll typically consider an interface between two dielectric materials with different

permittivities, ε1 and ε2. In this situation, we need to know how to patch together the

fields on either side.

Let’s first recall the boundary conditions that we derived in Sections 2 and 3. In

the presence of surface charge, the electric field normal to the surface is discontinuous,

while the electric field tangent to the surface is continuous. For magnetic fields, it’s the

other way around: in the presence of a surface current, the magnetic field normal to the

surface is continuous while the magnetic field tangent to the surface is discontinuous.

What happens with dielectrics? Now we have two options of the electric field, E and

D, and two options for the magnetic field, B and H. They can’t both be continuous

because they’re related by D = εE and B = µH and we’ll be interested in situation

where ε (and possibly µ) are different on either side. Nonetheless, we can use the

same kind of computations that we saw previously to derive the boundary conditions.

Roughly, we get one boundary condition from each of the Maxwell equations.
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Figure 61: The normal component of the

electric field is discontinuous

Figure 62: The tangential component of

the electric field is continuous.

For example, consider the Gaussian pillbox shown in the left-hand figure above.

Integrating the Maxwell equation ∇ ·D = ρfree tells us that the normal component of

D is discontinuous in the presence of surface charge,

n̂ · (D2 −D1) = σ (7.16)

where n̂ is the normal component pointing from 1 into 2. Here σ refers only to the free

surface charge. It does not include any bound charges. Similarly, integrating ∇·B = 0

over the same Gaussian pillbox tells us that the normal component of the magnetic

field is continuous,

n̂ · (B2 −B1) = 0 (7.17)

To determine the tangential components, we integrate the appropriate field around the

loop shown in the right-hand figure above. By Stoke’s theorem, this is going to be

equal to the integral of the curl of the field over the bounding surface. This tells us

what the appropriate field is: it’s whatever appears in the Maxwell equations with a

curl. So if we integrate E around the loop, we get the result

n̂× (E2 − E1) = 0 (7.18)

Meanwhile, integrating H around the loop tells us the discontinuity condition for the

magnetic field

n̂× (H2 −H1) = K (7.19)

where K is the surface current.

7.4 Reflection and Refraction

We’re now going to shine light on something and watch how it bounces off. We did

something very similar in Section 4.3, where the light reflected off a conductor. Here,

we’re going to shine the light from one dielectric material into another. These two

materials will be characterised by the parameters ε1, µ1 and ε2, µ2. We’ll place the

interface at x = 0, with “region one” to the left and “region two” to the right.
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Figure 63: Incident, reflected and transmitted waves in a dielectric interface.

We send in an incident wave from region one towards the interface with a frequency

ωI and wavevector kI ,

Einc = EI e
i(kI ·x−ωI t)

where

kI = kI cos θI x̂ + kI sin θI ẑ

When the wave hits the interface, two things can happen. It can be reflected, or it can

pass through to the other region. In fact, in general, both of these things will happen.

The reflected wave takes the general form,

Eref = ER e
i(kR·x−ωRt)

where we’ve allowed for the possibility that the amplitude, frequency, wavevector and

polarisation all may change. We will write the reflected wavevector as

kR = −kR cos θR x̂ + kR sin θR ẑ

Meanwhile, the part of the wave that passes through the interface and into the second

region is the transmitted wave which takes the form,

Etrans = ET e
i(kT ·x−ωT t)

with

kT = kT cos θT x̂ + kT sin θT ẑ (7.20)
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Again, we’ve allowed for the possibility that all the different properties of the wave

could differ from the incoming wave. The electric field then takes the general form,

E =

{
Einc + Eref x < 0

Etrans x > 0

All of this is summarised in the figure.

We want to impose the matching conditions (7.16), (7.18), (7.19) and (7.17), with

no surface charges and no surface currents. To start, we need the phase factors to be

equal for all time. This means that we must have

ωI = ωR = ωT (7.21)

and

kI · x = kR · x = kT · x at x = 0 (7.22)

This latter condition tells us that all of the wavevectors lie in the (x, z)-plane because

kI originally lay in this plane. It further imposes the equality of the ẑ components of

the wavevectors:

kI sin θI = kR sin θR = kT sin θT (7.23)

But, in each region, the frequency and wavenumbers are related, through the dispersion

relation, to the speed of the wave. In region 1, we have ωI = v1kI and ωR = v1kR which,

using (7.21) and (7.23), tells us that

θI = θR

This is the familiar law of reflection.

Meanwhile, in region 2 we have ωT = v2kT . Now (7.21) and (7.23) tell us that

sin θI
v1

=
sin θT
v2

In terms of the refractive index n = c/v, this reads

n1 sin θI = n2 sin θT (7.24)

This is the law of refraction, known as Snell’s law.
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7.4.1 Fresnel Equations

There’s more information to be extracted from this calculation: we can look at the

amplitudes of the reflected and transmitted waves. As we now show, this depends on

the polarisation of the incident wave. There are two cases:

Normal Polarisation:

When the direction of EI = EI ŷ is normal to the (x, z)-plane of incidence, it’s simple

to check that the electric polarisation of the other waves must lie in the same direction:

ER = ET ŷ and ET = ET ŷ. This situation, shown in Figure 64, is sometimes referred

to as s-polarised (because the German word for normal begins with s).
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Figure 64: Incident, reflected and transmitted waves with normal polarisation.

The matching condition (7.18) requires

EI + ER = ET

Meanwhile, as we saw in (7.16), the magnetic fields are given by B = (k̂× E)/v. The

matching condition (7.19) then tells us that

BI cos θI −BR cos θR = BT cos θT ⇒ EI − ER
v1

cos θI =
ET
v2

cos θT

With a little algebra, we can massage these conditions into the expressions,

ER
EI

=
n1 cos θI − n2 cos θT
n1 cos θI + n2 cos θT

and
ET
EI

=
2n1 cos θI

n1 cos θI + n2 cos θT
(7.25)

These are the Fresnel equations for normal polarised light. We can then use Snell’s law

(7.24) to get the amplitudes in terms of the refractive indices and the incident angle

θI .
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The most common example is if region 1 contains only air, with n1 ≈ 1, and region

2 consists of some transparent material. (For example, glass which has n2 ≈ 1.5). The

normalised reflected and transmitted fields are plotted in the figures below for n1 = 1

and n2 = 2, with θI plotted in degrees along the horizontal axis).

Figure 65: The reflected field with nor-

mal polarisation

Figure 66: The transmitted field with

normal polarisation

Note that the horizontal axis are different; negative for the reflected wave, positive for

the transmitted wave. In particular, when θ = 90◦, the whole wave is reflected and

nothing is transmitted.

Parallel Polarisation:

The case in which the electric field lies lies within the (x, z)-plane of incidence is

sometimes referred to as p-polarised (because the English word for parallel begins with

p). It is shown in Figure 67.
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Figure 67: Incident, reflected and transmitted waves with parallel polarisation.
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Of course, we still require EI · k = 0, which means that

EI = −EI sin θI x̂ + EI cos θI ẑ

with similar expressions for ER and ET . The magnetic field now lies in the±ŷ direction.

The matching condition (7.18) equates the components of the electric field tangential

to the surface. This means

EI cos θI + ER cos θR = ET cos θT

while the matching condition (7.19) for the components of magnetic field tangent to

the surface gives

BI −BR = BT ⇒ EI − ER
v1

=
ET
v2

where the minus sign for BR can be traced to the fact that the direction of the B field

(relative to k) points in the opposite direction after a reflection. These two conditions

can be written as

ER
EI

=
n1 cos θT − n2 cos θI
n1 cos θT + n2 cos θI

and
ET
EI

=
2n1 cos θI

n1 cos θT + n2 cos θI
(7.26)

These are the Fresnel equations for parallel polarised light. Note that when the incident

wave is normal to the surface, so both θI = θT = 0, the amplitudes for the normal (7.25)

and parallel (7.26) polarisations coincide. But in general, they are different.

We can again plot the reflected and transmitted amplitudes in the case n1 = 1 and

n2 = 2, shown in the figure below.

Figure 68: The reflected field with par-

allel polarisation

Figure 69: The transmitted field with

parallel polarisation
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Brewster’s Angle

We can see from the left-hand figure that something interesting happens in the case of

parallel polarisation. There is an angle for which there is no reflected wave. Everything

gets transmitted. This is called the Brewster Angle, θB. It occurs when n1 cos θT =

n2 cos θI . Of course, we also need to obey Snell’s law (7.24). These two conditions are

only satisfied when θI + θT = π/2. The Brewster angle is given by

tan θB =
n2

n1

For the transmission of waves from air to glass, θB ≈ 56◦.

Brewster’s angle gives a simple way to create polarised light: shine unpolarised light

on a dielectric at angle θB and the only thing that bounces back has normal polarisation.

This is the way sunglasses work to block out polarised light from the Sun. It is also

the way polarising filters work.

7.4.2 Total Internal Reflection

Let’s return to Snell’s law (7.24) that tells us the angle of refraction,

sin θT =
n1

n2

sin θI

But there’s a problem with this equation: if n2 > n1 then the right-hand side can be

greater that one, in which case there are no solutions. This happens at the critical

angle of incidence, θC , defined by

sin θC =
n2

n1

For example, if light is moving from glass, into air, then θC ≈ 42◦. At this angle,

and beyond, there is no transmitted wave. Everything is reflected. This is called total

internal reflection. It’s what makes diamonds sparkle and makes optical fibres to work.

Here our interest is not in jewellery, but rather in a theoretical puzzle about how

total internal reflection can be consistent. After all, we’ve computed the amplitude of

the transmitted electric field in (7.25) and (7.26) and it’s simple to check that it doesn’t

vanish when θI = θC . What’s going on?

The answer lies back in our expression for the transmitted wavevector kT which

we decomposed in (7.20) using geometry. The matching condition (7.22) tells us that

kT · ŷ = 0 and

kT · ẑ = kI · ẑ =
ωI
v1

sin θI
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But, from the matching of frequencies (7.21), we know that ωI = ωT ≡ ω. We also

know that the magnitude of the transmitted wavevector is given by |kT |2 = ω2/v2
2. But

this means that the component of the wavevector in the x̂ direction of propagation

must be

kT · x̂ = ±
√
|kT |2 − (kT · ẑ)2 = ± ω

v2

√
1− v2

2 sin2 θI
v2

1

= ± ω
v2

√
1− n2

1 sin2 θI
n2

2

We see that when n1 sin θI/n2 > 1, the x̂ component of the wavevector is imaginary!

We’ll write kT · x̂ = ±iωα/v2. An imaginary wavevector sounds strange, but it’s very

simple to interpret: we simply substitute it into our wave solution to find

Etrans = ET e
(ikT ·ẑ−ωt) e∓ωαx/v2 x > 0

Picking the minus sign in the exponent gives the physically sensible solution which

decays as we move into region 2. We see that beyond the critical angle θC , there is no

propagating wave in region 2. Instead it is replaced by a decaying solution. This is

called an evanescent wave.

As we’ll now see, the idea that the wavevector can be imaginary is very useful in a

many other circumstances.

7.5 Dispersion

The dielectric constant εr = ε/ε0 is poorly named. It is not constant. This is because,

in the presence of time-dependent electric fields, the permittivity typically depends

on the frequency: ε = ε(ω). In this section, we will first provide a simple model to

understand why this is the case and what form of ε(ω) we should expect. We’ll then

move on to see the consequences of this frequency dependence.

7.5.1 Atomic Polarisability Revisited

In Section 7.1, we introduced a simple model for electric polarisability. This treats the

atom as a point-like nucleus with charge q, surrounded by a cloud of electrons which

we treat as a solid ball of radius a with uniform charge density. It’s obviously a daft

model for the atom, but it will do for our purposes.

Suppose that the centre of the electron cloud is displaced by a distance r. (You can

equivalently think of the nucleus as displaced by the same distance in the opposite

direction). We previously computed the restoring force (7.2) which acts on cloud,

Fcloud = − q2

4πε0a3
r = −mω2

0r
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In the final equality, we’ve introduced the mass m of the cloud and defined the quantity

ω0 which we will call the resonant frequency.

In Section 7.1, we just looked at the equilibrium configuration of the electron cloud.

Here, instead, we want to subject the atom to a time-dependent electric field E(t). In

this situation, the electron cloud also feels a damping force

Fdamping = −mγṙ (7.27)

for some constant coefficient γ. You might find it strange to see such a friction term

occurring for an atomic system. After all, we usually learn that friction is the effect

of averaging over many many atoms. The purpose of this term is to capture the fact

that the atom can lose energy, either to surrounding atoms or emitted electromagnetic

radiation (which we’ll learn more about in Section 6). If we now apply a time dependent

electric field E(t) to this atom, the equation of motion for the displacement it

mr̈ = − q

m
E(t)−mω2

0r +mγṙ (7.28)

Solutions to this describe the atomic cloud oscillating about

+

E

Figure 70:

the nucleus.

The time dependent electric field will be of the wave form that

we’ve seen throughout these lectures: E = E0e
i(k·r−ωt). However, the

atom is tiny. In particular, it is small compared to the wavelength

of (at least) visible light, meaning ka � 1. For this reason, we can

ignore the fact that the phase oscillates in space and work with an

electric field of the form E(t) = E0e
−iωt. Then (7.28) is the equation

for a forced, damped harmonic oscillator. We search for solutions to

(7.28) of the form r(t) = r0e
−iωt. (In the end we will take the real part). The solution

is

r0 = −qE0

m

1

−ω2 + ω2
0 − iγω

This gives the atomic polarisability p = αE, where

α =
q2/m

−ω2 + ω2
0 − iγω

(7.29)

As promised, the polarisability depends on the frequency. Moreover, it is also complex.

This has the effect that the polarisation of the atom is not in phase with the oscillating

electric field.
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Because the polarisability is both frequency dependent and complex, the permittivity

ε(ω) will also be both frequency dependent and complex. (In the simplest settings, they

are related by ε(ω) = ε0 + nα(ω) where n is the density of atoms). We’ll now see the

effect this has on the propagation of electromagnetic waves through materials.

7.5.2 Electromagnetic Waves Revisited

To start, we’ll consider a general form of the permittivity ε(ω) which is both frequency

dependent and complex; we’ll return to the specific form arising from the polarisability

(7.29) later. In contrast, we will assume that the magnetic thing µ is both constant

and real, which turns out to be a good approximation for most materials. This means

that we have

D = ε(ω)E and B = µH

We’ll look for plane wave solutions, so that the electric and magnetic fields takes the

form

E(x, t) = E(ω) ei(k·x−ωt) and B(x, t) = B(ω) ei(k·x−ωt)

Maxwell’s equations in matter were given in (7.14). The first two simply tell us

∇ ·D = 0 ⇒ ε(ω)k · E(ω) = 0

∇ ·B = 0 ⇒ k ·B(ω) = 0

These are the statements that the electric and magnetic fields remain transverse to the

direction of propagation. (In fact there’s a caveat here: if ε(ω) = 0 for some frequency

ω, then the electric field need not be transverse. This won’t affect our discussion

here, but we will see an example of this when we turn to conductors in Section 7.6).

Meanwhile, the other two equations are

∇×H =
∂D

∂t
⇒ k×B(ω) = −µε(ω)ωE(ω)

∇× E = −∂B

∂t
⇒ k× E(ω) = ωB(ω) (7.30)

We do the same manipulation that we’ve seen before: look at k× (k×E) and use the

fact that k · E = 0. This gives us the dispersion relation

k · k = µε(ω)ω2 (7.31)

We need to understand what this equation is telling us. In particular, ε(ω) is typically

complex. This, in turn, means that the wavevector k will also be complex. To be
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specific, we’ll look at waves propagating in the z-direction and write k = kẑ. We’ll

write the real and imaginary parts as

ε(ω) = ε1(ω) + iε2(ω) and k = k1 + ik2

Then the dispersion relation reads

k1 + ik2 = ω
√
µ
√
ε1 + iε2 (7.32)

and the electric field takes the form

E(x, t) = E(ω) e−k2z ei(k1z−ωt) (7.33)

We now see the consequence of the imaginary part of ε(ω); it causes the amplitude of

the wave to decay as it extends in the z-direction. This is also called attenuation. The

real part, k1, determines the oscillating part of the wave. The fact that ε depends on

ω means that waves of different frequencies travel with different speeds. We’ll discuss

shortly the ways of characterising these speeds.

The magnetic field is

B(ω) =
k

ω
ẑ× E(ω) =

|k|eiφ

ω
ẑ× E(ω)

where φ = tan−1(k2/k1) is the phase of the complex wavenumber k. This is the second

consequence of a complex permittivity ε(ω); it results in the electric and magnetic fields

oscillating out of phase. The profile of the magnetic field is

B(x, t) =
|k|
ω

(ẑ× E(ω)) e−k2z ei(k1z−ωt+φ) (7.34)

As always, the physical fields are simply the real parts of (7.33) and (7.34), namely

E(x, t) = E(ω) e−k2z cos(k1z − ωt)

B(x, t) =
|k|
ω

(ẑ× E(ω)) e−k2z cos(k1z − ωt+ φ)

To recap: the imaginary part of ε means that k2 6= 0. This has two effects: it leads to

the damping of the fields, and to the phase shift between E and B.

Measures of Velocity

The other new feature of ε(ω) is that it depends on the frequency ω. The dispersion

relation (7.31) then immediately tells us that waves of different frequencies travel at
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different speeds. There are two, useful characterisations of these speeds. The phase

velocity is defined as

vp =
ω

k1

As we can see from (7.33) and (7.34), a wave of a fixed frequency ω propagates with

phase velocity vp(ω).

Waves of different frequency will travel with different phase velocities vp. This means

that for wave pulses, which consist of many different frequencies, different parts of the

wave will travel with different speeds. This will typically result in a change of shape of

the pulse as it moves along. We’d like to find a way to characterise the speed of the

whole pulse. The usual measure is the group velocity, defined as

vg =
dω

dk1

where we’ve inverted (7.31) so that we’re now viewing frequency as a function of (real)

wavenumber: ω(k1).

To see why the group velocity is a good measure of the speed, let’s build a pulse by

superposing lots of waves of different frequencies. To make life simple, we’ll briefly set

ε2 = 0 and k1 = k for now so that we don’t have to think about damping effects. Then,

focussing on the electric field, we can build a pulse by writing

E(x, t) =

∫
dk

2π
E(k)ei(kz−ωt)

Suppose that our choice of wavepacket E(k) is heavily peaked around some fixed

wavenumber k0. Then we can expand the exponent as

kz − ω(k)t ≈ kz − ω(k0)t− dω

dk

∣∣∣∣
k0

(k − k0)t

= −[ω(k0) + vg(k0)]t+ k[z − vg(k0)t]

The first term is just a constant oscillation in time; the second term is the one of interest.

It tells us that the peak of the wave pulse is moving to the right with approximate speed

vg(k0).

Following (7.15), we also define the index of refraction

n(ω) =
c

vp(ω)

– 180 –



This allows us to write a relation between the group and phase velocities:

1

vg
=
dk1

dω
=

d

dω

(nω
c

)
=

1

vp
+
ω

c

dn

ω

Materials with dn/dω > 0 have vg < vp; this is called normal dispersion. Materials

with dn/dω < 0 have vg > vp; this is called anomalous dispersion.

7.5.3 A Model for Dispersion

Let’s see how this story works for our simple model of atomic polarisability α(ω) given

in (7.29). The permittivity is ε(ω) = ε0 + nα(ω) where n is the density of atoms. The

real and imaginary parts ε = ε1 + iε2 are

ε1 = ε0 −
nq2

m

ω2 − ω2
0

(ω2 − ω2
0)2 + γ2ω2

ε2 =
nq2

m

γω

(ω2 − ω2
0)2 + γ2ω2

These functions look like this: (These particular plots are made with γ = 1 and ω0 = 2

and nq2/m = 1).

Figure 71: The real part of the permit-

tivity, ε1 − ε0
Figure 72: The imaginary part of the

permittivity, ε2

The real part is an even function: it has a maximum at ω = ω0 − γ/2 and a minimum

at ω = ω0 +γ/2, each offset from the resonant frequency by an amount proportional to

the damping γ. The imaginary part is an odd function; it has a maximum at ω = ω0,

the resonant frequency of the atom. The width of the imaginary part is roughly γ/2.

A quantity that will prove important later is the plasma frequency, ωp. This is defined

as

ω2
p =

nq2

mε0
(7.35)

We’ll see the relevance of this quantity in Section 7.6. But for now it will simply be a

useful combination that appears in some formulae below.
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The dispersion relation (7.32) tells us

k2
1 − k2

2 + 2ik1k2 = ω2µ(ε1 + iε2)

Equating real and imaginary parts, we have

k1 = ±ω√µ
(

1

2

√
ε21 + ε22 +

1

2
ε1

)1/2

k2 = ±ω√µ
(

1

2

√
ε21 + ε22 −

1

2
ε1

)1/2

(7.36)

To understand how light propagates through the material, we need to look at the values

of k1 and k2 for different values of the frequency. There are three different types of

behaviour.

Transparent Propagation: Very high or very low frequencies

The most straightforward physics happens when ε1 > 0 and ε1 � ε2. For our simple

model, this ocurs when ω < ω0 − γ/2 or when ω > ω?, the value at which ε1(ω?) = 0.

Expanding to leading order, we have

k1 ≈ ±ω
√
µε1 and k2 ≈ ±ω

√
µε22
4ε1

=

(
ε2
2ε1

)
k1 � k1

Because k2 � k1, the damping is small. This means that the material is transparent

at these frequencies.

There’s more to this story. For the low frequencies, ε1 > ε0 + nq2/mω2
0. This is the

same kind of situation that we dealt with in Section 7.3. The phase velocity vp < c in

this regime. For high frequencies, however, ε1 < ε0; in fact, ε1(ω) → ε1 from below as

ω → ∞. This means that vp > c in this region. This is nothing to be scared of! The

plane wave is already spread throughout space; it’s not communicating any information

faster than light. Instead, pulses propagate at the group velocity, vg. This is less than

the speed of light, vg < c, in both high and low frequency regimes.

Resonant Absorption: ω ≈ ω0

Resonant absorption occurs when ε2 � |ε1|. In our model, this phenomenon is most

pronounced when ω0 � γ so that the resonant peak of ε2 is sharp. Then for frequencies

close to the resonance, ω ≈ ω0 ± γ/2, we have

ε1 ≈ ε0 and ε2 ≈
nq2

m

1

ω0γ
= ε0

(
ωp
ω0

)2
ω0

γ
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We see that we meet the requirement for resonant absorption if we also have ωp & ω0.

When ε2 � |ε1|, we can expand (7.36) to find

k1 ≈ k2 ≈ ±ω
√
µε22
2

The fact that k2 ≈ k1 means that the wave decays very rapidly: it has effectively

disappeared within just a few wavelengths of propagation. This is because the frequency

of the wave is tuned to coincide with the natural frequency of the atoms, which easily

become excited, absorbing energy from the wave.

Total Reflection:

The third region of interest occurs when ε1 < 0 and |ε1| � ε2. In our model, it is

roughly for frequencies ω0 + γ/2 < ω < ω?. Now, the expansion of (7.36) gives

k1 ≈ ±ω
√
µ

(
1

2
|ε1|+

1

4

ε22
|ε1|

+
1

2
ε1 + . . .

)1/2

≈ ±ωε2
2

√
µ

|ε1|

and

k2 ≈ ±ω
√
µ|ε1| =

|ε1|
2ε2

k1 � k1

Now the wavenumber is almost pure imaginary. The wave doesn’t even manage to get

a few wavelengths before it decays. It’s almost all gone before it even travels a single

wavelength.

We’re not tuned to the resonant frequency, so this time the wave isn’t being absorbed

by the atoms. Instead, the applied electromagnetic field is almost entirely cancelled

out by the induced electric and magnetic fields due to polarisation.

7.5.4 Causality and the Kramers-Kronig Relation

Throughout this section, we used the relationship between the polarisation p and ap-

plied electric field E. In frequency space, this reads

p(ω) = α(ω)E(ω) (7.37)

Relationships of this kind appear in many places in physics. The polarisability α(ω) is

an example of a response function. As their name suggests, such functions tell us how

some object – in this case p – respond to a change in circumstance – in this case, the

application of an electric field.
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There is a general theory around the properties of response functions4. The most

important fact follows from causality. The basic idea is that if we start off with a

vanishing electric field and turn it on only at some fixed time, t?, then the polarisation

shouldn’t respond to this until after t?. This sounds obvious. But how is it encoded in

the mathematics?

The causality properties are somewhat hidden in (7.37) because we’re thinking of

the electric field as oscillating at some fixed frequency, which implicitly means that it

oscillates for all time. If we want to turn the electric field on and off in time, when we

need to think about superposing fields of lots of different frequencies. This, of course,

is the essence of the Fourier transform. If we shake the electric field at lots of different

frequencies, its time dependence is given by

E(t) =

∫ +∞

−∞

dω

2π
E(ω) e−iωt

where, if we want E(t) to be real, we should take E(−ω) = E(ω)?. Conversely, for a

given time dependence of the electric field, the component at some frequency ω is given

by the inverse Fourier transform,

E(ω) =

∫ +∞

−∞
dt E(t) eiωt

Let’s now see what this tells us about the time dependence of the polarisation p. Using

(7.37), we have

p(t) =

∫ +∞

−∞

dω

2π
p(ω) e−iωt

=

∫ +∞

−∞

dω

2π
α(ω)

∫ +∞

−∞
dt′ E(t′) e−iω(t−t′)

=

∫ +∞

−∞
dt′ α̃(t− t′)E(t′) (7.38)

where, in the final line, we’ve introduced the Fourier transform of the polarisability,

α̃(t) =

∫ +∞

−∞

dω

2π
α(ω) e−iωt (7.39)

(Note that I’ve been marginally inconsistent in my notation here. I’ve added the tilde

above α̃ to stress that this is the Fourier transform of α(ω) even though I didn’t do the

same to p and E).

4You can learn more about this in the Response Functions section of the lectures on Kinetic Theory.

– 184 –



Equation (7.38) relates the time dependence of p to the time dependence of the

electric field E. It’s telling us that the effect isn’t immediate; the polarisation at time

t depends on what the electric field was doing at all times t′. But now we can state the

requirement of causality: the response function must obey

α̃(t) = 0 for t < 0

Using (7.39), we can translate this back into a statement ω

ωRe(  )

Im(  )

Figure 73:

about the response function in frequency space. When t <

0, we can perform the integral over ω by completing the

contour in the upper-half plane as shown in the figure. Along

the extra semi-circle, the exponent is −iωt → −∞ for t <

0, ensuring that this part of the integral vanishes. By the

residue theorem, the integral is just given by the sum of

residues inside the contour. If we want α(t) = 0 for t < 0, we need there to be no poles.

In other words, we learn that

α(ω) is analytic for Imω > 0

In contrast, α(ω) can have poles in the lower-half imaginary plane. For example, if you

look at our expression for the polarisability in (7.29), you can see that there are two

poles at ω = −iγ/2±
√
ω2

0 − γ2/4. Both lie in the lower-half of the complex ω plane.

The fact that α is analytic in the upper-half plane means that there is a relationship

between its real and imaginary parts. This is called the Kramers-Kronig relation. Our

task in this section is to derive it. We start by providing a few general mathematical

statements about complex integrals.

A Discontinuous Function

First, consider a general function ρ(ω). We’ll ask that ρ(ω) is meromorphic, meaning

that it is analytic apart from at isolated poles. But, for now, we won’t place any

restrictions on the position of these poles. (We will shortly replace ρ(ω) by α(ω) which,

as we’ve just seen, has no poles in the upper half plane). We can define a new function

f(ω) by the integral,

f(ω) =
1

iπ

∫ b

a

ρ(ω′)

ω′ − ω
dω′ (7.40)

Here the integral is taken along the interval ω′ ∈ [a, b] of the real line. However, when

ω also lies in this interval, we have a problem because the integral diverges at ω′ = ω.
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To avoid this, we can simply deform the contour of the integral into the complex plane,

either running just above the singularity along ω′ + iε or just below the singularity

along ω′ − iε. Alternatively (in fact, equivalently) we could just shift the position of

the singularity to ω → ω ∓ ε. In both cases we just skim by the singularity and the

integral is well defined. The only problem is that we get different answers depending

on which way we do things. Indeed, the difference between the two answers is given by

Cauchy’s residue theorem,

1

2
[f(ω + iε)− f(ω − iε)] = ρ(ω) (7.41)

The difference between f(ω+iε) and f(ω−iε) means that the function f(ω) is discontin-

uous across the real axis for ω ∈ [a, b]. If ρ(ω) is everywhere analytic, this discontinuity

is a branch cut.

We can also define the average of the two functions either side of the discontinuity.

This is usually called the principal value, and is denoted by adding the symbol P before

the integral,

1

2
[f(ω + iε) + f(ω − iε)] ≡ 1

iπ
P
∫ b

a

ρ(ω′)

ω′ − ω
dω′ (7.42)

We can get a better handle on the meaning of this principal part if we look at the real

and imaginary pieces of the denominator in the integrand 1/[ω′ − (ω ± iε)],

1

ω′ − (ω ± iε)
=

ω′ − ω
(ω′ − ω)2 + ε2

± iε

(ω′ − ω)2 + ε2
(7.43)

The real and imaginary parts of this function look like this:

-2 2 4

-1.0

-0.5

0.5

1.0

-2 2 4

0.5

1.0

1.5

2.0

Figure 74: The real part of the function

plotted with ω′ = 1 and ε = 0.5.

Figure 75: The imaginary part of the

function plotted with ω′ = 1 and ε = 0.5

We can isolate the real part by taking the sum of f(ω + iε) and f(ω − iε) in (7.42). It

can be thought of as a suitably cut-off version of 1/(ω′ − ω). It’s as if we have deleted
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an small segment of this function lying symmetrically about divergent point ω and

replaced it with a smooth function going through zero. This is the usual definition of

the principal part of an integral.

Similarly, the imaginary part can be thought of as a regularised delta-function. As

ε→ 0, it tends towards a delta function, as expected from (7.41).

Kramers-Kronig

Let’s now apply this discussion to our polarisability response function α(ω). We’ll be

interested in the integral

1

iπ

∮
C

dω′
α(ω′)

ω′ − ω
ω ∈ R (7.44)

where the contour C skims just above the real axis, before closing at infinity in the

upper-half plane. We’ll need to make one additional assumption: that α(ω) falls off

faster than 1/|ω| at infinity. If this holds, the integral is the same as we consider in

(7.40) with [a, b]→ [−∞,+∞]. Indeed, in the language of the previous discussion, the

integral is f(ω − iε), with ρ = α.

We apply the formulae (7.41) and (7.42). It gives

f(ω − iε) =
1

iπ
P
[∫ +∞

−∞
dω′

α(ω′)

ω′ − ω

]
− α(ω)

But we know the integral in (7.44) has to be zero since α(ω) has no poles in the

upper-half plane. This means that f(ω − iε) = 0, or

α(ω) =
1

iπ
P
∫ +∞

−∞
dω′

α(ω′)

ω′ − ω
The important part for us is that factor of “i” sitting in the denominator. Taking real

and imaginary parts, we learn that

Reα(ω) = P
∫ +∞

−∞

dω′

π

Imα(ω′)

ω′ − ω
and

Imα(ω) = −P
∫ +∞

−∞

dω′

π

Reα(ω′)

ω′ − ω
These are the Kramers-Kronig relations. They follow from causality alone and tell us

that the imaginary part of the response function is determined in terms of the real

part, and vice-versa. However, the relationship is not local in frequency space: you

need to know Reα(ω) for all frequencies in order to reconstruct Imα(ω) for any single

frequency.
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7.6 Conductors Revisited

Until now, we’ve only discussed electromagnetic waves propagating through insulators.

(Or, dielectrics to give them their fancy name). What happens in conductors where

electric charges are free to move? We met a cheap model of a conductor in Section 2.4,

where we described them as objects which screen electric fields. Here we’ll do a slightly

better job and understand how this happens dynamically.

7.6.1 The Drude Model

The Drude model is simple. Really simple. It describes the electrons moving in a

conductor as billiard-balls, bouncing off things. The electrons have mass m, charge q

and velocity v = ṙ. We treat them classically using F = ma; the equation of motion is

m
dv

dt
= qE− m

τ
v (7.45)

The force is due to an applied electric field E, together with a linear friction term. This

friction term captures the effect of electrons hitting things, whether the background

lattice of fixed ions, impurities, or each other. (Really, these latter processes should

be treated in the quantum theory but we’ll stick with a classical treatment here). The

coefficient τ is called the scattering time. It should be thought of as the average time

that the electron travels before it bounces off something. For reference, in a good metal,

τ ≈ 10−14 s. (Note that this friction term is the same as (7.27) that we wrote for the

atomic polarisability, although the mechanisms behind it may be different in the two

cases).

We start by applying an electric field which is constant in space but oscillating in

time

E = E(ω)e−iωt

This can be thought of as applying an AC voltage to a conductor. We look for solutions

of the form

v = v(ω) e−iωt

Plugging this into (7.45) gives(
−iω +

1

τ

)
v(ω) =

q

m
E(ω)

The current density is J = nqv, where n is the density of charge carriers, so the solution

tells us that

J(ω) = σ(ω)E(ω) (7.46)
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This, of course, is Ohm’s law. The proportionality constant σ(ω) depends on the

frequency and is given by

σ(ω) =
σDC

1− iωτ
(7.47)

It is usually referred to as the optical conductivity. In the limit of vanishing frequency,

ω = 0, it reduces to the DC conductivity,

σDC =
nq2τ

m

The DC conductivity is real and is inversely related to the resistivity ρ = 1/σDC . In

contrast, the optical conductivity is complex. Its real and imaginary parts are given by

Reσ(ω) =
σDC

1 + ω2τ 2
and Imσ(ω) =

σDC ωτ

1 + ω2τ 2

These are plotted below for σDC = 1 and τ = 1: The conductivity is complex simply

Figure 76: The real, dissipative part of

the conductivity

Figure 77: The imaginary, reactive part

of the conductivity

because we’re working in Fourier space. The real part tells us about the dissipation

of energy in the system. The bump at low frequencies, ω ∼ 1/τ , is referred to as the

Drude peak. The imaginary part of the conductivity tells us about the response of the

system. (To see how this is relevant note that, in the Fourier ansatz, the velocity is

related to the position by v = ṙ = −iωr). At very large frequencies, ωτ � 1, the

conductivity becomes almost purely imaginary, σ(ω) ∼ i/ωτ . This should be thought

of as the conductivity of a free particle; you’re shaking it so fast that it turns around

and goes the other way before it’s had the chance to hit something.

Although we derived our result (7.47) using a simple, Newtonian model of free elec-

trons, the expression for the conductivity itself is surprisingly robust. In fact, it survives

just about every subsequent revolution in physics; the development of quantum me-

chanics and Fermi surfaces, the presence of lattices and Bloch waves, even interactions

between electrons in a framework known as Landau’s Fermi liquid model. In all of
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these, the optical conductivity (7.47) remains the correct answer5. (This is true, at

least, at low frequencies, At very high frequencies other effects can come in and change

the story).

7.6.2 Electromagnetic Waves in Conductors

Let’s now ask our favourite question: how do electromagnetic waves move through a

material? The macroscopic Maxwell equations (7.14) that we wrote before assumed

that there were no free charges or currents around. Now we’re in a conductor, we need

to include the charge density and current terms on the right-hand side:

∇ ·D = ρ and ∇×H = J +
∂D

∂t

∇ ·B = 0 and ∇× E = −∂B

∂t
(7.48)

It’s important to remember that here ρ refers only to the free charge. (We called it

ρfree in Section 7.1). We can still have bound charge in conductors, trapped around the

ions of the lattice, but this has already been absorbed in the definition of D which is

given by

D = ε(ω)E

Similarly, the current J is due only to the free charge.

We now apply a spatially varying, oscillating electromagnetic field, using the familiar

ansatz,

E(x, t) = E(ω)ei(k·x−ωt) and B(x, t) = B(ω)ei(k·x−ωt) (7.49)

At this point, we need to make an do something that isn’t obviously allowed: we will

continue to use Ohm’s law (7.46), even in the presence of a varying electric field, so

that

J(x, t) = σ(ω)E(ω)ei(k·x−ωt) (7.50)

This looks dubious; we derived Ohm’s law by assuming that the electric field was the

same everywhere in space. Why do we now get to use it when the electric field varies?

5As an extreme example, the conductivity of the horizon of certain black holes can be computed

in general relativity. Even here, the result at low frequency is given by the simple Drude formula

(7.47)! Details can be found in Gary Horowitz, Jorge Santos and David Tong, “Optical Conductivity

with Holographic Lattices, arXiv:1204.0519.
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For this to be valid, we need to assume that over the time scales τ , relevant in the

derivation of Ohm’s law, the electric field is more or less constant. This will be true

if the wavelength of the electric field, λ = 2π/|k| is greater than the distance travelled

by the electrons between collisions. This distance, known as the mean free path, is

given by l = 〈v〉τ , where v is the average speed. In most metals, l ≈ 10−7 m. (This is

around 1000 lattice spacings; to understand how it can be so large requires a quantum

treatment of the electrons). This means that we should be able to trust (7.50) for

wavelengths λ & l ≈ 10−7 m, which is roughly around the visible spectrum.

The continuity equation ∇ · J + dρ/dt = 0 tells us that if the current oscillates, then

the charge density must as well. In Fourier space, the continuity equation becomes

ρ =
k · J
ω

=
σ(ω)

ω
k · E(ω) ei(k·x−ωt) (7.51)

We can now plug these ansatze into the Maxwell equations (7.48). We also need

B = µH where, as previously, we’ll take µ to be independent of frequency. We have

∇ ·D = ρ ⇒ i

(
ε(ω) + i

σ(ω)

ω

)
k · E(ω) = 0 (7.52)

∇ ·B = 0 ⇒ k ·B(ω) = 0

As before, these tell us that the electric and magnetic fields are transverse to the

direction of propagation. Although, as we mentioned before, there is a caveat to this

statement: if we can find a frequency for which ε(ω) + iσ(ω)/ω = 0 then longitudinal

waves are allowed for the electric field. We will discuss this possibility in Section 7.6.3.

For now focus on the transverse fields k · E = k ·B = 0.

The other two equations are

∇×H = J +
∂D

∂t
⇒ ik×B(ω) = −iµω

(
ε(ω) + i

σ(ω)

ω

)
E(ω)

∇× E = −∂B

∂t
⇒ k× E(ω) = ωB(ω)

The end result is that the equations governing waves in a conductor take exactly the

same form as those derived in (7.30) governing waves in an insulator. The only differ-

ence is that we have to make the substitution

ε(ω) −→ εeff(ω) = ε(ω) + i
σ(ω)

ω

This means that we can happily import our results from Section 7.5. In particular, the

dispersion relation is given by

k · k = µεeff(ω)ω2 (7.53)
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Let’s now see how this extra term affects the physics, assuming that the optical con-

ductivity takes the Drude form

σ(ω) =
σDC

1− iωτ
Low Frequencies

At frequencies that are low compared to the scattering time, ωτ � 1, we have σ(ω) ≈
σDC. This means that the real and imaginary parts of εeff are

εeff = εeff
1 + iεeff

2 ≈ ε1 + i
(
ε2 +

σDC

ω

)
(7.54)

For sufficiently small ω, we always have εeff
2 � εeff

1 . This is the regime that we called res-

onant absorption in Section 7.5. The physics here is the same; no waves can propagate

through the conductor; all are absorbed by the mobile electrons.

In this regime, the effective dielectric constant is totally dominated by the contribu-

tion from the conductivity and is almost pure imaginary: εeff ≈ iσDC/ω. The dispersion

relation (7.53) then tells us that the wavenumber is

k = k1 + ik2 =
√
iµωσDC =

√
µωσDC

2
(1 + i)

So k1 = k2. This means that, for a wave travelling in the z-direction, so k = kẑ, the

electric field takes the form

E(z, t) = E(ω)e−δz ei(k1z−ωt)

where

δ =
1

k2

=

√
2

µωσDC

The distance δ is called the skin depth. It is the distance that electromagnetic waves

will penetrate into a conductor. Not that as ω → 0, the waves get further and further.

The fact that k1 = k2 also tells us, through (7.34), that the electric and magnetic

fields oscillate π/4 out of phase. (The phase difference is given by tanφ = k2/k1).

Finally, the magnitudes of the ratio of the electric and magnetic field amplitudes are

given by

|B(ω)|
|E(ω)|

=
k

ω
=

√
µσDC

ω

As ω → 0, we see that more and more of the energy lies in the magnetic, rather than

electric, field.
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High Frequencies

Let’s now look at what happens for high frequencies. By this, we mean both ωτ � 1,

so that σ(ω) ≈ iσDC/ωτ and ω � ω0 so that ε(ω) ≈ ε0. Now the effective permittivity

is more or less real,

εeff(ω) ≈ ε0 −
σDC

ω2τ
= ε0

(
1−

ω2
p

ω2

)
(7.55)

where are using the notation of the plasma frequency ω2
p = nq2/mε0 that we introduced

in (7.35). What happens next depends on the sign of εeff :

• ω > ωp: At these high frequencies, εeff > 0 and k is real. This is the regime of

transparent propagation. We see that, at suitably high frequencies, conductors

become transparent. The dispersion relation is ω2 = ω2
p + c2k2.

• ω < ωp: This regime only exists if ωp > ω0, τ . (This is usually the case). Now

εeff < 0 so k is purely imaginary. This is the regime of total reflection; no wave

can propagate inside the conductor.

We see that the plasma frequency ωp sets the lower-limit for when waves can propagate

through a conductor. For most metals, ω−1
p ≈ 10−16s with a corresponding wavelength

of λp ≈ 3 × 10−10 m. This lies firmly in the ultraviolet, meaning that visible light is

reflected. This is why most metals are shiny. (Note, however, that this is smaller than

the wavelength that we needed to really trust (7.50); you would have to work harder

to get a more robust derivation of this effect).

There’s a cute application of this effect. In the upper atmosphere of the Earth,

many atoms are ionised and the gas acts like a plasma with ωp ≈ 2π × 9 MHz. Only

electromagnetic waves above this frequency can make it through. This includes FM

radio waves. But, in contrast, AM radio waves are below this frequency and bounce

back to Earth. This is why you can hear AM radio far away. And why aliens can’t.

7.6.3 Plasma Oscillations

We noted in (7.52) that there’s a get out clause in the requirement that the electric

field is transverse to the propagating wave. The Maxwell equation reads

∇ ·D = ρ ⇒ i

(
ε(ω) + i

σ(ω)

ω

)
k · E(ω) = 0

Which means that we can have k · E 6= 0 as long as εeff(ω) = ε(ω) + iσ(ω)/ω = 0.
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We could try to satisfy this requirement at low frequencies where the effective per-

mittivity is given by (7.54). Since we typically have ε1 � ε2 in this regime, this is

approximately

εeff(ω) ≈ ε1 + i
σDC

ω

Which can only vanish if we take the frequency to be purely imaginary,

ω = −iσDC

ε1

This is easy to interpret. Plugging it into the ansatz (7.49), we have

E(x, t) = E(ω) eik·x e−σDCt/ε1

which is telling us that if you try to put such a low frequency longitudinal field in a

conductor then it will decay in time ∼ ε1/σDC. This is not the solution we’re looking

for.

More interesting is what happens at high frequencies, ω � 1/τ, ω0, where the effective

permittivity is given by (7.55). It vanishes at ω = ωp:

εeff(ωp) ≈ 0

Now we can have a new, propagating solution in which B = 0, while E is parallel to k.

This is a longitudinal wave. It is given by

E(x, t) = E(ωp)e
i(k·x−ωpt)

By the relation (7.51), we see that for these longitudinal waves the charge density is

also oscillating,

ρ(x, t) = k · E(ωp)e
i(k·x−ωpt)

These are called plasma oscillations.

Note that, while the frequency of oscillation is always ωp, the wavenumber k can

be anything. This slightly strange state of affairs is changed if you take into account

thermal motion of the electrons. This results in an electron pressure which acts as a

restoring force on the plasma, inducing a non-trivial dispersion relation. When quan-

tised, the resulting particles are called plasmons.

7.6.4 Dispersion Relations in Quantum Mechanics

So far we’ve derived a number of dispersion relations for various wave excitations. In

all cases, these become particle excitations when we include quantum mechanics.
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The paradigmatic example is the way light waves are comprised of photons. These

are massless particles with energy E and momentum p given by

E = ~ω and p = ~k (7.56)

With this dictionary, the wave dispersion relation becomes the familiar energy-momentum

relation for massless particles that we met in our special relativity course,

ω = kc ⇒ E = pc

The relationships (7.56) continue to hold when we quantise any other dispersion re-

lation. However, one of the main lessons of this section is that both the wavevector

and frequency can be complex. These too have interpretations after we quantise. A

complex k means that the wave dies away quickly, typically after some boundary. In

the quantum world, this just means that the particle excitations are confined close to

the boundary. Meanwhile, an imaginary ω means that the wave dies down over time.

In the quantum world, the imaginary part of ω has the interpretation as the lifetime

of the particle.

7.7 Charge Screening

Take a system in which charges are free to move around. To be specific, we’ll talk

about a metal but everything we say could apply to any plasma. Then take another

charge and place it at a fixed location in the middle of the system. This could be, for

example, an impurity in the metal. What happens?

The mobile charges will be either attracted or repelled by the impurity. If the impu-

rity has positive charge, the mobile, negatively charged electrons will want to cluster

around it. The charge of these electrons acts to cancel out the charge of the impurity

so that, viewed from afar, the region around the impurity will appear to have greatly

reduced charge. There is a similar story if the charge of the impurity is negative; now

the electrons are repelled, exposing the lattice of positively charged ions that lies un-

derneath. Once again, the total charge of a region around the impurity will be greatly

reduced. This is the phenomenon of charge screening.

Our goal here is to understand more quantitatively how this happens and, in par-

ticular, how the effective charge of the impurity changes as we move away from it. As

we’ll see, ultimately quantum effects will result in some rather surprising behaviour.

I should mention that, unlike other parts of these notes, this section will need results

from both quantum mechanics and statistical mechanics.
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7.7.1 Classical Screening: The Debye-Hückel model

We’ll start by looking at a simple classical model for charge screening which will give

us some intuition for what’s going on. Our metal consists of a mobile gas of electrons,

each of charge q. These are described by a charge density ρ(r). In the absence of any

impurity, we would have ρ(r) = ρ0, some constant.

The entire metal is neutral. The charges of the mobile electrons are cancelled by

the charges of the ions that they leave behind, fixed in position in the crystal lattice.

Instead of trying to model this lattice with any accuracy, we’ll simply pretend that it

has a uniform, constant charge density −ρ0, ensuring that the total system is neutral.

This very simple toy model sometimes goes by the toy name of jellium.

Now we introduce the impurity by placing a fixed charge Q at the origin. We want

to know how the electron density ρ(r) responds. The presence of the impurity sets up

an electric field, with the electrostatic potential φ(r) fixed by Gauss’ law

∇2φ = − 1

ε0

(
Qδ3(r)− ρ0 + ρ(r)

)
(7.57)

Here the −ρ0 term is due to the uniform background charge, while ρ(r) is due to the

electron density. It should be clear that this equation alone is not enough to solve for

both ρ(r) and φ(r). To make progress, we need to understand more about the forces

governing the charge distribution ρ(r). This sounds like it might be a difficult problem.

However, rather than approach it as a problem in classical mechanics, we do something

clever: we import some tools from statistical mechanics6.

We place our system at temperature T . The charge density ρ(r) will be proportional

to the probability of finding a charge q at position r. If we assume that there are no

correlations between the electrons, this is just given by the Bolzmann distribution. The

potential energy needed to put a charge q at position r is simply qφ(r) so we have

ρ(r) = ρ0 e
−qφ(r)/kBT (7.58)

where the normalisation ρ0 is fixed by assuming that far from the impurity φ(r) → 0

and the system settles down to its original state.

6See the lecture notes on Statistical Physics. The Debye-Hückel model was described in Section 2.6

of these notes.
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The result (7.58) is a very simple solution to what looks like a complicated problem.

Of course, in part this is the beauty of statistical mechanics. But there is also an

important approximation that has gone into this result: we assume that a given electron

feels the average potential produced by all the others. We neglect any fluctuations

around this average. This is an example of the mean field approximation, sometimes

called the Hartree approximation. (We used the same kind of trick in the Statistical

Physics notes when we first introduced the Ising model).

For suitably large temperatures, we can expand the Boltzmann distribution and write

ρ(r) ≈ ρ0

(
1− qφ(r)

kBT
+ . . .

)
Substituting this into Gauss’ law (7.57) then gives(

∇2 − 1

λ2
D

)
φ(r) = −Q

ε0
δ3(r)

where λD is called the Debye screening length (we’ll see why shortly) and is given by

λ2
D =

kBTε0
q2n0

(7.59)

We’ve written this in terms of the number density n0 of electrons instead of the charge

density ρ0 = qn0. The solution to this equation is

φ(r) =
Qe−r/λD

4πε0r
(7.60)

This equation clearly shows the screening phenomenon that we’re interested in. At

short distances r � λD, the electric field due to the impurity doesn’t look very much

different from the familiar Coulomb field. But at larger distances r � λD, the screening

changes the potential dramatically and it now dies off exponentially quickly rather than

as a power-law. Note that the electrons become less efficient at screening the impurity

as the temperature increases. In contrast, if we take this result at face value, it looks

as if they can screen the impurity arbitrarily well at low temperatures. But, of course,

the classical description of electrons is not valid at low temperatures. Instead we need

to turn to quantum mechanics.

7.7.2 The Dielectric Function

Before we look at quantum versions of screening, it’s useful to first introduce some

new terminology. Let’s again consider introducing an impurity into the system, this
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time with some fixed charge distribution ρext(r), where “ext” stands for “external”. We

know that, taken on its own, this will induce a background electric field with potential

∇2φext = −ρ
ext

ε0

But we also know that the presence of the impurity will affect the charge distribution

of the mobile electrons. We’ll call ρind(r) = ρ(r)− ρ0 the “induced charge”. We know

that the actual electric field will be given by the sum of ρext and ρind,

∇2φ = − 1

ε0

(
ρext(r) + ρind(r)

)
This set-up is very similar to our discussion in Section 7.1 when we first introduced

the idea of polarisation P and the electric displacement D. In that case, we were

interested in insulators and the polarisation described the response of bound charge to

an applied electric field. Now we’re discussing conductors and the polarisation should

be thought of as the response of the mobile electrons to an external electric field. In

other words, ∇ · P = −ρind. (Compare this to (7.5) for an insulator). Meanwhile, the

electric displacement D is the electric field that you apply to the material, as opposed

to E which is the actual electric field inside the material. In the present context, that

means

E = −∇φ and D = −ε0∇φext

When we first introduced E and D, we defined the relationship between them to be

simply D = εE, where ε is the permittivity. Later, in Section 7.5, we realised that ε

could depend on the frequency of the applied electric field. Now we’re interested in

static situations, so there’s no frequency, but the electric fields vary in space. Therefore

we shouldn’t be surprised to learn that ε now depends on the wavelength, or wavevector,

of the electric fields.

It’s worth explaining a little more how this arises. The first thing we could try is

to relate E(r) and D(r). The problem is that this relationship is not local in space.

An applied electric field D(r) will move charges far away which, in turn, will affect the

electric field E(r) far away. This means that, in real space, the relationship between D

and E takes the form,

D(r) =

∫
d3r′ ε(r− r′)E(r′) (7.61)

The quantity ε(r− r′) is known as the dielectric response function. It depends only on

the difference r − r′ because the underlying system is translationally invariant. This
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relationship looks somewhat simpler if we Fourier transform and work in momentum

space. We write

D(k) =

∫
d3r e−ik·r D(r) ⇔ D(r) =

∫
d3k

(2π)3
eik·r D(k)

and similar expressions for other quantities. (Note that we’re using the notation in

which the function and its Fourier transform are distinguished only by their argument).

Taking the Fourier transform of both sides of (7.61), we have

D(k) =

∫
d3r e−ik·rD(r) =

∫
d3r

∫
d3r′ e−ik·(r−r

′)ε(r− r′) e−ik·r
′
E(r′)

But this final expression is just the product of two Fourier transforms. This tells us

that we have the promised expression

D(k) = ε(k)E(k)

The quantity ε(k) is called the dielectric function. The constant permittivity that we

first met in Section 7.1 is simply given by ε(k→ 0).

In what follows, we’ll work with the potentials φ and charge densities ρ, rather than

D and E. The dielectric function is then defined as

φext(k) = ε(k)φ(k) (7.62)

We write φ = φext + φind, where

−∇2φind =
ρind

ε0
⇒ k2φind(k) =

ρind(k)

ε0

Rearranging (7.62) then gives us an expression for the dielectric function in terms of

the induced charge ρind and the total electrostatic potential φ.

ε(k) = 1− 1

ε0k2

ρind(k)

φ(k)
(7.63)

This will turn out to be the most useful form in what follows.

Debye-Hückel Revisited

So far, we’ve just given a bunch of definitions. They’ll be useful moving forward,

but first let’s see how we can recover the results of the Debye-Hückel model using
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this machinery. We know from (7.58) how the induced charge ρind is related to the

electrostatic potential,

ρind(r) = ρ0

(
e−qφ(r)/kBT − 1

)
≈ −qρ0φ(r)

kBT
+ . . . (7.64)

To leading order, we then also get a linear relationship between the Fourier components,

ρind(k) ≈ − qρ0

kBT
φ(k)

Substituting this into (7.63) gives us an expression for the dielectric function,

ε(k) = 1 +
k2
D

k2
(7.65)

where k2
D = qρ0/ε0kBT = 1/λ2

D, with λD the Debye screening length that we introduced

in (7.59).

Let’s now see the physics that’s encoded in the dielectric function. Suppose that we

place a point charge at the origin. We have

φext(r) =
Q

4πε0r
⇒ φext(k) =

Q

ε0k2

Then, using the form of the dielectric function (7.65), the resulting electrostatic poten-

tial φ is given by

φ(k) =
φext(k)

ε(k)
=

Q

ε0(k2 + k2
D)

We need to do the inverse Fourier transform of φ(k) to find φ(r). Let’s see how to do

it; we have

φ(r) =

∫
d3k

(2π)3
eik·rφ(k) =

Q

(2π)3ε0

∫ 2π

0

dφ

∫ π

0

dθ sin θ

∫ ∞
0

dk
k2

k2 + k2
D

eikr cos θ

where, in the second equality, we’ve chosen to work in spherical polar coordinates in

which the kz axis is aligned with r, so that k · r = kr cos θ. We do the integrals over

the two angular variables, to get

φ(r) =
Q

(2π)2ε0

∫ ∞
0

dk
k2

k2 + k2
D

2 sin kr

kr

=
Q

(2π)2ε0r

∫ ∞
−∞

dk
k sin kr

k2 + k2
D

=
Q

2πε0r
Re

[∫ +∞

−∞

dk

2πi

keikr

k2 + k2
D

]
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We compute this last integral by closing the contour in the upper-half plane with

k → +i∞, picking up the pole at k = +ikD. This gives our final answer for the

electrostatic potential,

φ(r) =
Qe−r/λD

4πε0r

That’s quite nice: we see that the dielectric function (7.65) contains the same physics

(7.60) that we saw earlier in the direct computation of classical electrostatic screening.

We could also compute the induced charge density to find

ρind(r) = −Qe
−r/λD

4πλ2
Dr

which agrees with (7.64).

But the dielectric function ε(k) contains more information: it tells us how the system

responds to each Fourier mode of an externally placed charge density. This means that

we can use it to compute the response to any shape ρext(r).

Here, for example, is one very simple bit of physics contained in ε(k). In the limit

k → 0, we have ε(k) → ∞. This means that, in the presence of any constant, applied

electric field D, the electric field inside the material will be E = D/ε = 0. But you

knew this already: it’s the statement that you can’t have electric fields inside conductors

because the charges will always move to cancel it. More generally, classical conductors

will effectively screen any applied electric field which doesn’t vary much on distances

smaller than λD.

7.7.3 Thomas-Fermi Theory

The Debye-Hückel result describes screening by classical particles. But, as we lower the

temperature, we know that quantum effects become important. Our first pass at this

is called the Thomas-Fermi approximation. It’s basically the same idea that we used in

the Debye-Hückel approach, but with the probability determined by the Fermi-Dirac

distribution rather than the classical Boltzmann distribution.

We work in the grand canonical ensemble, with temperature T and chemical potential

µ. Recall that the probability of finding a fermion in a state |k〉 with energy Ek is given

by the Fermi-Dirac distribution

f(k) =
1

e(Ek−µ)/kBT + 1
(7.66)
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The chemical potential µ is determined by the requirement that the equilibrium charge

density is ρ(µ) = ρ0, where

ρ(µ) = gs

∫
d3k

(2π)3

q

e(Ek−µ)/kBT + 1
(7.67)

Here gs is the spin degeneracy factor which we usually take to be gs = 2.

Let’s now place the external charge density ρext(r) in the system. The story is the

same as we saw before: the mobile charges move, resulting in an induced charge density

ρind(r), and a total electrostatic potential φ(r). The Thomas-Fermi approximation

involves working with the new probability distribution

f(k, r) =
1

e(Ek+qφ(r)−µ)/kBT + 1
(7.68)

This can be thought of as either changing the energy to E = Ek+qφ(r) or, alternatively,

allowing for a spatially varying chemical potential µ→ µ− qφ(r).

The first thing to say about the probability distribution (7.68) is that it doesn’t make

any sense! It claims to be the probability for a state with momentum k and position

r, yet states in quantum mechanics are, famously, not labelled by both momentum

and position at the same time! So what’s going on? We should think of (7.68) as

an approximation that is valid when φ(r) is very slowly varying compared to any

microscopic length scales. Then we can look in a patch of space where φ(r) is roughly

constant and apply (7.68). In a neighbouring patch of space we again apply (7.68),

now with a slightly different value of φ(r). This idea of local equilibrium underlies the

Thomas-Fermi (and, indeed, the Debye-Hückel) approximations.

Let’s see how this works in practice. The spatially dependent charge density is now

given by

ρ(r;µ) = gs

∫
d3k

(2π)3

q

e(Ek+qφ(r)−µ)/kBT + 1
(7.69)

We’re interested in computing the induced charge density ρind(r) = ρ(r)−ρ0. Combin-

ing (7.69) and (7.67), we have

ρind(r) = gs

∫
d3k

(2π)3

[
q

e(Ek+qφ(r)−µ)/kBT + 1
− q

e(Ek−µ)/kBT + 1

]
But we can rewrite this using the notation of (7.67) simply as

ρind(r) = ρ (µ− qφ(r))− ρ(µ) ≈ −qφ(r)
∂ρ(µ)

∂µ
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where, in the last step, we have Taylor expanded the function which is valid under

the assumption that qφ(r) � µ. But this immediately gives us an expression for the

dielectric function using (7.63),

ε(k) = 1 +
∂ρ

∂µ

q

ε0k2

We’re almost there. We still need to figure out what ∂ρ/∂µ is. This is particularly easy

if we work at T = 0, where we can identify the chemical potential µ with the Fermi

energy: µ = EF . In this case, the Fermi-Dirac distribution is a step function and the

total charge density is simply given by

ρ(EF ) = q

∫ EF

0

dE g(E)

where g(E) is the density of states (we’ll remind ourselves what form the density of

states takes below). We learn that ∂ρ/∂EF = g(EF ) and the dielectric function is given

by

ε(k) = 1 +
q2g(EF )

ε0k2
(7.70)

Note that the functional form of ε(k) is exactly the same as we saw in the classical case

(7.65). The only thing that’s changed is the coefficient of the 1/k2 term which, as we

saw before, determines the screening length. Let’s look at a simple example.

A Simple Example

For non-relativistic particles, the energy is given by E = ~2k2/2m. In three spatial

dimensions, the density of states is given by7

g(E) = gs
1

4π2

(
2m

~2

)3/2

E1/2

This is kind of a mess, but there’s a neater way to write g(EF ). (This neater way

will also allow for a simple comparison to the Debye screening length as well). At zero

temperature, the total charge density is

ρ0 = q

∫ EF

0

dE g(E)

7See the lecture notes on Statistical Physics for details on how to compute the density of states.

The g(E) we use here differs slightly from that presented in the Statistical Physics lectures because it

does not include an overall volume factor. This is because we want to compute the number density of

particles rather than the total number of particles.
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Using this, we have

g(EF ) =
3

2q

ρ0

EF

and we can write the dielectric function as

ε(k) = 1 +
k2
TF

k2

where k2
TF = 3qρ0/2ε0EF . This is our expression for the Thomas-Fermi screening length

λTF = 1/kTF .

It’s instructive to compare this screening length with the classical Debye length λD.

We have

λ2
D

λ2
TF

=
2

3

T

TF

where TF = kBEF is the Fermi temperature. The classical analysis can only be trusted

at temperature T � TF where λD � λTF . But, for metals, the Fermi temperature

is hot; something like 104, K. This means that, at room temperature, T � TF and

our quantum result above (which, strictly speaking, was only valid at T = 0) is a

good approximation. Here λD � λTF . The upshot is that quantum mechanics acts to

increase the screening length beyond that suggested by classical physics.

7.7.4 Lindhard Theory

The Thomas-Fermi approximation is straightforward, but it relies crucially on the po-

tential φ(r) varying only over large scales. However, as we will now see, the most

interesting physics arises due to variations of φ(r) over small scales (or, equivalently,

large k). For this we need to work harder.

The key idea is to go back to basics where, here, basics means quantum mechanics.

Before we add the impurity, the energy eigenstates are plane waves |k〉 with energy

E(k) = ~2k2/2m. To determine the dielectric function (7.63), we only need to know

how the mobile charge density ρ(r) changes in the presence of a potential φ(r). We can

do this by considering a small perturbation to the Hamiltonian of the form

∆H = qφ(r)

The energy eigenstate that is labelled by k now shifts. We call the new state |ψ(k)〉.
Ultimately, our goal is to compute the induced charge density. For an electron in state

|ψ(k)〉, the probabilty of finding it at position r is simply |〈r|ψ(k)〉|2. Which means
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that, for this state, the change in the density is |〈r|ψ(k)〉|2 − |〈r|k〉|2. The induced

charge density ρind(r) is obtained by summing over all such states, weighted with the

Fermi-Dirac distribution function. We have

ρind(r) = qgs

∫
d3k

(2π)3
f(k)

[
|〈r|ψ(k)〉|2 − |〈r|k〉|2

]
where f(k) is the Fermi-Dirac distribution (7.66) and we’ve remembered to include the

spin degeneracy factor gs = 2. To make progress, we need to get to work computing

the overlap of states.

To first order in perturbation theory, the new energy eigenstate is given by

|ψ(k)〉 = |k〉+

∫
d3k′

(2π)3

〈k′|∆H|k〉
E(k)− E(k′)

|k′〉

Keeping only terms linear in ∆H, we can expand this out to read

|〈r|ψ(k)〉|2 − |〈r|k〉|2 =

∫
d3k′

(2π)3

[
〈r|k〉 〈k|∆H|k

′〉
E(k)− E(k′)

〈k′|r〉+ 〈k|r〉 〈k
′|∆H|k〉

E(k)− E(k′)
〈r|k′〉

]
But we have expressions for each of these matrix elements. Of course, the plane waves

take the form 〈r|k〉 = eik·r, while the matrix elements of the perturbed Hamiltonian

are

〈k′|qφ(r)|k〉 =

∫
d3rd3r′ ei(k·r−k

′·r′)〈r′|qφ(r)|r〉 = qφ(k− k′)

In other words, it gives the Fourier transform of the electrostatic potential. Putting

this together, we arrive at an integral expression for the induced charge,

ρind(r) = q2gs

∫
d3k

(2π)3

d3k′

(2π)3
f(k)

[
e−i(k

′−k)·rφ(k− k′)

E(k)− E(k′)
+
e−i(k−k

′)·rφ(k′ − k)

E(k)− E(k′)

]
Of course, what we really want for the dielectric function (7.63) is the Fourier transform

of the induced charge,

ρind(k) =

∫
d3r e−ik·rρind(r)

Thankfully, doing the
∫
d3r integral gives rise to a delta-function which simplifies our

life rather than complicating it. Performing some relabelling of dummy integration

variables, we have

ρind(k)

φ(k)
= q2gs

∫
d3k′

(2π)3
f(k′)

[
1

E(k′)− E(|k′ − k|)
+

1

E(k′)− E(|k + k′|)

]
(7.71)
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These two terms are more similar than they look. If we change the dummy integration

variable in the first term to k′ → k′ + k then we can write

ρind(k)

φ(k)
= q2gs

∫
d3k′

(2π)3

f(|k + k′|)− f(k′)

E(|k + k′|)− E(k′)
(7.72)

The left-hand side is exactly what we want. The right-hand side is an integral. It’s

not too hard to do this integral, but let’s first check that this result gives something

sensible.

Thomas-Fermi Revisited

Let’s first see how we can recover the Thomas-Fermi result for the dielectric function.

Recall that the Thomas-Fermi approximation was only valid when the potential φ(r),

and hence the induced charge ρind(r), vary slowly over large distances. In the present

context, this means it is valid at small k. But here we can simply Taylor expand the

numerator and denominator of (7.72).

E(|k + k′|)− E(k′) ≈ ∂E

∂k′
· k

and f(|k + k′|)− f(k′) ≈ ∂f

∂E

∂E

∂k′
· k

So we have

ρind(k)

φ(k)
= q2gs

∫
d3k′

(2π)3

∂f

∂E
= q2

∫
dE g(E)

∂f

∂E

where the last step is essentially the definition of the density of states g(E). But at T =

0, the Fermi-Dirac distribution f(E) is just a step function, and ∂f/∂E = −δ(E−EF ).

So at T = 0, we get

ρind(k)

φ(k)
= q2g(EF ) ⇒ ε(k) = 1 +

q2g(EF )

ε0k2

which we recognise as the Thomas-Fermi result (7.70) that we derived previously.

The Lindhard Function

While the Thomas-Fermi approximation suffices for variations over large scales and

small k, our real interest here is in what happens at large k. As we will now show,

quantum mechanics gives rise to some interesting features in the screening when impu-

rities have structure on scales of order ∼ 1/kF where kF is the Fermi-wavevector. For

this, we need to go back to the Lindhard result

ρind(k)

φ(k)
= q2gs

∫
d3k′

(2π)3

f(|k + k′|)− f(k′)

E(|k + k′|)− E(k′)

Our task is to do this integral properly.
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a) k<2k b) k>2kc)k=2kF F F

k kk

Figure 78: The two Fermi surfaces in momentum space. The integration region Σ is shown

shaded in red for a) k < 2kF , b) k = 2kF and c) k > 2kF .

Let’s firstly get a sense for what the integrand looks like. We’ll work at T = 0, so

the Fermi-Dirac distribution function f(k) is a step function with

f(k) =

{
1 k < kF

0 k > kF

This makes the integral much easier. All the subtleties now come from figuring out

which region in momentum space gives a non-vanishing contribution. The filled states

associated to f(k′) form a ball in momentum space of radius kF , centered at the origin.

Meanwhile, the filled states associated to f(|k′ + k|) form a ball in momentum space

of radius kF centered at k′ = −k. These are shown in a number of cases in Figure 78.

Because the integral comes with a factor of f(|k + k′|) − f(k′), it gets contributions

only from states that are empty in one ball but filled in the other. We call this region

Σ; it is the shaded red region shown in the figures. There is a also a mirror region

in the other ball that also contributes to the integral, but this simply gives an overall

factor of 2. So we have

ρind(k)

φ(k)
= 2q2gs

∫
Σ

d3k′

(2π)3

1

E(|k + k′|)− E(k′)

The important physics lies in the fact that the nature of Σ changes as we vary k. For

k < 2kF , Σ is a crescent-shaped region as shown in Figure 78a. But for k ≥ 2kF , Σ is

the whole Fermi ball as shown in Figures 78b and 78c.

We’ll work with non-relativistic fermions with E = ~2k2/2m. While the graphical

picture above will be useful to get intuition for the physics, to do the integral it’s
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actually simpler to return to the form (7.71). At zero temperature, we have

ρind(k)

φ(k)
= q2gs

∫
k≤kF

d3k′

(2π)3

[
1

−k2 + 2k · k′
+

1

−k2 − 2k · k′

]
= −q2gs

2m

~2

∫
k′≤kF

d3k′

(2π)3

2

k2 − 2k′ · k

where the two terms double-up because rotational symmetry ensures that the physics

is invariant under k → −k. Now the integration domain remains fixed as we vary

k, with the graphical change of topology that we saw above buried in the integrand.

For k ≤ 2kF , the denominator in the integrand can vanish. This reflects the fact

that transitions between an occupied and unoccupied state with the same energy are

possible. It corresponds to the situation depicted in Figure 78a. But for k > 2kF , the

denominator is always positive. This corresponds to the situation shown in Figure 78c.

To proceed, we work in polar coordinates for k′ with the z-axis aligned with k. We

have

ρind(k)

φ(k)
= − 4mq2gs

(2π)2~2

∫ π

0

dθ sin θ

∫ kF

0

dk′
k′ 2

k2 − 2kk′ cos θ

=
2mq2gs
(2π)2~2

1

k

∫ kF

0

dk′ k′ log

∣∣∣∣k2 + 2kk′

k2 − 2kk′

∣∣∣∣
But this is now an integral that we can do; the general form is∫

dy y log

(
ay + b

−ay + b

)
=
by

a
+

1

2

(
y2 − b2

a2

)
log

(
ay + b

−ay + b

)
We then have

ρind(k)

φ(k)
= − 2mq2gs

(2π)2~2

1

k

[
kkF

2
+

1

2

(
k2
F −

k2

4

)
log

∣∣∣∣ 2kkF + k2

−2kkF + k2

∣∣∣∣]
This gives our final expression, known as the Lindhard dielectric function,

ε(k) = 1 +
k2
TF

k2
F

(
k

2kF

)
where all the constants that we gathered along our journey sit in k2

TF = q2g(EF )/ε0 =

gsq
2mkF/2π

2~2ε0. This is the Thomas-Fermi wave result that we saw previously, but

now it is dressed by the function

F (x) =
1

2
+

1− x2

4x
log

∣∣∣∣x+ 1

x− 1

∣∣∣∣
At small k we have F (x→ 0) = 1 and we recover the Thomas-Fermi result.
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For variations on very small scales, we’re interested in the large k regime where

x→∞ and F (x)→ 1/3x2. (You have to go to third order in the Taylor expansion of

the log to see this!). This means that on small scales we have

ε(k)→ 1 +
4k2

TFk
2
F

3k4

However, the most interesting physics occurs at near k = 2kF .

7.7.5 Friedel Oscillations

We saw above that there’s a qualitative difference in the accessible states when k < 2kF
and k > 2kF . Our goal is to understand what this means for the physics. The dielectric

function itself is nice and continuous at k = 2kF , with F (x = 1) = 1/2. However, it is

not smooth: the derivative of the dielectric function suffers a logarithmic singularity,

F ′(x→ 1+)→ 1

2
log

(
x− 1

2

)
This has an important consequence for the screening of a point charge.

As we saw in Section 7.7.2, a point charge gives rise to the external potential

φext(k) =
Q

ε0k2

and, after screening, the true potential is φ(k) = φext(k)/ε(k). However, the Fourier

transform back to real space is now somewhat complicated. It turns out that it’s easier

to work directly with the induced charge density ρind(r). From the definition of the

dielectric function (7.63), the induced charge density in the presence of a point charge

φext(k) = Q/ε0k
2 is given by,

ρind(k) = −Qε(k)− 1

ε(k)

where, for k ≈ 2kF , we have

ε(k)− 1

ε(k)
=
k2
TF

8k2
F

(
1 +

k − 2kF
2kF

log

(
k − 2kF

4kF

)
+ . . .

)
(7.73)

Now we want to Fourier transform this back to real space. We repeat the steps that

we took in Section 7.7.2 for the Debye-Hückel model to get

ρind(r) = −Q
∫

d3k

(2π)3
eik·r

(
ε(k)− 1

ε(k)

)
= − Q

2π2

1

r

∫ ∞
0

dk

(
kε(k)− k
ε(k)

)
sin kr
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At this stage, it’s useful if we integrate by parts twice. We have

ρind(r) =
Q

2π2

1

r3

∫ ∞
0

dk
d2

dk2

(
kε(k)− k
ε(k)

)
sin kr

Of course, the Fourier integral requires us to know ε(k) at all values of k, rather than

just around k = 2kF . Suppose, however, that we’re interested in the behaviour a long

way from the point charge. At large r, the sin kr factor oscillates very rapidly with

k, ensuring that the induced charge at large distances is essentially vanishing. This

was responsible for the exponential behaviour of the screening that we saw in both the

Debye-Hückel and Thomas-Fermi models. However, at k = 2kF the other factor in the

integrand diverges,

d2

dk2

(
kε(k)− k
ε(k)

)
≈ k2

TF

4k2
F

1

k − 2kF

This will now give rise to a long-range contribution. Therefore, if we only care about

this long-distance behaviour, we need only integrate over some small interval I about

k = 2kF ,

ρind(r) ≈ Qk2
TF

8π2k2
F

1

r3

∫
I

dk
sin kr

k − 2kF

=
Qk2

TF

8π2k2
F

1

r3

∫
I

dk

[
cos(2kF r) sin((q − 2kF )r)

k − 2kF
+

sin(2kF r) cos((k − 2kF )r)

k − 2kF

]
where we’ve used a little trigonometry. The second term above vanishes on parity

grounds (contributions from either side of k = kF cancel). We can approximate the

first term by extending the range of the integral to all k (because, as we’ve just argued,

the main contribution comes from the interval I anyway). Using
∫ +∞
−∞ dx sinx/x = π,

we get our final expression for the long-distance charge density induced by a point

charge,

ρind(r) ≈ Qk2
TF

8πk2
F

cos(2kF r)

r3
(7.74)

We learn that the effect of the Fermi surface is to dramatically change the screening

of electric charge. Instead of the usual exponential screening, we instead find a power-

law fall off, albeit weaker than the Coulomb force in vacuum (i.e. 1/r3 instead of 1/r).

Moreover, the sign of the induced charge oscillates. These are called Friedel oscillations.

They provide a very visual way to see the edge of the Fermi surface. This figure shows

some Friedel oscillations on a two-dimensional surface8. You can make out a bright
8The figure is taken from Direct Observation of Friedel Oscillations around Incorporated SiGa

Dopants in GaAs by Low-Temperature Scanning Tunneling Microscopy by M van der Wielen, A van

Roij and H. van Kempen, Physical Review Letters 76, 7 (1996).
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central region, surrounded by a black ring, surrounded by another white ring. This

corresponds to a Fermi wavelength of around λF ∼ 10−8m.

Heuristically, what’s going on here is that the wave-

Figure 79: Friedel oscilla-

tions in GaAs doped with Sil-

icon.

function of the electrons has a finite size.. At zero tem-

perature, the states with lowest energy have wavelength

λ = 1/kF . . These modes enthusiastically cluster around

the impurity, keen to reduce its charge but, unaware

of their own cumbersome nature, end up overscreening.

Other electrons have to then respond to undo the dam-

age and the story is then repeated, over exuberance piled

upon over exuberance. The end result is a highly inef-

ficient screening mechanism and the wonderful rippling

patterns of charge that are seen in scanning tunnelling

microscopes.
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